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Convolution operators on the dual of hypergroup algebras

Ali Ghaffari

Abstract. Let X be a hypergroup. In this paper, we define a locally convex topology β

on L(X) such that (L(X), β)∗ with the strong topology can be identified with a Banach
subspace of L(X)∗. We prove that if X has a Haar measure, then the dual to this
subspace is LC(X)

∗∗ = cl{F ∈ L(X)∗∗;F has compact carrier}. Moreover, we study
the operators on L(X)∗ and L∞

0
(X) which commute with translations and convolutions.

We prove, among other things, that if wap(L(X)) is left stationary, then there is a weakly
compact operator T on L(X)∗ which commutes with convolutions if and only if L(X)∗∗

has a topologically left invariant functional. For the most part, X is a hypergroup not
necessarily with an involution and Haar measure except when explicitly stated.

Keywords: Arens regular, hypergroup algebra, weakly almost periodic, convolution ope-
rators

Classification: 43A10, 43A62

1. Introduction and notations

The theory of hypergroups was initiated by Dunkl [4], Jewett [8] and Spector
[19] and has received a good deal of attention from harmonic analysts. It is still
unknown if an arbitrary hypergroup admits a left Haar measure, but commutative
hypergroups with an involution [1] and compact hypergroups with an involution
have a Haar measure. The lack of Haar measure and involution presents many
difficulties, however, we succeed to get some results.

Let X be a locally compact Hausdorff space with convolution measure algebra
M(X) and probability measures Mp(X) ([4], [5], [6]). Also, let L(X) = {µ ∈
M(X); x 7→ |µ| ∗ δx is norm continuous} ([5], [15]). We assume that X is a
foundation, i.e.

X = cl(
⋃

{suppµ; µ ∈ L(X)}).

It is known that L(X) is an L-ideal of M(X) and L(X) has a positive bounded
approximate identity with norm one ([5, Lemma 1]).

If L(X)∗, L(X)∗∗ are the first and second duals of L(X) respectively, the first
Arens product in L(X)∗∗ is defined by

〈FG, f〉 = 〈F,Gf〉, 〈Gf, µ〉 = 〈G, fµ〉,
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where µ, ν ∈ L(X), f ∈ L(X)∗ and F,G ∈ L(X)∗∗. In addition, we define

〈µf, ν〉 = 〈f, ν ∗ µ〉, 〈fµ, ν〉 = 〈f, µ ∗ ν〉

where µ ∈ M(X), ν ∈ L(X) and f ∈ L(X)∗. Most of our notation in this paper
is taken from [4], [14].
The paper is organized as follows. In Section 2, we introduce a locally convex

topology β on L(X), and prove that the strong topology on (L(X), β)∗ can be
identified with a Banach subspace of L(X)∗, and the dual to this subspace is
LC(X)

∗∗ (when X has Haar measure) where

LC(X)
∗∗ = cl{F ∈ L(X)∗∗; F has compact carrier}

is defined in [14].
In Section 3, we deal with the operators on L(X)∗ and L0(X)

∗ which commute
with translations and convolutions, and we show that if wap(L(X)) is left station-
ary, then there is a weakly compact operator T on L(X)∗ which commutes with
convolutions if and only if L(X)∗∗ has a topologically left invariant functional.

2. Locally convex topology on L(X)

Let X be a hypergroup. If (Kn) is an increasing sequence of compact subsets
of X and (an) is a sequence in (0,∞) with an −→ ∞, then we define

U((Kn), (an)) = {µ ∈ L(X); ‖µχKn
‖ ≤ an, n ∈ N}.

It is clear that the set of all U((Kn), (an)) is a base of neighbourhoods of zero for
a locally convex topology β on L(X). We write L0(X)

∗ for the dual (L(X), β).
If f ∈ L(X)∗, we define

‖f‖A = sup{|〈f, µ〉|, µ ∈ L(X) and suppµ ⊆ A, ‖µ‖ ≤ 1}

where A is a Borel subset of X . Also, we take

L∞
0 (X) = {f ∈ L(X)∗; ‖f‖X\K −→ 0 where K is compact and K ↑ X}

([12, Definition 2.4]). In this paper for f ∈ L(X)∗ and µ ∈ L(X), we define
〈fχA, µ〉 = 〈f, µχA〉 (A is a Borel subset of X).

