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LOCAL PARAMETERS OF QUARTIC
INTERPOLATORY SPLINES
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Abstract

The continuity conditions for quartic interpolatory spline on the gen-
eral knot set are expressed in terms of the first and second derivatives.
The resulting system of equations is then completed by boundary condi-
tions to the system of linear equations for computing the values of the

first and second derivatives of the quartic spline.
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MS Classification: 41A15, 65D05

1 Introduction
Let us have the two sets of points on the real axis
{z;; i =0(1)n+ 1} —knots of the spline,

{tj; 7=0(1)n} —points of interpolation,
in the following ordering

(AzAt) o <to<z <t <...<tho1<zp<tph <zTpy
and further let be given
{gj; 7 =0(1)n} —prescribed values at t; .
A quartic interpolatory spline S41(x) = S(z) on (AzAt) —a spline of the degree

four and defect one—is a function with the following properties:
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a) 541(1) € Cs[ro,:ﬂn+1]; (continuity)

b) Sai(z) is a polynomial of the fourth degree on every interval [z;, z;y1],
i=0(Un ;

¢) Su(ti)=gi, i=0(1)n (interpolation) .

The continuity and interpolation conditions for S = S4; expressed in terms
of T; = S"'(z;) and the corresponding algorithm for computing all local parame-
ters of the spline are described in [2],[3]. There the involved technique of divided
differences (used for quintic splines in [1]) resulted in relatively simple penta-
diagonal system of linear equations. The more elementary approach discussed
below leads to systems with block tridiagonal matrices. A similar approach to
the quintic splines was given in [4].

2 Continuity conditions

Let us have the interval [z;,z;+1] and given numbers m;, m; 41, My, My 41, gi.
Then there exists a unique polynomial S(x) of the fourth degree such that
Sti)=gi,  S'(z)=mi,  S(2;) = M,
S'(zip1) = mipr,  S"(xiy1) = Miyr .

(1)

Denoting h; = zit1 — i, di = (ti — ;) /hi, ¢ = (z — z;)/h; , we can write it as

S(z) = gi + himi(g — di) + $hIM;(¢* — d})+
+hil(mips — mi) — ghi(Mig1 +2M;))(¢° — df)+ ()
+hi[3hi(Mig1 + M;) = 5(mip1 —my))(¢* — df) -
Our aim now is to determine the values m;, M;, 1 = 0(1)n + 1 such that con-
necting together neighbouring “segments” we obtain a spline Sy; € C3[zo, Zn41]
interpolating the values g;, ¢ = 0(1)n. We can write the continuity condition
for the function values at © = z; as
gi — himyd; — %th,d,2 — hilmig1 —m; — %hi(MiH + 2M;)|d? -
—hi[ hi(Mip1 + M;) — 3(migr —my)] =
=gi1+ hicymi (1= dicy) + $h2 M (1 —d?_ )+ (3)
thi_y[mi —mi_y — Fhi_ (M 4+ 2M;_1))(1 — d3_))+ '
+hi_1[%hi_1(Mi + Mi—l) — %(m, — m,_l)](l -_ d?—l) , 1= 1(1)77, .

Rearranging it we obtain for : = 1(1)n the system of linear relations

a;mi_1 + bym; + cimipr + AiMi_q + BiM; + CiMip1 = gi — gi-1 (4)
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between parameters m;, M; and given values g;, where the values of coefficients
are

a;i = h;_1(1—d2_ )[%(I-Fd O =di-1]

e; = hyd3(1 — %dl) ,

by = hidy(1 — d? + §d3) + hi 1[I — d3_, — 3(1 —d}_ )],

Ai = hiz—l[%(l - diz—l) - %(1 - d?—1) + %(1 - d?—l)] )

Ci = hidi(—3 + 3di) _

Bi = h;'2~1[*.’1§(] - d?~1) + %(1 —di_y)]+ hzdz(% - %di + %df) :

(4)

These coeflicients depend on the geometry of the knotset (AzAt) only. For
the semi-regular knotset (with ¢; = (z; + z;41)/2, d; = 1/2, 1 = I(1)n - 1;
do =0, d, = 1) we can write (4) as
—hgmg + 32(16}L0 + 13]11)7”1 + h1m2+
192[16h2M0 + (11hz — 16}L0)M1 — 5h? MQ] =4g1— 9o ,

