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Cancellative actions

Pierre Antoine Grillet

Abstract. The following problem is considered: when can the action of a cancellative
semigroup S on a set be extended to a simply transitive action of the universal group of
S on a larger set.

Keywords: semigroup action, monoid action, cancellative action, universal actions, S-
set, tensor product

Classification: 20M20

Introduction

The following problem arose in [4]. Let S be a cancellative semigroup and G(S)
be its universal group. Assume that S can be embedded in G(S). When can the
action of S on a set X be extended to a simply transitive action of G(S) on some
set Y ⊇ X? When S is commutative the solution of this problem is easy but
leads to concepts that are of great importance for finitely generated commutative
semigroups [4].
Here we consider the general case of an arbitrary semigroup S which acts on

a set X . In Section 1 we use the universal group G(S) of S, and the canonical
homomorphism γ : S −→ G(S), to construct a set Y , a mapping ι : X −→ Y ,
and an action of G(S) on Y which extends the action of S in the sense that
ι(s ... x) = γ(s) ... ι(x) for all s and x, and has a universal property. This leads
in Section 2 to necessary and sufficient conditions for extending the action of S
on X to a simply transitive action of G(S) on some set Z ⊇ X , or to a simply
transitive action of G(S) on Y . A later article will show that the latter conditions
are equivalent to explicit sets of implications.
We do not assume that S is a monoid. But, if S is a monoid, then we may

assume that it acts on X as a monoid (1 ... x = x for all x ∈ X), since otherwise
its action cannot be extended to a group action.
Recall that a semigroup is a set with an associative operation, which we write

as a multiplication. A semigroup S is cancellative when xz = yz implies x = y,
and zx = zy implies x = y (for all x, y, z ∈ S). A left semigroup action ... of a
semigroup S on a set X is a mapping (s, x) 7−→ s · x of S ×X into X . Then S
acts simply on X when s ... x = t ... x implies x = t; S acts transitively on X when,
for every x, y ∈ X , there exists some s ∈ S such that s ... x = y.
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1. Universal actions

This section takes place in the category Act of semigroup acts. The objects
of Act are all ordered triples (S,X, ... ) of a semigroup S, a set X , and a left
semigroup action ... of S on X ; then X is an S-set and (S,X, ... ) is an S-act .
In Act, a morphism from (S,X, ... ) to (T, Y, ... ) is an ordered pair (ϕ, f) of a se-
migroup homomorphism ϕ : S −→ T and a mapping f : X −→ Y such that
f(s ... x) = ϕ(s) ... f(x) for all s ∈ S and x ∈ X ; if ϕ and f are injective, then
the action of T on Y extends the action of S on X . Composition and identity
morphisms are componentwise.

1. When ϕ : S −→ T is a semigroup homomorphism, every S-act has a
universal T -act:

Proposition 1.1. Let (S,X, ... ) be a semigroup act and ϕ : S −→ T be a homo-
morphism. There exist a set Y , an action ... of T on Y , and a mapping ι : X −→ Y
such that (ϕ, ι) : (S,X, ... ) −→ (T, Y, ... ) is a morphism and, for every morphism
(ϕ, α) : (S,X, ... ) −→ (T, Z, ... ), there exists a unique action-preserving mapping
β : Y −→ Z such that β ◦ ι = α.

X
ι

//

α
  @

@

@

@

@

@

@

Y

β

��

Z

Proof: We construct Y as a tensor product of S-sets (as introduced in [5]):

namely, Y = T 1 ⊗S X , where S acts on T
1 on the right by t ... s = t ϕ(s). The

details are as follows. Let ∼ be the smallest equivalence relation on the set T 1×X
such that

(1) for all t, u, v ∈ T 1 and x, y ∈ X , (u, x) ∼ (v, y) implies (tu, x) ∼ (tv, y);
and

(2) for all s ∈ S and x ∈ X , (ϕ(s), x) ∼ (1, s ... x).

This exists since an intersection of equivalence relations with properties (1) and
(2) again has properties (1) and (2). A more detailed description of ∼ is given in
Lemma 1.2 below.

We show that Y =
(

T 1×X
)

/∼ serves. Let cls(t, x) denote the ∼-class of (t, x).
The mapping ι : X −→ Y is given by

ι(x) = cls(1, x).