Lemma 2.1. Let X be a hypergroup. Then L∞
0 (X) = L0(X)

∗.

Proof: Let f ∈ L0(X)
∗, and ǫ > 0 be given. There exists U((Kn), (an)) such

that for µ ∈ L(X) with ‖µχKn
‖ ≤ an (n ∈ N), we have |〈f, µ〉| < ǫ. Now, if

µ ∈ L(X) and ‖µ‖ ≤ 1,
|〈f, µ〉| < ǫ/a
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where a = inf{an, n ∈ N}. Consequently f ∈ L(X)∗. On the other hand, there
exists n◦ ∈ N such that for all n ≥ n◦ (n ∈ N), an ≥ 1. Therefore if µ ∈ L(X)
with ‖µ‖ ≤ 1, then for every n > n◦ we have ‖µχKn

‖ ≤ an. Hence ‖f‖X\Kn
< ǫ

(n ≥ n◦) and it follows that f ∈ L∞
0 (X).

To prove the converse, let f ∈ L∞
0 (X). There exists an increasing sequence

(Kn) of compact subsets X such that bn = ‖f‖X\Kn
−→ 0. Now for i ∈ N, there

exists ni ∈ N such that bni
≤ 1/(1 + i)2i. For all µ ∈ U((Kni

), (i)), we can write

|〈f, µ〉| ≤
∞
∑

i=1

|〈fχKni
\Kni−1

, µχKni
\Kni−1

〉|

where Kn◦
= ∅. Hence

|〈f, µ〉| ≤
∞
∑

i=1

‖fχKni
\Kni−1

‖‖µχKni
\Kni−1

‖

≤
∞
∑

i=1

‖f‖X\Kni−1
‖µχKni

‖ ≤ ‖f‖+ 1.

Consequently f ∈ L0(X)
∗. �

Lemma 2.2. Let β be as above. Then the following statements hold:

(1) H ⊆ L(X) is β bounded if and only if H is norm bounded;
(2) the strong topology on (L(X), β)∗ can be identified with the norm topo-
logy on L∞

0 (X).

Proof: (1) Let H be β bounded. If (µn) is a sequence in H and (αn) is
a sequence of scalars such that αn −→ 0 as n −→ ∞, then αnµn −→ 0 as
n −→ ∞. Indeed, we can find an increasing sequence (Kn) of compact subsets

X such that ‖µχX\Kn
‖ ≤ 1/

√

|αn| (without loss of generality we can assume

that αn 6= 0 for all n ∈ N). But H is β bounded, so there exists m ∈ N with

H ⊆ mU((Kn), (1/
√

|αn|)). It follows that for every n ∈ N, we have

‖αnµn‖ ≤ ‖αnµnχKn
‖+ ‖αnµnχX\Kn

‖ ≤ (m+ 1)
√

|αn|.

Consequently H is norm bounded ([16]). The converse is obvious.

(2) Let B = {µ ∈ L(X); ‖µ‖ < 1}, f ∈ L∞
0 (X) and ‖f‖ < 1. We consider

δ = 1−‖f‖. Since B is norm bounded, B is β bounded. Hence B is weak bounded
(σ(L(X), (L(X), β)∗)). But

{g ∈ L∞
◦ (X); ρB(g − f) < δ} ⊆ {h ∈ L∞

◦ (X); ‖h‖ < 1}
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where for h ∈ L(X)∗, ρB(h) = sup{|〈h, µ〉|;µ ∈ B}. So {f ∈ L∞
0 (X); ‖f‖ < 1} is

open in the strong topology on L∞
0 (X).

Now, let A be a weak bounded subset of (L(X), β). So A is β bounded, by
(1) A is norm bounded. Therefore there exists m ∈ N such that ‖µ‖ < m for all
µ ∈ A. If ǫ > 0, f ∈ L∞

0 (X) and ρA(f) < ǫ, then

{h ∈ L∞
0 (X); ‖h− f‖ < (ǫ− ρA(f))/m} ⊆ {g ∈ L∞

◦ (X); ρA(g) < ǫ}.

Consequently the strong topology is identified with the norm topology. �

Let H be a subspace of L∞
0 (X). H is called left topologically introverted if for

each F ∈ H∗, f ∈ H and µ ∈ L(X), both Ff and fµ are also in H .

