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Abstract. In the paper some properties of weakly 

associative lattice ordered groups (val-groups) are shown, 

solid, prime and straightening subgroups of val-groups are 

studied and transitive val-groups are c h a r a c t e r i z e d . 

Key words: Weakly associative lattice group, 

solid subgroup, transitive val-group. 

MS Classification: 06F15, 06F99 

The notion of a weakly associative lattice group 

(*ral-group) is a generalization of that of a lattice ordered 

group (I-group) in which a weakly associative lattice is used 

instead of a l a t t i c e . In the paper some properties of val -groups 
are shown, solid, prime, and straightening subgroups of 

î al -groups are studied, and transitive val— groups are 

characterized. 

1. BASIC PROPERTIES 

A ttreakly associative lattice (va-lattice) i s an algebra 
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A = (.A,A,v) with two binary operations such that 

1. Vaê i; aAa = a , ava - a ; 
2. Va,b€A; aAb = bAa , avb = bva ; 

3. Va,be>i; aA(avb) = a , av(aAb) = a ; 

4. Va,b,c*A; ((aAc)v(bAc) )vc = c , ( (avc)A(bvc) )AC = c . 

Define a binary relation " -s " on A as follows: 

Va,beA; a-sb «* aAb = a (or eguivalently a^b <=> avb=b). 

Then it holds: 

5. Vae4; a-sa ; 

6. Va,be.A; a-Sb & b-sa => a=b ; 

7. Va,i>eJ<i3dê ; (a-sd & b-sd) & (Vue^; (a-su & b-su) ==> d-su) ; 

8. Va,b^A3eeA; (e-sa £ e±-b) & (V^e^; (r-Sa & r-sb) ==> r-se) . 

It is also true that if a relation "-s " satisfies the conditions 

5 - 8 and if we denote d by avb and e by aAb, then the algebra 

(J1,A,V) satisfies the conditions 1 - 4 . (See [3].) 

If a binary relation " -s " on A satisfies the conditions 5 

and 6, then " -s " is called a semi-order on .A and (A,-s) 

is called a semi-ordered set (so-set). If a semi-ordered set 

(.A,-s) satisfies the condition 7, then it is called a 

v-semilattice-ordered set (v-wa-semilattice). A semi-ordered set 

(..4,-s) is said to be a tournament if any elements a,be>| are 

comparable. 

A system G=(G,+,-s) is called a semi-ordered group 

(so-group) if 

a) (G,+) is a group; 

b) (G,-s) is a so-set; 

c) ^a,b,c,d^G; a-sb => c+a+d -s c+b+d . 

If (G,-s) is a i . r a - l a t t i c e , then we say that (G,+,-s) is a 

weakly associative lattice group (wa1-group). If (G,s) is a 

lattice, then (G,+,-s) is said to be" a lattice ordered group 

(1-group). 
(For necessary results concerning ordered groups and 

I-groups see e.g. [1], for some properties of so-groups and 

wal-groups see [2].) 

Let G be a so-group. Denote G* - {xeG; O-sx}. Then G+ will 

be called the positive cone of G. Evidently we have 
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Proposition 1.1. If G is a wal-group, then G is an 1-group 

if and only if G* is a subsemigroup of G. o 

The proofs of the following propositions are (formally) the 

same as the proofs of the analogical propositions for J~groups 

in [1], and then they are omi t t ed . 

Proposition 1.2. Let G be a so-group. Then for any 

a,b,c,deG it holds: 

(a) If bvc exists, then (a+b+d)v(a+c+d) exists and 

a+(bvc)+d = (a+b+d)v(a+c+d). 

(b) Jf JbAc exists, then (a+b+d)A(a+c+d) exists and 

a+ (JbAc) +d = (a+Jb+d) A (a+c+d). 

(c) Jf aAJb exists, then -av-b exists and -av-b = -(aAib). D 

Proposition 1.3. If G is a so-group, a,beG, and if avb 

exists, then aAJb exists, too, and aAJb = b+(-(avb) )+a . D 

Corollary 1.4. Jf (G,+,s) is a v-semilattice semi-order, 

then the following conditions are eguivalent. 

(a) G is a wal-group. 

