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Abstract: There are described the algorithms for computing 

appropriate parameters of quadratic splines interpolating pre­

scribed values of the first or the second derivative in the 

points of interpolation, which are different from the knots of 

the spline in general. The relations between various types of 

linear and quadratic splines are mentioned. 

Key words: Spline functions, quadratic splines, interpo­

lation . 

MS Classification: 41A05, 41A15 

Introduction 

Quadratic spline interpolating given function values have 

been studied by many authors ([3], [5], [6], [7], [9]). There 

are very simple two-term recurrence relations between parameters 

of such a spline in case of coinciding knots and points of in­

terpolation. But there are also some unpleasant features con­

nected with such splines (error propagation without damping, un-
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symmetry of boundary conditions, existence questions). It was 

soon recognized, that some of that features escape, when sepa­

rate knots of spline and points of interpolation are used (error 

propagation with damping - see [6]). We can also find approaches 

to use splines interpolating first or second derivatives in the 

area of "shape-preserving approximations" ([4]) or in solution 

of differential equations ([l]). The first results for quadratic 

splines interpolating the first derivative on equidistant mesh 

can be found in [8]. 

The aim of our contribution is to give more detailed re­

sults concerning the quadratic splines interpolating the first 

or the second derivative in case of nonequidistant or separated 

meshes and to mention the relations between various types of 

such simple splines. 

2. Simple knot set 

Let us have an increasing set of spline knots 

(Ax) = [x.; i = 0(l)n+l| . 

We call a quadratic spline on the set (Ax) the function s(x) 

fulfilling conditions 

1° s(x)€C1[x0,xn+1J ; (1) 

2 s(x) is a quadratic polynomial on every interval 

£ x i > x i + l - > * = 0(1)n • 

Let us denote S(2,Ax) the linear space of functions fulfilling 

conditions 1 , 2 . 

Statement of the problem 

Given real numbers m., i=0(l)n+l, we have to find 

s€S(2,&x) such that s'(x.) = m. , i = 0(l)n+l hold (e.g. we have 

to find spline interpolating the first derivatives at the knots 

of the spline). 

Simple calculation shows that we have together 3n+3 spline 

parameters and only 3n+2 connecting continuity and interpolation 

conditions - one free parameter is also at our disposal. 
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Theorem 1 

Quadratic spline 5*5(2,Ax) is uniquelly determined by 

conditions 

/s'(x i) = mi , i = 0(l)n+l (conditions of interpolation),(2) 

s(x Q)=s 0 (or s(xk)=sk,ke(o,l,...,n+l|, initial 

condition). (2) 

P r o o f 

A spline scS(2,Ax) can be written as 

s(x) = (1-t2)si + t
2si+1 + h.t(l-t)mi for x€[xi,x.+1] , 

i = 0(l)n , with hi = xi+1 - xi , t = (x - x^)/h^ , 

si = s(xi) . 

(3) 

We have further 

s'(x) = 2t(s 
І + 1

-
S І
) / Һ .

 +
 d-гt)*! . 

The continuity condition on s'(x) in the knot x = x.̂  leads to 

the recurrence relation 

І^ - s . , = Һ ^ i t п ҷ ^ + mp/2 , i = l(l)п+l (4) 

Given data (2), we can use (4) to the computation of all values 

s, , i/k. Than we know all parameters needed for using (3) to 

compute s(x). 

Remarks 

1. The computation of values m
i
 from given s

i
 using (4) (in­

terpolation of function values) is known to be a little unstable; 

in [ll] the composed relation on equidistant mesh 

Ч + i ~ m i = 2 ( S І + I - 2 S І + S І - I ) / Һ (5) 

with s
Q
, S-, given is used. 

2. We cannot prescribe the values of the second derivative on 

the boundary for spline interpolating the first derivatives (as 

can be done when interpolating function values). Given 
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m
i " s ' ( x . ) , i = 0(l)n + l, it follows that s"(x. +0) = M. = 

= (m. , - m.)/h, is determined and constant in interval [x.,x. ,] 

(the second derivative has discontinuities in knots x.). 

3. The quadratic spline described in Theorem 1 has similar 

unpleasing error propagation features - the error in free para­

meter s. or in parameter m. is propagated over the whole interval 

[x
n
,x ,] without damping, as can be deduced from the relation 

i-1 

j=o 
h

j ( m
.

+ r a
.

+ 1
) / 2 . (6) 

For example, error v 0 
2
0 s

n
 in the value s

n
 results in 

'0 The isolated error e, 

propagated as s. s. = h . _
l Є i

/ 2 , 

m. in the value m. is 

e
i
(h

i
_

1 +
h

i
/2,... 