For ψ ∈ C(X) and µ ∈ M(X) we define 〈ψ, µ〉 =
∫

ψ(x) dµ(x). So C(X) ⊆
M(X)∗. Now, let f ∈ C◦(X) and µ ∈M(X). Then the map ψ(x) = 〈f, µ ∗ δx〉 is
in C◦(X) [4], and

∫

ψ(x)dν(x) =

∫

〈f, µ ∗ δx〉 dν(x) = 〈fµ, ν〉

where ν ∈ L(X). So we can regard fµ as a continuous function vanishing at in-
finity. Consequently C◦(X) is a left topologically introverted subspace of L

∞
0 (X).

Definition 2.3. A compact subsetK ofX is said to be a carrier for F ∈ L∞
0 (X)

∗

(respectively F ∈ L(X)∗∗) if for all f ∈ L∞
0 (X) (respectively f ∈ L(X)∗)

〈F, fχK〉 = 〈F, f〉.

We know that if X is a hypergroup with an involution and Haar measure
([1], [2]), then L1(X) is an FC-algebra [11]. If X has an involution and Haar
measure, then by an argument similar to the proof of ([12, Proposition 2.6]),
the set of all functionals in L∞

0 (X)
∗ with compact carrier is dense in L∞

0 (X)
∗

(in the norm topology). In addition, if K1 and K2 are compact subsets of X ,
then for µ ∈ L(X) ∩ Mp(X), x /∈ K̄2 ∗ K1, we have (µχK2 ∗ δx)χK1 = 0
([1, Lemma 1.2.11]). Hence for f ∈ L∗(X), 〈fχK1 , µχK2 ∗ δx〉 = 0. So for
all ν ∈ L(X) with supp ν ∩ K̄2 ∗K1 = ∅,

〈fχK1 , µχK2 ∗ ν〉 =

∫

〈fχK1 , µχK2 ∗ δx〉 dν(x) = 0

(since for all µ ∈ L(X), ν ∈ M(X), we have µ ∗ ν =
∫

µ ∗ δx dν(x) ([16, Theo-
rem 3.20 and Theorem 3.27])). It follows that ‖fχK1µχK2‖X\K̄2∗K1

= 0. Con-

sequently fχK1µχK2 ∈ L∞
0 (X). It is easy to see that for all f ∈ L∞

0 (X) and
µ ∈ L(X) we have fµ ∈ L∞

0 (X). Similarly Ff ∈ L∞
0 (X) whenever F ∈ L∞

0 (X)
∗

and f ∈ L∞
0 (X).
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Lemma 2.4. LetX be a hypergroup as above. If K1 is a carrier for F ∈ L∞
0 (X)

∗

and K2 is a carrier for H ∈ L∞
0 (X)

∗, then K1 ∗K2 is a carrier for FH .

Proof: Let K1 be a carrier for F ∈ L∞
0 (X)

∗ and K2 be a carrier for H ∈
L∞
0 (X)

∗. For µ, ν ∈ L(X) and f ∈ L∞
0 (X), since µχK1 ∗ νχK2 = (µχK1 ∗

νχK2)χK1∗K2 ([1]), we have

〈(fµχK1)χK2 , ν〉 = 〈fµχK1 , νχK2〉 = 〈f, µχK1 ∗ νχK2〉

= 〈f, (µχK1 ∗ νχK2)χK1∗K2〉 = 〈(fχK1∗K2µχK1)χK2 , ν〉.

So (fµχK1)χK2 = (fχK1∗K2µχK1)χK2 . But

〈(Hf)χK1 , µ〉 = 〈H, (fµχK1)χK2〉

= 〈H, fχK1∗K2µχK1〉 = 〈(HfχK1∗K2)χK1 , µ〉.

Consequently

〈FH, f〉 = 〈F, (Hf)χK1〉 = 〈F, (HfχK1∗K2)χK1〉 = 〈(FH)χK1∗K2 , f〉.

Therefore K1 ∗K2 is a compact carrier for FH . �

If X has an involution and Haar measure, then L∞
0 (X) is left topologically

introverted and the first Arens product is well defined. Also there is an algebra
isomorphism from LC(X)

∗∗ onto L∞
◦ (X)

∗. Indeed, the restriction map is an
isometric isomorphism.
We recall that a Banach algebra A is Arens regular if two Arens products on

A∗∗ coincide [3]. In the following theorem, we prove that if L∞
◦ (X)

∗ is Arens
regular, then L(X)∗∗ is unital.