By (1), an action ... of T 1 on Y is well defined by

t ... cls(u, x) = cls(tu, x).
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This is a monoid action since 1 ... cls(u, x) = cls(u, x) and

t ...
(

u ... cls(v, x)
)

= t ... cls(uv, x) = cls(tuv, x) = tu ... cls(v, x).

In particular, T acts on Y . Also

ι(s ... x) = cls(1, s ... x) = cls(ϕ(s), x) = ϕ(s) ... ι(x)

by (2). Thus (T, Y, ... ) is an object of Act and (ϕ, ι) is a morphism.
Let (ϕ, α) : (S,X, ... ) −→ (T, Z, ... ) be a morphism. The mapping α induces a

mapping α : T 1 ×X −→ Z defined by

α(t, x) = t ... α(x)

(with α(1, x) = α(x) if t = 1 ∈ T 1). If α(u, x) = α(v, y), then u ... α(x) = v ... α(y)
and

α(tu, x) = tu ... α(x) = t ...
(

u ... α(x)
)

= t ...
(

v ... α(y)
)

= tv ... α(y) = α(tv, y).

Also

α(ϕ(s), x) = ϕ(s) ... α(x) = α(s ... x) = 1 ... α(s ... x) = α(1, s ... x)

by the choice of α. Thus the equivalence relation induced by α satisfies (1) and (2).
It therefore contains ∼: (t, x) ∼ (u, y) implies α(t, x) = α(u, y). Hence a mapping
β : Y −→ Z is well defined by

β
(

cls(t, x)
)

= α(t, x) = t ... α(x).

In particular β(ι(x)) = β
(

cls(1, x)
)

= 1 ... α(x) = α(x) and β ◦ ι = α. If moreover
y = cls(u, x) ∈ Y , then

β(t ... y) = β
(

cls(tu, x)
)

= tu ... α(x) = t ...
(

u ... α(x)
)

= t ... β(y).

Thus β is action-preserving.
If conversely β′ : Y −→ Z is action-preserving and β′ ◦ ι = α, then

β′
(

cls(t, x)
)

= β′
(

t ... cls(1, x)
)

= β′
(

t ... ι(x)
)

= t ... β′(ι(x)) = t ... α(x) = β
(

cls(t, x)
)

;

hence β is unique. �

We give a more precise description of ∼ (which would work more generally in
any tensor product of S-sets). For this it is convenient to regard the elements

of T 1 × X as the vertices of a directed graph, in which there is a labelled edge

(t, s ... x)
s
−−→ (tϕ(s), x) for every (t, x) ∈ T 1×X and s ∈ S1. In particular there is

an identity edge (t, x)
1
−−→ (t, x) for every (t, x) ∈ T 1×X . We note two properties:

If a
s′
−−→ b

s′′
−−−→ c, then a

s′s′′
−−−−→ c: indeed, if a = (t,−) and c = (−, x),

then b = (tϕ(s′), s′′ ... x), so that a = (t, s′ ... (s′′ ... x)), c = (tϕ(s′)ϕ(s′′), x), and

a
s′s′′
−−−−→ c.

If (u, s ... x)
s
−−→ (uϕ(s), x), then (tu, s ... x)

s
−−→ (tuϕ(s), x).
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Lemma 1.2. In T 1 ×X , a ∼ b if and only if

a = a0
s1←−− a1

s2−−→ a2 · · · a2n−2
s2n−1

←−−−−− a2n−1
s2n−−−→ a2n = b

for some n ≥ 0, a0, . . . , a2n ∈ T
1 ×X , and s1, s2, . . . , s2n ∈ S

1.

Proof: Let a C b if and only if

a = a0
s1←−− a1

s2−−→ a2 · · · a2n−2
s2n−1

←−−−−− a2n−1
s2n−−−→ a2n = b

for some n ≥ 0, a0, . . . , a2n ∈ T
1 ×X , and s1, . . . , s2n ∈ S

1. It is immediate that
C is reflexive (let n = 0), symmetric, and transitive. Also (u, x) C (v, y) implies

(tu, x) C (tv, y), since (u, s ... x)
s
−−→ (uϕ(s), x) implies (tu, s ... x)

s
−−→ (tuϕ(s), x);

and (ϕ(s), x) C (1, s ... x), since (ϕ(s), x)
s
←−− (1, s ... x)

1
−−→ (1, s ... x). Thus C is an

equivalence relation with properties (1) and (2).
If conversely A is an equivalence relation with properties (1) and (2), then

(tϕ(s), x) A (t, s ... x) for all t, s, and x; hence (t, s ... x)
s
−−→ (tϕ(s), x) implies