4. It is possible to use another notation for s(x) instead 

of (3) - for example 

s(x) = s
i
 + h

i
c

i
t + (m

i
-c

i
)h

i
t(l-t) , X€[x.,xi + 1] , (7) 

where ci = Cs.^^ - s^)/h. (the slopes). 

Continuity conditions can be now written as 

2 c i-1 
i = l(l)n (8) 

We can use it in a similar way for construction of the spline 

interpolating the function values or the first derivatives. 

3. Mesh with separated knots and points of interpolation 

3.1 Spline representation 

Let us have a mesh of knots x. and points of interpola-

tion t, 

(ûXДt) : X
Q
 < t

Q
< X̂ -Г t^ < . . . ć. t 

W l 

and denote h. = x. , - x. 
l l + l l Ct.-xp/h. s (tp , 

i = 0(l)n , S i = s(x i) , i = (0(l)n+l ; 

t = (x - xi)/h . 

We have to find now again the spline S6 S(2, Ax) determined by 

the conditions 
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s'(t.) = mi , i = 0(l)n , mi given real numbers. (10) 

Counting and comparing the number of parameters and continuity 

conditions in the knots x., i=l(l)n of the spline, we recognize 

existence of two free parameters, which can be prescribed for 

unique determination of the spline. Some specific feature of the 

problem (10) can be found in the fact, that the case t. = 

= (x i+x i + 1)/2, which is the most popular and quite regular in 

function values interpolation, must be treated separately now. 

Lemma 1 

The solution of the problem (10) is given by the quadratic 

spline s€S(2,Ax), which can be written for x e [x. , x. ,] 

a) in case of d. / 1/2 as 

s(x) = A(t)s. + B(t)s.+1 +h.C(t)mi , t«[0,l] , (11) 

with functions A(t) = (t2 - 2tdi)/(2di - 1) + 1 = - B(t) + 1 , 

B(t) = - t(t - 2di)/(2d. - 1) , 

C(t) = t(t - l)/(2di - 1) ; 

b) in case of di = 1/2, denoting s-̂  = s'(x.), as 

s(x) = s. + s:(x - x.) + (s.' + 1 - s.'Kx - x.)
2/(2hi) , (12) 

where we have 

m. = (s^ + si+1)/2 . (13) 

Proof follows from the properties of functions A(t), B(t), 

C(t) and representation (11) in case di / 1/2. In case of 

d. = 1/2 we recognize the Taylor formula in (12). 

3.2 Computation of parameters s. 

The continuity condition for seS(2,Ax) at x = x. is 

realized implicitly in our notation s.= s(x. - 0) = s(x. +0) • 

= s(x.). 

We have further 
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2 ( t - d . ) 2 t - l 
s (x) = - - (t^ - s i + 1 ) + пь 

Һ.(2d - 1) 2 d . - l 

f o r x e [ x i , x i + 1 ] 

Continuity condit ion for s ' ( x ) at x = x , , i = l ( l ) n in case 

d. / 1/2, i = 0 ( l ) n resul ts in the r e l a t i o n s 

( 1 4 ) 

1-d, i-1 
1.2dw -i-1 

1-d i-1 Pi d i 
1-2-І-I i-Mi 

Pi d i 
s i + l-2d i

 s i + l 

l h 

2ni-l 
"i-1 

l - M ц 1---І 
(15) 

where p, = h._,/h. . Denoting f u r t h e r 

4 - (1 - d ^ p / O - г d ^ p , Ьj = Pjdj/U - 2dp , 

f. - Ь . ,< ^ 1 

ггү T ӣłг^ > ^= 1 ( 1 ) n ' 
d б ) 

we can rewrite the system of continuity conditions (15) as 

a
i
s

i
_

1 +
 ( a

i
- b

i
) s

i +
 b

i
s

i + 1
 = f. , i = l(l)n (17) 

In the special case of h. = h, d, = A , i = l(l)n we obtain the 

result of [8]. 

3.2.1 Boundary conditions s
n
,s , 7

 U n + 1 

Choosing S Q = S ( X Q ) ,
 s
 , = s ( x ,) as two free spline para­

meters mentioned in 3.1, we recognize (17) to be the tridiagonal 

system of linear equations for determining parameters s., 

i = l(l)n : 

a r b i » b
l' 

-&2 > a2"-b2» b2 

З
r, i >

 a
„ i -b„ т, b , n-ľ n-1 n-ľ n-1 

-a 
n 

> ar,"b„ n n 

э
n-l 

f
l

+ a
l

s
0 

*n-l 

V
b
nVl 

(18) 
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The determinants D of the matrix of system (18) fulfil recur­

rence relation 

Di - ( ai- bi ) 0i-l + aibi-lDi-2 (19) 

Hence, 

(
Әj
 - b ^ a ^ b ^ > 0 , i = 3(l)n, D ^ D ^ O 

is sufficient for D
R
 / 0. 