(b) Va, jb, c,deG; a+(Jbvc)+d = (a+b+d)v (a+c+d) . D 

Proposition 1.5. Let for elements a,b in a so-group G aAJb 

exist. Let a = .x"+(aAJb), .b=y+(aAJb), c = a-Jb. Then 

xAy - 0 , x-y - c , x = cvO , y = -cvo . D 

Proposition 1.6. If G is a so-group, then the following 

conditions are eguivalent: 

(a) G is a wal-group. 

(b) Va€G3x,y€G; a = x-y , XAy - 0 . 

(c) "ia^G; avo exists. o 

Example 1.1. Denote (G, + ) = (Z ,+ ) , G+ = {0,1,2,4,... } . It 

is evident that G* is the positive cone of a semi-order of the 

group G. If xeG, then it holds: 

a) x€G* => xvo - x ; 

b) -x€G+ -* xvo - 0 ; 
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c) x*G*,-x*G* * xvo = «ax{x,0}+i , where max{x,0} is meant 

in the natural ordering of 2. 

Denote M -£ " the semi-order defined by G+. Then, by 

Proposition 1.6, (G, + ,-£) is a iral-group. Note that G is neither 

an J-group nor a to-group. 

Proposition 1.7. A wal-group G is a to-group if and only if 

Va,b&G; aAb - 0 •» a=0 or b-0. o 

Proposition 1.8. For any so-group G, the following 

conditions are equivalent: 

(a) G is a wal-group. 

(b) G is directed (i.e. for each x,y^G there exists z*G 

such that x,y^z) and for each a,beG* there exists their infimum 

in G (that belongs to G+). 

Proof. a-»b: Evident. 

b-»a: Let a,beG. Then there exists c^G such that csa,b, i.e. 

0-5-c+a, -c+b. Hence there exists (-c+a)A(-c+Jb)=d, too. Therefore 

c+d^a,Jb. Let h^a,b. Then -c+h^-c+a, -c+b, and thus -c+h^d. That 

means h^c+d, and so c+d-aAjb. o 

Remark 1.1. If G is a val-group, then G+ need not be a 

v-va-subsemilattice. For instance, if G is the î al-group in 

Example 1.1, then lv4=5 in G, but 54£G+. 

Remark 1.2. In a wal-group G the identity 

aA(bvc) -= (aAb)v(aAc) 

need not be satisfied in general. For example, let us consider 

the group Z -= {0,1,2} with the addition mod 3. Let Z be 

semi-ordered as a tournament such that 0<1, 1<2, 2<0. Then 

0A(1V2) -= 0A2 = 2, (0A1)V(0A2) » 0v2 * 0 . 

Nevertheless we have the following p r o p o s i t i o n . 

Proposition 1.9. If G is a wal-group, then 

Va,b,ceG; (awc-bvc & aAc-=bAc) =-> a-b . 
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Proof, a = 0+a = [(avc)-(avc)]+a = 

[(avc) + (-c+(aAc)-a))+a = (avc)-c+(aAc) = (Jbvc)-c+(JbAc) = 

[ (Jbvc)-(Jbvc) ]+Jb = b . D 

Proposition 1.10. A wal-group G is an 1-group if and only if 

Va,Jb,c€G; aA(jbvc) = (aAJb)v(aAc) . 

Proof. Let a,Jb,c€G, a^b, b^c. Then 

aA(Jbvc) = aAc , (aAJb)v(aAc) = av(aAc) = a , 

and if the considered condition is satisfied, we have aAc = a, 

and so a^c. 

The converse implication is trivial. D 

Theorem 1.11. Let G be a wal-group, let a , . . .a , b , . . . b eG+ 
1 m l n 

and let a +. . .+a = b +. . . +b . Then there exist elements c eG+, 
1 m 1 n ij 

i=l,...,m, j=l,...,n, such that 

I % > br~l % a = 
i 

j = l i = l 

Now we get the following proposition as a consequence. 

Proposition 1.12. Jf a,b,...,beG+ are such that 
1 n 

a^b +. . . +b , then there exist a , . . . ,a eG+ such that a ^b 
I n I n i i 

(i = 1 , . . . n ) and a=a +...+a 
1 n 

D 

We say tha t elements a,jb€G+ are orthogonal (denote: alb) i f 

aAJb = 0 . 