(t, s ... x) A (tϕ(s), x), and a C b implies a A b. Therefore C coincides with ∼. �

2. Proposition 1.1 implies that every semigroup act has a universal group act
in Act. First recall that every semigroup S has a universal group in the category
of semigroups and homomorphisms: that is, there exist a group G(S) and a
homomorphism γ : S −→ G(S), such that every homomorphism ϕ of S into a
group G factors uniquely through γ (ϕ = ψ ◦ γ for some unique homomorphism
ψ : G(S) −→ G). For instance let F be the free monoid on the set S ∪ S′, where
S′ is disjoint from S and comes with a bijection s 7−→ s′ of S onto S′. Let
ι : S ∪ S′ −→ F be the canonical mapping. Let C be the smallest congruence on
F such that ι(st) C ι(s) ι(t), ι(s) ι(s′) C 1, and ι(s′) ι(s) C 1, for all s, t ∈ S; then
F/C and the canonical mapping S −→ F −→ F/C serve as G(S) and γ. The
existence of a universal group also follows from the Adjoint Functor Theorem.

Proposition 1.3. Let (S,X, ... ) be a semigroup act. Let G(S) be the univer-
sal group of S and γ : S −→ G(S) be the canonical homomorphism. The
universal G(S)-set Y of X and its canonical morphism (γ, ι) : (S,X, ... ) −→
(G(S), Y, ... ) have the following universal property: for every morphism (ϕ, α) :
(S,X, ... ) −→ (G,Z, ... ), where G is a group, there exists a unique morphism
(ψ, β) : (G(S), Y, ... ) −→ (G,Z, ... ) such that (ψ, β) ◦ (γ, ι) = (ϕ, α).

S
γ

//

ϕ
!!C

C

C

C

C

C

C

C
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Proof: By Proposition 1.1, (γ, ι) : (S,X, ... ) −→ (G(S), Y, ... ) is a morphism
and, for every morphism (γ, α) : (S,X, ... ) −→ (G(S), Z, ... ), there exists a unique
action-preserving mapping β : Y −→ Z such that β ◦ ι = α. We now prove the
stronger universal property in the statement.

Let G be a group and (ϕ, α) : (S,X, ... ) −→ (G,Z, ... ) be a morphism. Since
G(S) is the universal group of S there exists a unique homomorphism ψ : G(S) −→
G such that ψ ◦ γ = ϕ. The action of G on Z then induces an action of G(S) on
Z, given by

g ... z = ψ(g) ... z

for all g ∈ G(S) and z ∈ Z. Then

α(s ... x) = ϕ(s) ... α(x) = ψ(γ(s)) ... α(x) = γ(s) ... α(x)

for all s ∈ S and x ∈ X , and (γ, α) : (S,X, ... ) −→ (G(S), Z, ... ) is a morphism of
acts. Hence there is a unique mapping β : Y −→ Z such that β ◦ ι = α and β
preserves the action of G(S). This last condition states that

β(g ... y) = g ... β(y) = ψ(g) ... β(y)

for all g ∈ G(S) and y ∈ Y , i.e. (ψ, β) : (G(S), Y, ... ) −→ (G,Z, ... ) is a morphism
of acts. Thus there is a unique morphism (ψ, β) : (G(S), Y, ... ) −→ (G,Z, ... ) such
that (ψ, β) ◦ (γ, ι) = (ϕ, α). �

3. In Proposition 1.3 (up to isomorphism of acts) Y =
(

G(S)×X
)

/∼, where ∼
is the smallest equivalence relation on the setG(S)×X such that (1) (g, x) ∼ (h, y)
implies (kg, x) ∼ (kh, y) and (2) (γ(s), x) ∼ (1, s ... x), for all g, h, k ∈ G(S),
x, y ∈ X , and s ∈ S; then g ... cls(h, x) = cls(gh, x) and ι(x) = cls(1, x). Lemma 1.2
then leads to a better description of ∼.
When x, y ∈ X , a connected sequence from x to y is a triple of sequences

x0, x1, . . . , xn ∈ X , s1, . . . , sn ∈ S1, t1, . . . , tn ∈ S1 (where n ≥ 0) such that
x = x0, xn = y, and

t1 ... x0 = s1 ... x1, t2 ... x1 = s2 ... x2, . . . , tn ... xn−1 = sn ... xn

holds in X (with 1 ... x = x in case S is not a monoid). The group value of a

connected sequence x0, x1, . . . , xn ∈ X , s1, . . . , sn ∈ S
1, t1, . . . , tn ∈ S

1 is

γ(t1)
−1 γ(s1) γ(t2)

−1 γ(s2) . . . γ(tn)
−1 γ(sn) ∈ G(S)

(with γ(1) = 1 ∈ G(S) in case S is not a monoid).
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Lemma 1.4. (g, x) ∼ (h, y) if and only if there exists a connected sequence from
x to y with group value g−1h.