Theorem 2.5. Let X be a hypergroup such that the first and the second Arens
multiplications are both well defined on L∞

0 (X)
∗. If L∞

0 (X)
∗ is Arens regular,

then L(X)∗∗ is unital.

Proof: If L∞
0 (X)

∗ is Arens regular, then L(X) is Arens regular. Therefore by [3]
wap(L(X)) = L(X)∗ where wap(L(X)) = {f ∈ L(X)∗; {fµ;µ ∈ L(X), ‖µ‖ ≤ 1}
is relatively weakly compact}. Now, let f ∈ L(X)∗ and (eα) be a bounded
approximate identity of norm one ([5, Lemma 1]). Since feα −→ f in the weak∗-
topology and f ∈ wap(L(X)), we have f ∈ L(X)∗L(X). Consequently L(X)∗

factors on the left ([13]). It follows that L(X)∗∗ is unital. �

Medghalchi ([14], [15]) has defined B = L(X)∗L(X) which is a Banach sub-
space of L(X)∗ and has shown B∗ is a Banach algebra by Arens type product.
For µ ∈ M(X) and fν ∈ B we define 〈µ, fν〉 = 〈f, ν ∗ µ〉, hence µ ∈ B∗. We
can show that if L(X) is an ideal in B∗, then X is compact. Indeed if X is not
compact and Σ is the family of all compact subsets of X , then Σ is a directed set
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under the set inclusion. Now we take xK /∈ K (K is a compact subset of X). Let
m ∈ B∗ be a weak∗-limit of a subnet of {δxK

}. Then for ψ ∈ C◦(X), we have

〈m,ψ〉 = 0. Hence m ∈ C◦(X)
⊥ ([14, Theorem 4]). On the other hand for all

µ ∈ L(X), we have µm ∈ L(X) and µm ∈ C◦(X)
⊥. So µm = 0 ([14, Theorem 4]).

Consequently m = 0, which is a contradiction.

3. Convolution of operators

We know that for a locally compact abelian group G, L(X) = L1(G), L(X)∗ =
L∞(G) and fδx = Lxf where Lx(f)(y) = f(xy) (f ∈ L∞(G), x, y ∈ G). Also, if
ψ ∈ L1(G), fψ = ψ∨ ∗ f where ψ∨(x) = ψ(x−1). The operators on L∞(G) which
commute with translations and convolutions have been studied by Lau and Pym
in [12]. In [9], Larsen has studied some operators on L∞(G), and has proved that
if Z is the additive group of integers, then there exists T ∈M(L∞(Z)) (M(L∞(Z))
is the set of all operators on L∞(Z) which commute with translations [9]) which
cannot be written as convolution with an element of M(Z) ([9, p. 78]). Indeed,
T is not weak∗-weak∗ continuous. We show that if X is a hypergroup which has
an involution and Haar measure and T : L∞

0 (X) −→ L∞
0 (X) commutes with

convolutions, i.e. T (fµ) = T (f)µ for f ∈ L∞
◦ (X) and µ ∈ L(X), then for some

µ ∈ M(X) we have T = λµ
∗ where λµ is a left multiplier on L(X) defined by

λµ(ν) = µ ∗ ν for ν ∈ L(X). In this section, we may assume that all operators
are bounded.

Theorem 3.1. Let X be a hypergroup. Then the following statements hold:

(1) If T : L(X)∗ −→ L(X)∗ is weak∗-weak∗ continuous and T (δxf) = δxT (f)
for every f ∈ L(X)∗ and x ∈ X , then there exists a unique measure
µ ∈M(X) such that T = λµ

∗ and ‖T ‖ = ‖µ‖. Indeed, the correspondence
between T and µ defines an isometric isomorphism from {T ;T : L(X)∗ −→
L(X)∗ is weak∗-weak∗ continuous and T (δxf) = δxT (f), x ∈ X , f ∈
L(X)∗} onto M(X).

(2) If T : L(X) −→ L(X)∗ commutes with translations, i.e. T (µ ∗ δx) =
T (µ)δx (x ∈ X , µ ∈ L(X)), then there exists a unique f ∈ L(X)∗ such
that T (µ) = fµ for all µ ∈ L(X). In addition, ‖T ‖ = ‖f‖.