Proposition 1.13. Jf a,b^G+, then a±b if and only if 

a+b =• avjb . D 

Proposition 1.14. Jf a,beG+ and a±b, then a+b = Jb+a . D 

Proposition 1.15. If G is a wal-group, then the following 

conditions are equivalent: 

(a) G is an 1-group. 

(b) Va,Jb,ceG; aiJb & cS-0 =$ aAc = aA(Jb+c) . 

(c) Va,Jb,ceG; a±b & aic =• ai(Jb+c) . 
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Proof. The conditions (b) and (c) are satisfied in any 

1-group. 

b=>a, c=>a: It is evident that for x<=G, 0_LX if and only if 

O^x. Hence, if (b) or (c) is true, then G+ is a subsemigroup 

of G, and so G is an 1-group. 

2. PRIME SUBGROUPS AND STRAIGHTENING SUBGROUPS 

Let (G, + ,<) and (G',+,«s) be so-groups. A mapping <p:G->G' is 

called a homomorphism of so-groups (so-homomorphism), if <p is 

simultaneously a group homomorphism of (G, + ) into (G',+) and a 

so-homomorphism of (G,<.) into (G'-s) (i.e. a^b implies <p(a)<-<p(b) 

for any a,beG). 

If (G,+,<) and (G',+,<•)• are val-groups and if <p is a 

so-homomorphism of (G,+,<) into (G',+,-s) which is also a 

i/a-lattice homomorphism, then <p is called a homomorphism of 

wal-groups (wal-homomorphism). 

Let (G,+,-s) be a wal-group and ̂  a subgroup of G. Then 4 is 

said to be a wal-subgroup of G, if A is a wa-sublattice of (G,<-). 

If a normal convex wal-subgroup A satisfies the condition: 

For any a,b^A, x,y^G such that x^a, y^b, there exists c^A 
(*) 

such that xvy<c, 

then A is called a wal-ideal of G. 

It is proved (in [2]) that exactly all normal convex 

subgroups are kernels of so-homomorphisms and exactly all 

i/al-ideals are kernels of wal-homomorphisms. 

Lemma 2.1. A normal convex wal-subgroup A of a wal-group G 

is a wal-ideal of G if and only if 

(**) \/a,b,ceA,x,yeG; x<a, y<b -* (xvy)vc^A. 

Proof. Let 4 be a val-ideal, x,yeG, a,b,c&A, x<-a, y^b. Then 

A is the kernel of some wal -homomorphism <p:G->G' , and it holds 

<p((xvy)vc) = <p(xvy)v<p(c) = <p(xvy)vO' , 

where 0' is the zero-element in G' . But <p(x)^<p(a )=0' , 
<p(y)<<p(b)=0' , hence <p(xvy)-<p(x) v<p(y)<0' , and thus <p((xvy)vc) = 0'. 

Therefore (xvy)vc^A. 

Conversely, let a normal convex val-subgroup A of G satisfy 
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the condition (**) and let a,b,c^A, x,y*G, x*a, ysb. Then there 

exists d€A such that (xvy)vc=d, and so rvy-sd. Therefore J is a 

val-ideal of G. D 

If A is a convex val-subgroup of G satisfying the condition 

(**), then A will be called a solid subgroup of G. 

Denote by £(G) the set of all i/al-ideals and by e(G) the 

set of all solid subgroups of a val-group G. It is evident that, 

by means of set inclusion, £(G) and G(G) form complete lattices 

with the least element {0} and the greatest element G and that 

infima are formed, in both cases, by set intersections. 

Remark 2.1. Let G be a so-group, A a convex subgroup of G 

and G/ A the set of all left cosets modulo A. Put 

x+A -s y+A *» 3ae.A, x+a -- y , 2 df 2 

for any x,yeG. Then " -? " is a semi-order on G/ A. 

Let G be a i/al-group and H^(G). Consider the following 

conditions for H. 

(1) If x,yeG and O^xAyeH, then xeH or yeH. 

(2) If x,yeG and XAy=0, then xeH or yeH. 

(3) G/ H is a tournament semi-ordered set. 

(4) {_4ee(G); H£_4} is a linearly ordered set. 