Proof: Assume (g, x) ∼ (h, y). By Lemma 1.2 there exist n ≥ 0, (g0, x0),

(g1, x1), . . . , (g2n, x2n) ∈ G(S) × X , and s1, . . . , s2n ∈ S
1 such that (g0, x0) =

(g, x), (g2n, x2n) = (h, y), and

(g0, x0)
s1←−− (g1, x1)

s2−−→ (g2, x2)
s3←−− · · ·

s2n−2

−−−−−→ (g2n−2, x2n−2)
s2n−1

←−−−−− (g2n−1, x2n−1)
s2n−−−→ (g2n, x2n).

Then g0 = g1γ(s1), s1 ... x0 = x1 = s2 ... x2, and g2 = g1γ(s2) = g0 γ(s1)
−1 γ(s2).

Similarly s3 ... x2 = s4 ... x4, g4 = g2 γ(s3)
−1 γ(s4), . . . , s2n−1 ... x2n−2 = s2n ... x2n,

and g2n = g2n−2 γ(s2n−1)
−1 γ(s2n). Hence x0, x2, . . . , x2n ∈ X , s2, s4, . . . , s2n ∈

S1, s1, s3, . . . , s2n−1 ∈ S1, is a connected sequence from x to y, whose group

value is g−10 g2n = g
−1h, since

g2n = g0 γ(s1)
−1 γ(s2) γ(s3)

−1 γ(s4) · · · γ(s2n−1)
−1 γ(s2n).

The converse is similar. Let x0, x1, . . . , xn ∈ X , s1, . . . , sn ∈ S
1, t1, . . . , tn ∈ S

1

be a connected sequence from x to y with group value g−1h. Let

y1 = t1 ... x0 = s1 ... x1, y2 = t2 ... x1 = s2 ... x2, . . . , yn = tn ... xn−1 = sn ... xn

and g0 = g, h1 = g0 γ(t1)
−1, g1 = h1γ(s1), h2 = g1 γ(t2)

−1, g2 = h2γ(s2), . . . ,

hn = gn−1 γ(tn)
−1, gn = hnγ(sn). Then gn = h, since

gn = g0 γ(t1)
−1 γ(s1) γ(t2)

−1 γ(s2) . . . γ(tn)
−1 γ(sn) = g g−1h.

Moreover,

(g0, x0)
t1←−− (h1, y1)

s1−−→ (g1, x1)
t2←−− · · ·

· · ·
sn−1

−−−−→ (gn−1, xn−1)
tn←−− (hn, yn)

sn−−−→ (gn, xn).

Hence (g, x) ∼ (h, y). �

It is convenient to write x
g
−−→ y when x, y ∈ X and there is a connected

sequence from x to y with group value g ∈ G(S). We note the following properties.
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Lemma 1.5. x
1
−−→ x and s ... x

γ(s)
−−−−→ x for every x ∈ X and s ∈ S. If x

g
−−→ y,

then y
g−1
−−−−→ x. If x

g
−−→ y and y

h
−−→ z, then x

gh
−−−→ z.

Proof: When x ∈ X , then x
1
−−→ x since there is a connected sequence with

n = 0 (also, (1, x) ∼ (1, x)). More generally, when s ∈ S1, then s ... x = x0,

x1 = x ∈ X , s1 = s ∈ S1, t1 = 1 ∈ S
1 is a connected sequence from s ... x to x

with group value γ(s); hence s ... x
γ(s)
−−−−→ x.

If x = x0, x1, . . . , xn = y ∈ X , s1, . . . , sn ∈ S
1, t1, . . . , tn ∈ S

1 is a connected
sequence from x to y with group value

g = γ(t1)
−1 γ(s1) γ(t2)

−1 γ(s2) . . . γ(tn)
−1 γ(sn),

then y = xn, xn−1, . . . , x0 = x ∈ X , tn, . . . , t1 ∈ S
1, sn, . . . , s1 ∈ S

1 is a connected
sequence from y to x with group value

γ(sn)
−1 γ(tn) γ(sn−1)

−1 γ(tn−1) . . . γ(s1)
−1 γ(t1) = g−1.