(3) Let X be a hypergroup with involution and Haar measure. If T is an
operator on L∞

0 (X) such that T (fµ) = T (f)µ for f ∈ L∞
0 (X) and

µ ∈ L(X), then there exists a unique measure µ ∈ M(X) such that
T = λµ

∗ and ‖T ‖ = ‖µ‖. In addition, if T is compact then µ ∈ L(X).
Moreover, there exists an isometric isomorphism from {T ;T : L∞

0 (X) −→
L∞
0 (X), T (fµ) = T (f)µ for f ∈ L∞

0 (X) and µ ∈ L(X)} onto M(X).

Proof: We know that T ∗ : L(X)∗∗ −→ L(X)∗∗ is a bounded linear map. On the
other hand, since T is weak∗-weak∗ continuous, for µ ∈ L(X), T ∗(µ) ∈ L(X)∗∗

is weak∗ continuous. Hence T ∗(µ) ∈ L(X) ([16, Chapter 3]). But for x ∈ X and
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µ ∈ L(X), T ∗(µ ∗ δx) = T ∗(µ) ∗ δx. Consequently, for f ∈ L(X)∗ and ν ∈ L(X)
we have

〈f, T ∗(µ ∗ ν)〉 = 〈T (f), µ ∗ ν〉 =

∫

〈T (f), µ ∗ δx〉 dν(x) =

∫

〈f, T ∗(µ ∗ δx)〉 dν(x)

=

∫

〈f, T ∗(µ) ∗ δx〉 dν(x) = 〈f, T ∗(µ) ∗ ν〉.

Consequently for all µ, ν ∈ L(X), we have T ∗(µ∗ν) = T ∗(µ)∗ν. Hence there exists
a measure µ ∈M(X) such that for ν ∈ L(X), T ∗(ν) = µ ∗ ν ([5, Proposition 1]).
It is clear that µ is unique and ‖T ∗‖ = ‖µ‖. Also, it is obvious that T = λµ

∗ and
the correspondence between T and µ is an isometric isomorphism.

(2) Let T ∗ : L(X)∗∗ −→ L(X)∗ be adjoint to T . For all µ, ν, η ∈ L(X), since
T (µ ∗ δx) = T (µ)δx (x ∈ X), we have

〈T (µ ∗ ν), η〉 = 〈T ∗(η), µ ∗ ν〉 =

∫

〈T ∗(η), µ ∗ δx〉 dν(x)

=

∫

〈T (µ ∗ δx), η〉 dν(x) =

∫

〈T (µ), δx ∗ η〉 dν(x) = 〈T (µ)ν, η〉.

Consequently T (µ ∗ ν) = T (µ)ν.
Now, let (eα) be a bounded approximate identity with norm one. Then without

loss of generality, we may assume that T (eα) −→ f (f ∈ L(X)∗) in the weak∗-
topology. It is clear that T (µ) = fµ for all µ ∈ L(X). Since L(X) has a bounded
approximate identity, f is unique. Now, let ǫ > 0 be given. We take ν ∈ L(X)
(‖ν‖ = 1) such that ‖f‖ ≤ |〈f, ν〉| + ǫ. Since

|〈f, ν〉| ≤ lim
α

|〈feα, ν〉| = lim
α

|〈T (eα), ν〉| ≤ ‖T ‖,

we have ‖f‖ ≤ ‖T ‖+ ǫ. But ‖T ‖ ≤ ‖f‖. Consequently ‖T ‖ = ‖f‖.

(3) We know that L∞
0 (X)

∗ = LC(X)
∗∗. Now if T ∗ : L∞

0 (X)
∗ −→ L∞

0 (X)
∗ is

adjoint to T , then for µ, ν ∈ L(X) we have T ∗(µ ∗ ν) = µT ∗(ν). But µT ∗(ν) =
µπ(T ∗(ν)) ([14, Proposition 6]) and π(T ∗(ν)) ∈M(X) ([14, Proposition 13]). So
T ∗(µ∗ν) ∈ L(X). Since L(X) has a bounded approximate identity, by the Cohen-
Hewitt factorization theorem, we have L(X) ∗ L(X) = L(X). Consequently for
every µ ∈ L(X), T ∗(µ) ∈ L(X). A similar proof as above can be used to show
that for some µ ∈M(X), T = λµ