(5) If A,Be%(G) and _4nB=H, then A=H or B=H. 

Theorem 2.2. If H is a solid subgroup of a val-group G,then 

(1) « (2) *> (3) => (4) => (5) . 

Proof. (1) => (2): Trivial. 

(2) => (3): Let a+H,b+H e G/ H. By Proposition 1.5, there 

exist x,y€.G such that a=(aAb)+x, b=(aAb)+y, xAy=0. If xeH, then 

a+H = ((aAb)+x)+H = (aAb)+H -- b+H. If y€H, then b+H-Sa+H. Thus 

G/ H is a tournament. 

(3) => (1): Let G/ H be a tournament, a,be G\H, 0-saAb. By the 

assumption, a+H and b+H are comparable . If, for example, a+H^b+H, 

then (aAb)+H = (a+H)A(b+H) = a+H , and hence aAb*H. 

(3) => (4): Let A,B*G(G), HQA, H£B and .AZB. Since (by [2, 

Theorem 3]) every i/aI-subgroup of G is generated by its positive 

elements, there exists 0*xeA\B. Let 0-sbcB. If x+H^b+H, then 
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there exists heH such that jt+h-sb, i.e. xsb-h. Since O^x&b-heB, 

we get x^B, a contradiction. Hence b+H^x+H, that means there 

exists k€H such that b+k^x. Then Osb^x-keA. Therefore B*^A, and 

because A and B are wal-subgroups, we have B£.A. 
(4) «* (5): Trivial. D 

A solid subgroup H of a wal-group G satisfying the 

conditions (1), (2) and (3) will be called a straightening 

subgroup of G. 

If a solid subgroup H of a wal -group G satisfies the 

condition (5), then H is said to be a prime subgroup of G. 

Remark 2.2. It is well known (see e.g. [1, Theoreme 2.4.1]) 

that for solid subgroups of an I-group all conditions (l)-(5) 

are equivalent. 

But for wal-groups this equivalence generally is not true, 

because there exist prime subgroups of wal-groups not being 

straightening. 

For example, let G be the direct product £xz, where (Z,+) 

is semi-ordered by the same semi-order as in Example 1.1, i.e. 

(Z,+) = {0,1,2,4,6,...}. G is, as a direct product of 

vaI-groups, a wal-group. Denote H - {(x,0); xeZV Evidently, H 

is a val-ideal of G. 

H is not a straightening subgroup, because, for example, 

(1,4)A(4,1) == (0,0) but neither (1,4) nor (4,1) belongs to H. 

Let >l€E(G), let H be a proper subgroup of A and let 

(a ,a )eA\H, Then a^O and (0,a ̂ (a ,a )-(a , 0)€j|. Since the 

convex subgroup of Z generated by a is equal to Z, we get 

(x ,x ) = (x ,0) + (0,x )&A for any element (x ,x ) in G,hence A =-G. 

Therefore A is a prime subgroup of G that is not 

s traightening. 

Let G be a i/al-group, 0*aeG, He£(G). We say that H is a 

value of a if H is a maximal solid subgroup of G not containing 

a. (The set of all values of an element a will be denoted by 

val(a).) 

A solid subgroup H of G is said to be regular if 

H = n(A ;iel) (A ee(G)) implies the existence of an i e J such 

that H-A . (Evidently every regular subgroup is prime.) 
o 
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Proposition 2.3. HeG(G) is regular if and only if there 

exists aeG such that Heval(a). 

Proof is the same as in [1, Propositon 2.5.3] and then it 

is omitted. D 

Theorem 2.4. If B€tS(G) and aeG\H, then there exists C^val(a) 

such that H£C. 

Proof. Let (A ; iel) be a linearly ordered system of solid 

subgroups such that H£A and a*A, for each iej. Evidently, 

A *- u(A ; iej) is a wal-subgroup of G. Let a,b,c€A, x,yeG, x^a, 

y^b. Then there exist i , i , i el such that ae.A , beA , c<zA . 
0 1 2 

Let e.g. A £A , A £A .Then (xvy)vceA £A, hence A^(G). That 
1 0 2 0 0 

means (by the Zorn's lemma) the set of all Be£(G) with H^B, a£B 

contains a maximal element which is a value of a. n 

Corollary 2.5. a) Every solid subgroup of a wal-group is an 

intersection of regular subgroups. 

b) Every prime subgroup is an intersection of a linearly 

ordered system of regular subgroups. o 

If G is a val-group, then G is called representable if it 

is isomorphic to a subdirect sum of to-groups. It is clear that 

we have: 

Theorem 2.6. A val-group is representable if and only if 

the intersection of all its straightening ideals is egual to {0}. 