Hence x
g
−−→ y implies y

g−1
−−−−→ x.

If finally x = x0, x1, . . . , xm = y ∈ X , s1, . . . , sm ∈ S
1, t1, . . . , tm ∈ S

1 is a
connected sequence from x to y with group value

g = γ(t1)
−1 γ(s1) γ(t2)

−1 γ(s2) . . . γ(tm)
−1 γ(sm),

and y = y0, y1, . . . , yn = z ∈ X , u1, . . . , un ∈ S
1, v1, . . . , vn ∈ S

1 is a connected
sequence from y to z with group value

h = γ(v1)
−1 γ(u1) γ(v2)

−1 γ(u2) . . . γ(vn)
−1 γ(un),

then x = x0, x1, . . . , xm = y0, y1, . . . , yn ∈ X , s1, . . . , sm, u1, . . . , un ∈ S1,

t1, . . . , tn, v1, . . . , vn ∈ S
1 is a connected sequence from x to z with group value

γ(t1)
−1 γ(s1) γ(t2)

−1 γ(s2) . . . γ(tn)
−1 γ(sn)

γ(v1)
−1 γ(u1) γ(v2)

−1 γ(u2) . . . γ(vn)
−1 γ(un) = gh.

Hence x
g
−−→ y and y

h
−−→ z implies x

gh
−−−→ z. �

When S acts on X , the relation

x ≡ y if and only if there exists a connected sequence from x to y
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is by Lemma 1.5 an equivalence relation on X ; we call its equivalence classes
the connected components of X . We write the quotient set X/≡ (the set of all
connected components of X) as a family (Ci)i∈I .
We say that the action of S on X is connected when there is only one connected

component (when for every x, y ∈ X there exists a connected sequence from x
to y); we also say that the S-set X is connected. This is weaker than the usual
transitivity conditions in, say, [3]. The connected components of any S-set are
themselves connected S-sets.

4. We now give an alternate construction of the universal group act, in which
the orbits of Y (under the action of G(S)) are constructed from the connected
components of X . First we note:

Proposition 1.6. In the universal group act (G(S), Y, ... ) of (S,X, ... ), ι(x) and
ι(y) lie in the same orbit if and only if x and y lie in the same connected component
of S.

Proof: Let x, y ∈ X . If ι(x) and ι(y) lie in the same orbit, then cls(1, x) =
g ... cls(1, y) = cls(g, y) for some g ∈ G(S) and there exists a connected sequence
from x to y, by Lemma 1.4. If conversely there exists a connected sequence from
x to y, and g ∈ G(S) is its group value, then ι(x) = cls(1, x) = cls(g, y) = g ... ι(y),
by Lemma 1.4, so that ι(x) and ι(y) lie in the same orbit. �

Stabilizers and orbits in Y can be retrieved from X as follows.

Lemma 1.7. Let C be a connected component of X and c ∈ C. Then

H(C) = { h ∈ G(S)
∣

∣ c
h
−−→ c }

is a subgroup of G(S); for every x ∈ C, { g ∈ G(S)
∣

∣ x
g
−−→ c } is a left coset

of H(C).

Proof: H = H(C) is a subgroup ofG(S) by Lemma 1.5. Let x
g
−−→ c. If c

h
−−→ c,

then x
gh
−−−→ c. If conversely x

g′
−−→ c, then c

g−1
−−−−→ x

g′
−−→ c, g−1g′ ∈ H , and

g′ ∈ gH ; thus { g′ ∈ G(S)
∣

∣ x
g′
−−→ c } = gH . �

Recall that, when H is a subgroup of a group G, then the left cosets of H
constitute a set G/H , on which G acts by left multiplication: g′ ... gH = g′gH .

Proposition 1.8. Let (S,X, ... ) be a semigroup act, (G(S), Y, ... ) be its universal
group act, and (Ci)i∈I be its connected components. For any cross-section (ci)i∈I
of ≡, Y is (up to an isomorphism of G(S)-acts) the disjoint union

Y =
⋃

i∈I

(

G(S)/H(Ci)× {i}
)

,
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with g ... (g′H(Ci), i) = (gg
′H(Ci), i) and ι(x) = (gH(Ci), i) when x ∈ Ci and

x
g
−−→ ci.