∗, and µ is unique with ‖T ‖ = ‖µ‖.
Now, if T is compact then λµ : L(X) −→ L(X) is compact. So µ ∈ L(X)

([5, Theorem 1]). It is obvious that the correspondence between T and µ is an
isometric isomorphism. This completes our proof. �



676 A.Ghaffari

Skantharajah has proved there are some hypergroups X with LIM(L∞(X)) \
TLIM(L∞(X)) 6= ∅ ([17], [18]). In general, if G is a nondiscrete abelian
group, then LIM(L∞(G)) \ TLIM(L∞(G)) 6= ∅ ([7]). If m ∈ LIM(L∞(G)) \
TLIM(L∞(G)), then the map T : L∞(G) −→ L∞(G) given by T (f) = m(f)
commutes with translations, but T is not weak∗-weak∗ continuous. Therefore
there is no µ ∈M(X) such that T = λµ

∗.
For a hypergroup X with an involution and Haar measure Wolfenstetter in [20]

has defined wap(X) = {f ∈ C(X); {Lxf ;x ∈ X} is relatively weakly compact
in C(X)}. Also, Lasser has studied ap(X) [10]. In this paper, for an arbi-
trary hypergroup X , we define wap(L(X)) = {f ∈ L(X)∗; {fµ;µ ∈ L(X) and
‖µ‖ ≤ 1} is relatively weakly compact in L(X)∗} ([13]). It is easy to see that
if f ∈ wap(L(X)) and µ ∈ M(X), then fµ ∈ wap(L(X)). Also, the map
1 : L(X) −→ C given by 〈1, µ〉 = µ(X) is a weakly almost periodic functional on
L(X), i.e. {1µ;µ ∈ L(X) and ‖µ‖ ≤ 1} is relatively weakly compact.

Theorem 3.2. Let X be a hypergroup and f ∈ wap(L(X)). Then the following
statements hold:

(1) the weak-closure of {f
∑n

i=1 αiδxi
;xi ∈ X,αi ∈ C, n ∈ N,

∑n
i=1 |αi| ≤ 1}

is equal to the weak-closure of {fµ;µ ∈ L(X), ‖µ‖ ≤ 1}.
(2) Let T be an operator on L(X)∗ and T (fδx) = T (f)δx for f ∈ L(X)∗,

x ∈ X . Then T (fµ) = T (f)µ for all f ∈ wap(L(X)) and µ ∈ L(X).

Proof: If f ∈ wap(L(X)), then {fµ;µ ∈ L(X), ‖µ‖ ≤ 1} is relatively weakly
compact. Now for a bounded approximate identity (eα) of norm one, (feα) has
a convergence subsequence to f in the weak topology (since feα −→ f in the
weak∗-topology). But B = L(X)∗L(X) is a Banach space, hence f ∈ B. For
x ∈ X , let m ∈ L(X)∗∗ be an extension of δx with norm one. So there exists
a net (µα) in L(X) with ‖µα‖ ≤ 1 such that µα −→ m in the weak∗-topology.
Hence for every ν ∈ L(X)

〈νf, µα〉 −→ 〈m, νf〉.

But f ∈ wap(L(X)) and we may assume without loss of generality that fµα −→ g
(g ∈ L(X)∗) in the weak topology. On the other hand, 〈m, νf〉 = 〈δx, νf〉 =
〈fδx, ν〉, and so g = fδx. It follows that

{

n
∑

i=1

fαiδxi
;αi ∈ C, n ∈ N, xi ∈ X,

n
∑

i=1

|αi| ≤ 1
}

⊆

weak-closure {fµ;µ ∈ L(X), ‖µ‖ ≤ 1}.

To prove the converse, let µ ∈ L(X) and ‖µ‖ ≤ 1. By the Hahn Banach
theorem, there exists a net (µα) in {

∑n
i=1 αiδxi

, xi ∈ X,αi ∈ C,
∑n

i=1 |αi| ≤
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1, n ∈ N} such that µα −→ µ in the σ(B∗, B) topology. It is obvious to realize
that

fµ ∈ weak-closure
{

n
∑

i=1

fαiδxi
;αi ∈ C, xi ∈ X,n ∈ N,

n
∑

i=1

|αi| ≤ 1
}

.