D 

Corollary 2.7. If a val-group G is representable, then G 

contains a system of prime ideals such that the intersection of 

that system is egual to {0}. o 

3. TRANSITIVE WAL-GROUPS 

Let T be a tournament and dutT be the set of all 

automorphisms of T. It is evident that dutT forms a group with 

respect to the composition of mappings. For f,g^dutT we put 

fsg <* Vt*T; f(t)-Sg(t) . 
at 
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Evidently "s" is a va~lattice semi-order on dutT and dutT with 

this semi-order is a val-group. 

Suppose that G is a val -group of dutT. If t is an element 

in T, then the set G = {g*G; g(t)=t} will be called the 

stabilizer of t. 

Proposition 3,1, G is a straightening subgroup of G for 
any ter . 

Proof. Obviously, G is a convex val -subgroup of G. 

Let x,yeG,f,g,h<zGt, x^f, y^g. Then x(t)sy(t)-£t, and hence 

[(xvy)vh](t) = Uvy)(t)vh(t) = [x(t)vy(t)]vt = t , 

so (xvy)vheG . Therefore G is a solid subgroup of G. 

Let x,yeG, id -sxAyeG . Then x(t)=t or y(t)-t, thus x^G or 

yeG , and so G is s t r a i g h t e n i n g . o 

Theorem 3,2, If G is a val-group, A a straightening 

subgroup of G, and u the canonical mapping of G into *iut(G/ A), 

then it holds: 

a) u is a val-homomorphism; 

b) u(G) acts transitively on G/ A; 

c) Ker u is equal to the intersection of all the conjugates 

of A. D 

A val-group G is called transitive if there exists a 

tournament T and an injective val-homomorphism u:G-*s&utT such 

that u(G) acts transitively on T. 

Theorem 3.3. A val-group G is transitive if and only if it 

contains a straightening subgroup A such that the intersection 

of all conjugates of A is equal to {0}. 

Proof. Let G be a transitive val-group. Consider G as a 

val-subgroup of dxxtT, where T is a tournament . Let t,t'€T, xeG, 

x(t' )=t, gsG . Then 

(x~xgx)(f) = (jfV)U(t')) = (jr""lg)(t) = x~l(t) = t' , 

hence x~xG x £ G . 
t t» 
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Let g'€G t. Then 

(xg'x-t)(t) = (xg')(x-1(t)) = x(g'(t')) « x(t') = t , 

thus xg' x' €G , and we have g' = jr~ (jsrgr' J*r~ )x , so G ( £ x~ G x. 

Therefore from the transitivity of G we get for a fixed t^T 

n {x'lG x) x€G} = n {G t'eT} = {0}. 

Conversely, let G be a i/al-group and A a straightening 

subgroup of G such that the intersection of all the conjugates 

of A is equal to {0}. Then G/ A is a tournament and the natural 

mapping u:G-*dut(G/ A) fulfils, by the preceding theorem, the 

condition of a transitive wal-group, o 

Corollary 3.4. A commutative wal-group is transitive if and 

only if it is a to-group. 

Proof. If G is a commutative wal-group, then for every its 

subgroup A and every xeG it holds x'lAx = A. Then, by the 

preceding theorem, G is transitive if and only if {0} is a 

straightening subgroup, i.e. if G is a to-group. o 

The following theorem could be proved by a similar way as 

Theoreme 4.1.7 in [1]. 

Theorem 3.5. If a wal-group G contains a system of 

straightening subgroups (G ; i^I) such that n(G ;i€j) = {0}, 

then G is isomorphic to a subdirect sum of transitive 

wal-groups. o 

Corollary 3.6. If a commutative wal-group G contains a 

system of straightening subgroups with the zero intersection, 

then G is a subdirect sum of to-groups. o 
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