Proof: We need a cross-section (ci)i∈I of ≡ (with ci ∈ Ci) to define H(Ci) =

{ h ∈ G(S)
∣

∣ ci
h
−−→ ci }. Let

Z =
⋃

i∈I

(

G(S)/H(Ci)× {i}
)

,

with g ... (g′H(Ci), i) = (gg
′H(Ci), i) as in the statement. Then Z is a G(S)-set.

By Lemma 1.7, a mapping α : X −→ Z is well-defined by

α(x) = (gH(Ci), i) when x ∈ Ci and x
g
−−→ ci.

Let x ∈ X , x ∈ Ci, and s ∈ S. Then s ... x
γ(s)
−−−−→ x by Lemma 1.5, in particular

s ... x ∈ Ci. If x
g
−−→ ci, so that α(x) = (gH(Ci), i), then s ... x

γ(s)g
−−−−−→ ci and

α(s ... x) = (γ(s)gH(Ci), i) = γ(s) ... α(x).

Thus (γ, α) : (S,X, ... ) −→ (G(S), Z, ... ) is a morphism of acts.
By Proposition 1.1, there exists an action-preserving mapping β : Y −→ Z

such that β ◦ ι = α. We show that β is bijective. Since β is action-preserving, we
have

β(cls(g, x)) = β(g ... cls(1, x)) = β(g ... ι(x)) = g ... β(ι(x)) = g ... α(x)

for all x ∈ X and g ∈ G(S). Now α(ci) = (H(Ci), i), since ci
1
−−→ ci; hence

(gH(Ci), i) = g ... α(ci) and β is surjective.

Now assume that β(cls(g, x)) = β(cls(h, y)). Let x ∈ Ci, x
a
−−→ ci and y ∈ Cj ,

y
b
−−→ cj , so that α(x) = (aH(Ci), i) and α(y) = (bH(Cj), j). We have

(gaH(Ci), i) = g ... α(x) = h ... α(y) = (hbH(Cj), j),

so that i = j (x and y lie in the same connected component) and gaH(Ci) =

hbH(Ci). Hence aH(Ci) = g
−1hbH(Ci), there exists x

g−1hb
−−−−−→ ci by Lemma 1.7,

and x
g−1hb
−−−−−→ ci

b−1
−−−→ y yields x

g−1h
−−−−→ y and cls(g, x) = cls(h, y), by

Lemma 1.4. Thus β is injective. �

5. A notable particular case occurs when S acts on itself by left multiplication.
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Proposition 1.9. When a semigroup S acts on itself by left multiplication, the
connected components of S are left ideals, and ≡ is the smallest congruence C
on S such that S/C is a right zero semigroup.

Proof: For all x, y ∈ S the equality x ... y = xy = 1 ... xy shows that y ≡ xy; hence
the ≡ -classes (Li)i∈I are left ideals. In particular LiLj ⊆ Lj for all i, j; hence ≡

is a congruence and S/≡ is a right zero semigroup (ab = b for all a, b ∈ S/≡).
Conversely let C be a right zero semigroup congruence on S. If x, y ∈ S and
s, t ∈ S1, then sx = ty implies x C sx C ty C y; therefore ≡ is contained in C. �

Proposition 1.9 goes back to Dubreil [2]. A semigroup S may be called left
connected when S, as an S-set under left multiplication, has only one connected
component. For example, every monoid is left connected (s ∼ 1 for every s since
1 ... s = s ... 1). (On the other hand, nontrivial right zero bands, and free semigroups
with two or more generators, are not left connected.) Proposition 1.9 implies that
every semigroup is a right zero band of left-connected semigroups. Additional
results on band decompositions, including right zero band decompositions, can
be found in [1].

Lemma 1.10. When S acts on itself by left multiplication, every connected
sequence from x to y has group value γ(x) γ(y)−1.

Proof: As in the proof of Lemma 1.4, let x0, x1, . . . , xn ∈ X , s1, . . . , sn ∈ S,
t1, . . . , tn ∈ S be a connected sequence from x to y with group value g. Then

t1x0 = s1x1, t2x1 = s2x2, . . . , tnxn−1 = snxn

and γ(t1)
−1 γ(s1) γ(t2)

−1 γ(s2) . . . γ(tn)
−1 γ(sn) = g. In G(S) we have

γ(t1)
−1 γ(s1) = γ(x0) γ(x1)

−1, γ(t2)
−1 γ(s2) = γ(x1) γ(x2)

−1,

. . . , γ(tn)
−1 γ(sn) = γ(xn−1) γ(xn)

−1.