32h _ymi_q + L (h,- 1+ hi)m; + 33—2him,-+1+
oty Moy 4 110K — B2 )M, — 562 M) = g — gy (6)
i=2(1)n-1,

a5 hn—1mn 1+ &5 (13hn_1 + 16h,)mp + Shampgr+

192[5/12 M1+ (16h 11hi DMy — 16hZMn+]] =0n —gn-1 -
On the equidistant mesh with hg = h/2 = hn, h; = h, i = 1(1)n — 1
the foregoing relations simplify to
35(8mo + 21my + 3my) + 15 h(4M0 +TMy — 5M,) = (91 — go)/k,
35 (3mi_1 + 26m; + 3mip1) + 25 15 h(Mioy — Miyy) = (g — giz1)/h
i=2()n—1, (7)
35 (31 4 21mp, + 8mpg1) + hsh(BMn_y — Tty — 4M,,41) =
= (gn — gn-1)/h .

The continuity of the first and the second derivatives of S(z) at knots z;
is contained implicitly in our notation m;, M; for thege values. Computing the
third derivative S”’(z) from (2), the continuity of S"(z) at knots ¢ = z; can
be expressed as the relation

(6/h3)[hi(mit1 — m;) — Lh2(Miy1 + 2M;)] =
= (6/h3_)[hi_i(m; — mi_y) — Lh?  (M; + 2Mi )+ hE (M, + M;—y)—
=2hi—1(mi —m;_y)] .
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Denoting r; = h;/h;_1, we can write it in the form

rZmi_1 + (1 = r2)m; —mip1+
+2hiriMi_y + Zri(hicy + hi)M; + Shi_yriMiy =0, i=1(1n.
(8)
The complete system of the conditions of continuity for quartic spline can

then be written as the system of 2n linear relations between 2n 4 4 parameters
mi, M;,1 = 0(1)n + 1 of the spline:

aimi—1 + bym; + cimiyp + AiMi_ + BiM; + CiMiyy = gi — gi—1

rimi_y + (1 —rf)m; —miyy + ShiriM; 1+ ()
+%ri(hi_1 + hi)M; + %hi—lriMi-{—l =0, i=1(n.

The values of the coefficients a;, b;, ¢;, A;, Bi, C; are given in (5). They de-
pend on the geometry of the knotset only.

Similarly we can write the corresponding system in special cases of the
semiequidistant or equidistant meshes.

For the unique determination of the quartic interpolatory spline we have
to prescribe some four another conditions. Following the band structure of
the matrix of the system (9), it is possible to prescribe such conditions which
complete this system to the block tridiagonal systems of linear equations.

3 Boundary conditions

3.1 First and second derivatives

The boundary conditions
S'(zo) = ma, 5" (z0) = Mo, S'(Tnt1) = Mny1, §"(xn41) = Mpy1

with given values mg, Mo, mp41, Mp4+1 determine four parameters in the conti-
nuity conditions (9). We have now here 2n linear equations for the same number
of parameters m;, M;, i = 1(1)n .

In case of equidistant mesh (h; = h, d; = %, ri=11=11n—-1; rop = 2,
rn = 1/2) with M; = $hM; we can write (9) as
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[21 3 7-5 17 m 7 [ fi ]
3 26 3 5 0-5 msy f2
326 3 5 0 -5 Mp—1 fr-1
3 21 5 -7 Mp _ n
-3 -1 12 2 My | T % (10)
1 0-1 2 8 2 Mo 0
1 0-1 2 8 2 M, 0
L 1 3 2121 | M, ] L Yn |
with
fi = 32[(91—g0)/h— tmo — KhMy],
fi = 32(gj—gj-)/h, j=2(1)n-1,
fn = 32[(911 - gn—l)/h - %mn—fl + 41_8Mn+1] ) (11)
Y1 = —4mo— 2hMy ,
1/)71 = 4777'n+1 - %th-{-l .

The matrix of this system is diagonally dominant and therefore there exists
unique interpolatory quartic spline for any input data on the equidistant mesh.
The parameters m;, M; are determined by the unique solution of the system
(10) and the whole spline by the representation (2).

In case of the general mesh the condition of diagonal dominancy in (4) reads

hidi(1+ 3d3) + hiydio (1 + d2_,) + $hZ(d7 | + 3d3)+

+ighio (14 6df_1) > hid? + 2hi1di_y + 75hFd}(2 + 3d7)

(12)

with d; = (¢t; — z;)/h; < 1. This condition is fulfilled for quite large class
of meshes. The diagonal dominancy in (8) depends on the geometry of the
mesh—for the case of equidistant mesh we have formulated (using appropriate
substitution) the positive result yet.