In case of the equidistant mesh with h. = h, d. / 1/2 

we have p. = 1, 

aJL
 = a (1 -d)/(l - 2d) , ai - b.«l , 

b^ = d/(l - 2d) = a - 1 f
i = (

m
i_i + m.)(2(l - 2d)) -

(20) 

The matгix M of the system (18) and its deteгminant aгe 
n

 J 

M 

1, a-1, 

-a, 1, a-1. 

, det( м
n
) = | l + 

l 1 + 
-a, 1, a-1 

The récurrence relation (19) is now 

det(M.) = det(Mi_1) + a(a - 1) det(M._2) 

foг n = 1 , 

a(a - 1) foг n = 2 , 

2a(a - 1) foг n = 3 

(22) 

From positivity of a(a - 1) = d(l - d)/(l - 2d)
2
 for d e (0,1)\^|^ 

follows, that we have det(M )>0 generally in our case. Let us 
n 

summarize our discussion in the following theorem. 

Theorem 2 

Under boundary conditions s(x
n
) = s

Q
,
 s
(

x

n +
i )

 = s

n +
 ]_ with 

given numbers s
Q
,
 s

n +
i there exists a unique quadratic spline 

s(x) interpolating prescribed values of the first derivatives 

m. -s'(tJ on the mesh (AxAt) 

a) on equidistant mesh with h. = h, d, = d t 1/2, i = 0(l)n; 
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b) on general mesh (AxAt) with D
1
D

2
> 0 , ^

a
i ~

 b
i^

a
i

b
i-l'

>
 °' 

i = 3(l)n, d. j-1/2 . 

The values s. =s(x.) can be computed from the system (18) for 

the use of spline representation (11). 

3.2.2 Another types of boundary conditions 

There is possible to prescribe the boundary conditions on 

the first derivatives s'(x
n
) = Sg, s (

x

n +
i'

 = s

n
+i

 f o r
 "

tne s
Pline 

fulfilling conditions (10). Suppose d
Q
,d /1/2; then using (14) 

we obtain 

2d
Q
-l 

З
n+1 

2 d
0 . . 

h
0
(2d

Q
 - 1) ^ O "

 s
l

; 

2(1
 -У . , ___ 

h (1 - 2d ) ^ п + l " V " 1 - 2d
r 

(23) 

Denote 

'0 
b

Q
 - d

Q
/(l - 2d

Q
) , a

n + 1
 - - b

n + 1
 = (1 - d

n
)/(l - 2d

p
); 

(24) 

than we can join (23) with (17) to obtain the needed system of 

linear equations 

a
0'

 b
0' 

-Эp a^-bp b^ 

-a , a -b , b 
n' п n' n 

a
n+l > -ь, n+1 

э
0 

З
n+1 

ih
0
(s

0
 + m

0
/(2d

o
-D) 

iVwV^n-^ 

According to the defining relations (24) we have 

a
n
 + b

n
 = 0, -a = 0; -a.+(a.-b.)+b. =0, i = l(l)n . 

• g-rug-u, a
R + 1

 u
R + 1

 _ , -
1
 ^ 1 .

r
 «

i 

It indicates singularity of the matrix of the system (25) and 

we couldn't obtain the solution with every s
n
, s' -, . 

7
 0' n + 1 

Similarly, we obtain the system with singular matrix when 

we try to determine the parameters s, for the spline with 

boundary conditions s"(x
n
) = M

n
, s"(x ,) = M , . 

u u n+l n+l 
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It could be seen from (14) that 

s"(x) ' i °i+l 

h . ^ - l ) ĥ  2d.-l h
x 

? 1 

+ foг xe[x.,x.
+1
] 

With i=0,n we obtain the equations of boundary conditions with 

zero sum of coefficients. 

Similar problems are involved in boundary conditions 

s"(t
0
). . M

Q >
 s"(t

n
) = M

n > 

or when the first (resp. the second) derivatives on the boundary 

are approximated by some numerical differentiation formula using 

the values s. . 

3.2.3 Mesh with d
JL
 = 1/2 

Let us consider the case d. = 1/2, i = 0(l)n, m. = s'(t.) 

given. The continuity relations are now 

s i + 1 - s i = h i(s i' + s i+1)/2 = himi , ŝ  = s(xj), s'(xj) = s^. (27) 

Given sQ = s(xQ) as the f i r s t free parameter, i t is possible 

recursively calculate the values s. : 

s i + 1 = s. + h.m. } i = 0 ( l ) n . 