Hence
g = γ(t1)

−1 γ(s1) γ(t2)
−1 γ(s2) γ(tn)

−1 γ(sn)

= γ(x0) γ(xn)
−1 = γ(x) γ(y)−1.

�

Lemma 1.10 implies that H(C) = {1} for every connected component C of S.
Proposition 1.8 then yields:

Corollary 1.11. Let S act on itself by left multiplication. The universal group
act of S is isomorphic to a disjoint union of copies of G(S), one for every connected
component of S, on which G(S) acts by left multiplication.

If in particular S is left connected (e.g. if S is a monoid), then the universal
group act of S is isomorphic to G(S), acting on itself by left multiplication.
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2. Simply transitive actions

1. We now turn to the general problem posed in the beginning: can the action
of S on a set X be extended to a simply transitive action of G(S)? that is, is
there an action-preserving injection α : X −→ Z, where G(S) acts simply and
transitively on Z?
We note some necessary conditions.

Proposition 2.1. Let (S,X, ... ) be a semigroup act, (G(S), Y, ... ) be its universal
group act, and (γ, α) : (S,X, ... ) −→ (G(S), Z, ... ) be a morphism of acts, so that
α = β ◦ ι. If α is injective, then ι is injective. If G(S) acts simply on Z, then
G(S) acts simply on Y . If X 6= ∅ and G(S) acts simply and transitively on Z,
then β : Y −→ Z is surjective; moreover, for every z ∈ Z, β−1(z) contains a
single element of every orbit of Y .

Proof: By Proposition 1.1 there is a unique action-preserving mapping β : Y −→
Z such that α = β ◦ ι. If α is injective, then so is ι.
If G(S) acts simply on Z and g ... y = h ... y for some y ∈ Y , then g ... β(y) =

β(g ... y) = β(h ... y) = h ... β(y) and g = h; thus G(S) acts simply on Y .
If X 6= ∅ and G(S) acts simply and transitively on Z, then Y 6= ∅ and, for any

z ∈ Z and y ∈ Y , we have z = g ... β(y) = β(g ... y) for some unique g ∈ G(S); thus
β is surjective, and β−1(z) contains exactly one element g ... y of the orbit of y.

�

When α is injective andG(S) acts simply and transitively on Z, Proposition 2.1
implies that β is made of bijections from every orbit of Y onto Z.
As in Section 1, let (Ci)i∈I be the family of connected components of X , and

let (ci)i∈I be a cross-section of ≡ (with ci ∈ Ci). Let Vi be the set of all g ∈ G(S)
such that g is the group value of a connected sequence from some x ∈ Ci to ci:

Vi = { g ∈ G(S)
∣

∣ x
g
−−→ ci for some x ∈ Ci }.

By Lemma 1.7, Vi is a union of left cosets of H(Ci).

Lemma 2.2. In Proposition 2.1, let α be injective and G(S) act simply and
transitively on Z. Let p ∈ Z. Then

α(x) = δ(x) ... p

defines an injective mapping δ : X −→ G(S). Moreover

δ(Ci) = Vi δ(ci)

for every connected component Ci of X and ci ∈ Ci.

Proof: δ is well-defined: since G(S) act simply and transitively on Z there is for
every x ∈ X a unique δ(x) ∈ G(S) such that α(x) = δ(x) ... p. Then δ is injective,
since α is injective.
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If x
g
−−→ ci, then (1, x) ∼ (g, ci) by Lemma 1.4 and ι(x) = g ... ι(ci). Applying

β yields

α(x) = β(ι(x)) = β(g ... ι(ci)) = g ... β(ι(ci)) = g ... α(ci).

Hence δ(x) ... p = gδ(ci) ... p and δ(x) = gδ(ci). Therefore δ(Ci) = Vi δ(ci). �

We say that the connected components of S have disjoint images in G(S)
(relative to a cross-section of ≡ ) if there exist gi ∈ G(S) such that the sets
Vigi are disjoint. If the action of S on a set X can be extended to a simply
transitive action of G(S), then (relative to any cross-section of ≡ ) the connected
components of S have disjoint images in G(S), by Lemma 2.2.