3.2 Periodicity conditions

We shall cal a periodic quartic spline on the extended mesh with go = g,,

Lt <ro <t <T1 < ... <ZTp <tp < Tpyp1 <lpy1 < ...
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the spline determined by boundary conditions
mo=my, My=M,, mi=mpy1, My =Myy . (]3)

When we write the continuity conditions (9) for 7 = 1(1)n, we obtain in such
a way 2n equations for 2n parameters m;, M;, 1 = 1(1)n. The matrix of this
system consists of four blocks of cyclic tridiagonal matrices. In case of the
equidistant mesh and after the substitution M; = %hMi we obtain blocks with
regular parts from (10), the whole matrix beeing diagonally dominant:

r26 3 3 0 -5 5711 mi 1 [ fi ]
3 26 3 5 0 —5 my fo
32 3 My foz1
3 3 26 -5 5 0 ma | =1 f (14)
0 -1 1 8 2 2 M, 0
1 0 -1 2 8 2 M, 0
| -1 1 0 2 2 8| M, | | 0 |
where
fi = 32(9,‘—9,'_1) ’ 1= 1(1)7),. (15)

Remark In case zo = to, tn = zp41 the periodicity conditions SU)(zo) =
= 5(])(1'n+1), j =1,2,3,4 can be formulated also in an analogical way. Using
q=(z—=i)/hi,

S (x) = (6/h2){migs — m; — Shi(Mig +2M) 4

+ [hi(Mig1 + M;) — 2(miy1 — mi)lq}

(16)

we can express the continuity of the third and the fourth derivatives as

—mo + my — ¢*(mp — mny1) — $[ho(2Mo + My) — ¢2hn(Mp + 2Mp41)] = 0
ng - 2m1 - 263(mn - mn+1) + h()(Mo + Ml) - Cahn(Mn + Mn+1) =0
c= ho/hn . (17)

The relation (9) and (17) complete the system of 2n + 2 linear equations for
unknown parameters m;, M;, i = 0(1)n. The structure of the matrix is now
harder to handle with than in (14).
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3.3 The first (second) and third derivatives at boundaries

When the values mg, Ty, My, 41, Th41 of the quartic spline are given, we can use
(16) to obtain the relations

my — %ho(QMo + A41) = mg -+ %hé]b,

. (18)
mp + %hn(Mn + 2Mn+1) =Mpt1 + éhiTn+1 )

which complete the system (9) of continuity conditions to the system of of 2n+2

linear equations for the parameters my,...,m,, Mo,..., Mp4.

In case of prescribed values My, Ty, My 41,7541 we rearrange (17) into

my — mg — %hOA/[l = %h(}Mo + %hé’ro,

, (19)
My — Mp41 + %hnﬂ4 = —%hnj\/fn_,_l -+ éhflTnH

and complete the system of continuity conditions in an analogical way.

The more general boundary conditions could be considered in a similar way.

3.4 Local parameters of the spline

Solving the completed system of continuity conditions, we obtain the values of
the local parameters m;, M; of the interpolating quartic spline. We can use then
immediately the representation (2) in most cases. We can prefer the Taylor’s
representation with parameters (1) and S(z;) computed from (2),

T; = (6/h3)[miy1 — mi — $hi(2M; + Miy1)], i =0(1)n,
Tny1 = (6/h2)[mn — Mng1 + $ha(Mn + 2Mny1)] (20)
Qi = (Tiy1 —Ti)/hi .

4 Examples

Example 1

For the test function g(z) = 1/(1 + z?) we take the symmetric mesh (AzAt)
with n =4, given in Table 1 (¢; in midpoints of z;).

1 0 1 2 3 4 5

T; -6 -3 -1 1 3 6

t; —6 -2 0 2 6

gi 1/37 1/5 1 1/5 1/37
Table 1



a) Given the boundary conditions

mo = ms = My = Ms = 0 (rounded values of ¢’, g'")
we use the system (6)—(8) to calculate m;, M;, i = 1(1)4. The rounded results
are given in the first two rows of the Table 2. We can see the preserving of the
symmetry or antisymmetry of the values of the derivatives.
b) With the perturbed boundary conditions

m0:~m5:1/2, M0:M5:0

we obtain again the antisymmetric (but slightly perturbed) results given in the
last two rows of the Table 2.

z; -3 -1 1 3

m; 0.0855486  0.508326 —0.508326 —0.0855486
M; 0.277456  —0.233654 —0.233654  0.277456
m; | —0.296 925 0.565985 —0.565985  0.296925
M; | 0.269298 —0.134578 —0.134578  0.269298

Table 2

Example 2

Let us take the (rounded) values of the function g(z) = L e” sin2z on the
general knotset (AzAt) with n = 7 given in the Table 3.