But the spline S€S(2,<->x) is not uniquely determined by the para­

meters s.,m, only. Given s« = s'(xQ) as the second free parame­

ter, we can find remaining values s. using (27) as 

si+l = 2mi " sl ' i = °^1^n • 

Now the spline s£ S(2,Ax) is completely determined. More ge­

nera ly, it could be possible to choose the parameters s. , s' 

and use (27) for determining other values s., s. . It is not 

possible to determine spline s£ S(2,Ax) with the free parameters 

(sk,Sj), or (sk,s'). 

Remark 

For the given spline s(x) let us denote s'(x)=s-(x) the 
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first degree spline (polygon). The problem (2) can be refor­

mulated now as to find s,(x) given by interpolation conditions 

s,(t.)=s'(t.)=m.. It is now easy to see, that given s,(xQ) = 

e spline s,(x) is uniquely determined. For exact de-= s 0 th 
termination of s(x) =Js,(x)dx we have to prescribe yet the in­

tegration constant - the value s(x) in some point (S(XQ) in 

case 3.2.2). We can see as well, that it is not possible gene­

rally to prescribe two values s,(xQ) = s (xQ), s,(x ,) = s (x ,) 

(see 3.2.2). Another results of 3.2.3 could be interpreted si­

milarly. 

3.3 Error propagation 

3.3.1 Errors in boundary values 

Let us have equidistant mesh with d. = d = (t. - x.)/h / 1/2 , 

and consider splines s, s«£S(2,Ax) determined by the same con­

ditions of interpolation derivatives at points t., i = 0(l)n , 

but by different boundary conditions: the spline s by boundary 

values sn»s
n+i

 ant- s by values sQ,s , . The difference s = s-s 

belongs to S(2,Ax) and fulfils the interpolation conditions 

i = 0(l)n and boundary conditions s (t.) =0 

30 = e0 = s0 " s0 

The system of continuity and boundary conditions can be written 

now (see 3.2.1) as 

• a š ^ + š^ + (a - Ds i + 1 = 0 (28) 

We can consider it also as boundary value problem for the 

second order difference equation and to solve it explicitly. 

The characteristic equation has roots r, = 1, r:2 = 1 - 1/d . 

(29) 
For d e (0,1/2) there is r:2 € (- GD» -1) , 

for de(l/2,l) we have r2e(-l,0) . 

General solution of equation (28) could be now written as 

s. = cx + c2(l - l/d)
j . 
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Constants c,,c9 are determined by boundary conditions en,e , : 1 z * U n + 1 

cl = (e0r2+1 " en+l
)/(r2+1 " » • c2 = ( V l - e0 ) / ( r2 + 1 " X) • 

The particular solution of the problem (28) is therefore 

Һ '- 7^711 ( e
0

г
2

+ 1
-

e
n

+
l

) + (
Vl-

e
0 >r»] (30) 

For l a r g e n we can w r i t e i t w i t h r e s p e c t to (29) a p p r o x i m a t i v e l y 

Š.iven + (e , -e n ) r : j - n - l foг de(0,l/2) ( | г 2 l > l ) , -,- j~ c 0 ̂  ч c n + l C n / , 2 

V Є n + l + ( e 0" Є n+) г 2 f o г dв (1/2,1) (|г2l< 1) 

(31) 

3.3.2 Isolated errors in derivatives 

Let us suppose that some isolated error of magnitude e 

occures in the value m. : m. = m. - e . Then, by (16), it causes 

the errors in the right hand sides f. with indices k, k+1 only : 

f
k
 = f

k
+±eh/(l-2d) = f

k
-E, f

k+1
 = f

k + 1
-E, (E =ieh/(l-2d)) . 

Denoting s = s - s the difference of splines differing in the 
ooks now 

0 for i/ k.k+1 

values m. ,m. only, the system (18) looks now 

- as. , + s. + (a - l)s. , = f. , f. = , 
i-l -- 1 + 1 1 i [ £ f

0Г
 i = k,k+l , 

5
o
 =
 Vi

 =
 ° • 

(32) 

The solution of this boundary value problem can be written 

п 

Г
J
 =
! r

9
J

i Г
i ' 

(33) 

where g.. are values of the Green s function of the problem 

(see [2]) defined as 
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' J i 

a-тþa-rŢbä/a-т^ 

a-v-ba-TJ-hd/a-ri") 

foг j 

foг j 

So we have for example 

s
k
 = - dEU - r![)(l - r£+1)/(l - r^+1) + dE(l - r ^ K / U - r""-1) 

with sk = 0(E) for d€(0,l)\-_-. 