Theorem 2.3. Let (S,X, ... ) be a semigroup act and (G(S), Y, ... ) be its universal
group act. The action of S on X can be extended to a simply transitive action
of G(S) on some set Z ⊇ X if and only if ι is injective, G(S) acts simply on Y ,
and, relative to some cross-section of ≡ , the connected components of S have
disjoint images in G(S).

Proof: These conditions are necessary by Proposition 2.1 and Lemma 2.2. Con-
versely, assume that ι is injective, G(S) acts simply on Y , and, relative to a
cross-section (ci)i∈I of ≡ , the connected components of S have disjoint images
in G(S): the sets Vigi are disjoint for some gi ∈ G(S).

Construct α : X −→ G(S) as follows. Let x ∈ Ci. When x
g
−−→ ci, then

(1, x) ∼ (g, ci) by Lemma 1.4 and ι(x) = cls(1, x) = cls(g, ci) = g ... ι(ci). Since
G(S) acts simply on Y , g depends only on x (all connected sequences from x to ci
have the same group value). Therefore a mapping α : X −→ G(S) is well-defined
by

α(x) = ggi when x ∈ Ci and x
g
−−→ ci.

Let x, y ∈ X . If x and y lie in different connected components Ci and Cj , then

α(x) 6= α(y), since the sets Vigi and Vjgj are disjoint. Now let x and y lie in the

same connected component Ci. Let x
g
−−→ ci and y

h
−−→ ci. If α(x) = α(y), then

g = h,
ι(x) = g ... ι(ci) = ι(y)

by Lemma 1.4, and x = y since ι is injective. Thus α is injective.
Now G(S) acts simply and transitively on itself by left multiplication. We show

that (γ, α) : (S,X, ... ) −→ (G(S), Z, ... ) is a morphism of acts. Let x ∈ X and

s ∈ S. Let x ∈ Ci and x
g
−−→ ci. By Lemma 1.5, s ... x

γ(s)
−−−−→ x, s ... x

γ(s)g
−−−−−→ ci,

and
α(s ... x) = γ(s)ggi = γ(s)α(x).

�

2. The following results complete Theorem 2.3.
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Proposition 2.4. In the universal group act (G(S), Y, ... ) of (S,X, ... ), ι(x) = ι(y)
if and only if there exists a connected sequence from x to y with group value 1.
If ι is injective, then S acts by injections.

Proof: ι(x) = ι(y) if and only if (1, x) ∼ (1, y), so the first part of the statement
follows from Lemma 1.4. Now assume that ι is injective. If s ... x = s ... y, then
x0 = x, x1 = y, s1 = s, t1 = s is a connected sequence from x to y with group
value 1; hence x = y; thus S acts by injections. �

Proposition 2.5. In the universal group act (G(S), Y, ... ) of (S,X, ... ), G(S) acts
simply on Y if and only if, for every x ∈ X , every connected sequence from x to
x has group value 1.

Proof: This follows from Proposition 1.8, but we give a direct proof. If x
g
−−→ x,

then (1, x) ∼ (g, x) by Lemma 1.4 and 1 ... cls(1, x) = g ... cls(1, x); if G(S) acts
simply on Y this implies g = 1. Conversely let g ... cls(k, x) = h ... cls(k, x). Then
(gk, x) ∼ (hk, x); by Lemma 1.4, there is a connected sequence from x to x with

group value (gk)−1 (hk). If all such sequences have group value 1, then gk = hk
and g = h; thus G(S) acts simply on Y . �

Propositions 2.4 and 2.5 will be made more explicit in Section 4.
If X is connected, then the universal G(S)-set Y of X serves in Theorem 2.3:

Proposition 2.6. In the universal group action (G(S), Y, ... ) of (S,X, ... ), G(S)
acts transitively on Y if and only if X is connected.

Proof: This follows from Proposition 1.6, and from Proposition 1.8, but can be
shown directly as follows. Let x, y ∈ X . If G(S) acts transitively on Y , then
cls(1, x) = g ... cls(1, y) = cls(g, y) for some g ∈ G(S) and there exists a connected
sequence from x to y, by Lemma 1.4; thus X is connected. Conversely let cls(h, x),
cls(k, y) ∈ Y . If X is connected, there exists a connected sequence from x to y

and (h, x) ∼ (g, y) for some g ∈ G(S), by Lemma 1.4; then kg−1 ... cls(h, x) =

kg−1 ... cls(g, y) = cls(k, y). Thus G(S) acts transitively on Y . �
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