) 0 1 2 3 4 5 6 7 8

z; -1 0 1.5 2.5 3.1 3.8 4.2 8

t; -1 1 2 3 3.5 4 4.5 5

g; | —0.021 0.154 —0.345 —0.351 1.360 3.376 2.319 —5.046
Table 3

We can calculate the coefficients of the system (9) from (5),(8). The values of
m;, M; corresponding to the boundary values

a) mg =0, mg=-21, My =0, Mg =—20 (rounded values of ¢’, g"")

b) moz—l,mgz—l,M():O,Mszo

are given in the first two columns of the Table 4.

The influence of disturbations in function values g; is demonstrated in columns
¢)-d) of the Table 4, where the values of m;, M; corresponding to the single
disturbed function values

) g1=1
d) ga=-1 under boundary conditions a)
e) gr=-3

are given (rounded to 3 digits):
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a) b) c) d) €)
my -2.71 -804 -—-114 —2.62 —-2.99
my —0.53 5.17 12.0 —0.56 0.79
ms3 0.60 —-0.14 —1.50 —0.844 0.232
my 19.45 24.3 13.6 15.9 13.9
ms 0.08 —2.35 1.65 0.77 2.32
me 31.90 42.2 35.2 33 26.4
my 5.25 21.8 15.5 8.14 1.25
M, 0.26 1.56 0.93 0.27 0.136
Mo -9.13 -13.1 —9.25 -9.02 —6.57
M3 36.55 44.2 21.0 31.8 25.2
My | —15.21 -=20.8 -10.2 —-13.2 —-9.47
Ms 50.22 67.1 56.7 52.8 41.7
Mg 42.06 69.5 50.0 46.3 26.5
M; | -113.6 -101.0 -129.0 —121 —-96.5

Table 4
Example 3

We can demonstrate the monotonicity—preserving features of S4(t) on the fol-
lowing example, where the general mesh with n = 9 is described in the Table 5.

0 2 3 4 5 6 7 8 9 10
z;| 0 0.5 1.5 2.2 3 3.8 45 6 7.5 8.5 10

0

1

2 2.5 3.5 4 5 7 8 10

gi | — -1 -1 =04 0.4 1 1.2 1.6 2.2 3

Table 5

The values of m;, M; i = 1(1)9 corresponding to the boundary values
a) mo:mm:O, M0:M10:0

b) mo = 0, mig = 1/2, Mg :07 MlO =1

are given in Table 6.
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a) b)
7 Z; my Mz m; Mi
0 0 0 0 0 0
1] 05| 0.102 —-0.205| 0.102 —-0.205
2| 15| -0.217 149 | -0.217 1.49
31 22 1.26 0.730 1.26 0.730
41 3 0.592 —-0.103 0.592 —-0.103
5| 3.8 1.26  —0.300 1.26 —0.298
61 45 0.080 —1.65 0.081 —1.66
716 0.296  0.596 0.292  0.609
81 7.5 0592 0290 | 0606 0.271
91 85 0.670 —0.285| 0.516 —0.368
10 | 10 0 0 0.5 1
Table 6

We can see, that quartic splines do not preserve monotonicity of the data in
general.
Example 4

Let us have the equidistant knotset (AzAt) with d; = 1/2 given in the Table 7,
(n=11).

0 1 2 3 4 5 6 7 8 9 10 11 12

z; {0 05 15 25 35 45 55 65 75 85 95 105 (11)

ti 10 1 3 4 5 6 7 8 9 10 11

gi |2 1.5 1 1 05 -1 —-15 -2 -1 1.5 (2)
Table 7

a) Given the boundary conditions mg = 0, mi2 = 2, My = 0, M5 = 0, we
can calculate m;, M; i = 1(1)11 using (10)-(11); the rounded results are given
in the first two columns of the Table 8.

b) With zg = —0.5, z12 = 11.5 and the periodic boundary conditions (13) we
can solve the system (14) to obtain results given in the last two columns of the
Table 8.
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