Therefore we can see that in both cases 3.3.1, 3.3.2 we 

have no damping of errors in data m. or in boundary conditions 

among splines scS(2,Ax) interpolating the first derivatives. 

4. Quadratic splines interpolating the second derivatives 

Let us have a mesh (AxAt) and denote si = s(t.), 

M. = s"(t.), i = 0(l)n for s£:S(2,-ix). These quantities satis­

fy (see [5] ) continuity relations 

a.M. ,+b.M.+c.M. , 
1 1-1 1 1 1 1+1 

f. , i = l(l)n-l , (34) 

where i^ = x . + r x. , „. - >i+]_ - ^ , k, = t, ., - t 

i2, 

-cx i+1-t i)[i+(t i+1-x i+1)*/k i]/(k i .1+k i), 

f . 2 [ (s i + 1 -s i ) /k i + ( s i - s i _ 1 ) / k i _ 1 ] / ( k i _ 1 + k i ) . 

= 2[t i_ 1,t.,t i + 1] S 

(a_, b i ? ci are determined by the mesh only; f. depends also 

on the data s_; the symbol for divided difference is used). 

4.1 With Mi? i = 0(l)n and sn = s(tg), s1 = s(t1) given, we 

can calculate all values s., i = 2(l)n with the help of three-

term recurrence relation (34). The value m. =s'(t.) can be then 

calculated from the relations (see 5 ) 
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\ k i " S І + I - S І - [ (x

i+i - V ( t i + i - X І + I
 + k i ) м i ' 

- ( t i + 1 - x i + 1 ) 2 M i + 1 ] / 2 . (35) 

On'an e q u i d i s t a n t mesh w i t h h . = h , t . = ( x . + x . + 1 ) / 2 we have s i m p l y 

( 3 6 ) m i = ( s i + l " s i ) / h " h(ЗM.-M i + 1 )/8 

In both cases we can then use the Taylor representation of the 

spline s : 

s(x) = s
i+
m.(x-t.) -f-ìмЛx-t.)2 (37) 

4.2 When we prescribe boundary conditions s
Q
,s as free para­

meters, the system (34) can be then written as system of linear 

equations with symmetric regular matrix for unknown values s
i
 : 

i ^ s i - i - ^ i r ) s i ^ - s i + i = 

= ł( ki-1
 + k i >(aЛ_ 1 +b i M i + c.M i + 1) 

I n case of the e q u i d i s t a n t mesh mentioned above i t i s 

s i - i - 2 s i + s i + i = if h2(Mi-i+6Mi+W • i -1(1)n"1 • 

(38) 

(39) 

In both cases, we have uniquely determined parameters of 

such spline s€S(2,_ix) for any M., i = 0(l)n. Its first deri­

vatives m. =s'(t.) can be found using (35) or (36)j values s(x) 

through (37). 

We can similarly make an analysis of error propagation in 

system (38) in case of equidistant mesh. For example, when the 

value s0,s are perturbed by errors e0,e , the error e. in 

value s. is given by 

e, = en + j(en - en)/n Ô Ô  
(40) 

It means that an isolated error is propageted with very slow 

damping with growing distance from the place of perturbation. 

- 231 



4.3 When the boundary conditions s(x
n
), s(x ,) are given on 

we c a n a p p l y t h e mesh w i t h xn<^n t < x т 
n n + 1 

s(tg) = S(Xg) m
0

(x
0" V " 2

M
0
(x
0 " V 

with m
0
 given by (35). In this way we obtain relation between 

s(t
n
) and M

n
,M, , which we add to the system (38) or (39) as 

the first equation. Similarly we obtain the last equation from 

the condition on s(x , ) ; alltogether we have now n+1 equations 

for n+1 unknowns values s . = s ( t . ) , i=0(l)n. 

But the zero sum of coefficients in all rows 

of the matrix of the system indicates its singularity. It means, 

we have no solution of this system for general data M. and 

boundary conditions of this kind - such a spline s<- S(2,Ax) 

need not exist ! 

ters: 

We can also try some another alternative for free parame-

- s(x
Q
), s'(Xg) (more generally: s(x

k
>, s'(x

k
)); 

- s(x.), s'(x
k
) ; 

- s(t.), s'(t
k
) . 

For example, by given value of s'(x. ) the polygon s,(x) = 

= s (x) with NL = s^(t.) is uniquely determined. Integrating 

s-^(x), the constant of integration is determined by any value 

s(x.). For calculation of s ^ m. we can then use (34), (35). 
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