This completes the proof.

(2) Let f ∈ wap(L(X)). Since T (fδx) = T (f)δx and f ∈ B, so T (f) ∈ B.
Indeed, for ǫ > 0 there exists a neighbourhood U of e such that ‖T (f)δx−T (f)‖ ≤
ǫ/‖T (f)‖ (x ∈ U). Now for ν ∈ L(X) (‖ν‖ ≤ 1) and µ ∈ L(X) ∩Mp(X) with
suppµ ⊆ U , we have

∣

∣

∣

∫

〈T (f), δx ∗ ν〉 − 〈T (f), ν〉 dµ(x)
∣

∣

∣
< ǫ.

So |〈T (f)µ, ν〉 − 〈T (f), ν〉| < ǫ, i.e. ‖T (f)µ − T (f)‖ < ǫ. But T (f)µ ∈ B and
B is a Banach space, hence T (f) ∈ B. Now if µ ∈ L(X), it is easy to see that
T (fµ) = T (f)µ. �

Definition 3.3. Let X be a hypergroup; wap(L(X)) is said to be left stationary
if for every f ∈ wap(L(X))

weak∗-closure {µf ;µ ∈Mp(X) ∩ L(X)} ∩ {c1; c ∈ C} 6= ∅.

m ∈ L(X)∗∗ is said to be topologically left invariant, if 〈m, fµ〉 = 〈m, f〉 for
all f ∈ L(X)∗ and µ ∈ L(X) ∩Mp(X). In the following theorem we can find
a relation between the set of all weakly compact operators which commute with
convolutions and the set of all topologically left invariant functionals on L(X)∗.
It is interesting for L1(X) when X has a Haar measure.

Theorem 3.4. Let X be a hypergroup such that wap(L(X)) is left stationary.
Then L(X)∗∗ has a topologically left invariant if and only if there exists a weakly
compact operator T : L(X)∗ −→ L(X)∗ such that T (fµ) = T (f)µ for f ∈ L(X)∗

and µ ∈ L(X) ∩Mp(X).

Proof: Let m ∈ L(X)∗∗ be topologically left invariant. Then the linear operator
T : L(X)∗ −→ L(X)∗ given by T (f) = 〈m, f〉1 is a weakly compact operator and
T (fµ) = T (f)µ for all µ ∈ L(X) ∩Mp(X) and f ∈ L(X)∗.
Conversely, let T : L(X)∗ −→ L(X)∗ be a weakly compact operator and

T (fµ) = T (f)µ for f ∈ L(X)∗, µ ∈ L(X) ∩Mp(X). So T (L(X)
∗) ⊆ wap(L(X)).

Now, let f ∈ wap(L(X)). There is a net (µα) in L(X) ∩Mp(X) and c ∈ C such
that µαf −→ c1 in the weak∗-topology. Passing to a subnet if necessary, we can
assume that (µα) converges to some m in L(X)

∗∗ in the weak∗ topology. So,
mf = c1. We take

Σ(f) = {m ∈ L(X)∗∗; ‖m‖ ≤ 1, mf = c1 for some c ∈ C and 〈m, 1〉 = 1}.



678 A.Ghaffari

For f ∈ wap(L(X)), Σ(f) 6= ∅. It is easy to see that Σ(f) is weak∗ compact.

Now, if f1, f2, . . . , fn ∈ wap(L(X)) and m1 ∈
⋂n−1

i=1 Σ(fi), then we can take
m2 ∈ L(X)∗∗ such that m2m1fn = cn1 and 〈m2, 1〉 = 1 for some cn ∈ C (since
m1fn ∈ wap(L(X))). Let c1, c2, . . . , cn−1 ∈ C such that m1fi = ci1 (1 ≤ i ≤
n − 1). We have m2m1fi = ci1 (1 ≤ i ≤ n − 1), so that m2m1 ∈

⋂n
i=1Σ(fi).

Consequently
⋂

{Σ(f); f ∈ wap(L(X))} 6= ∅.

If m◦ ∈
⋂

{Σ(f); f ∈ wap(L(X))}, it is clear that m = m◦m◦ is a topologically
left invariant on wap(L(X)). It follows that m ◦T is a topologically left invariant
on L(X)∗. �
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