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Biharmonic Green domains in a Riemannian manifold

S.I. Othman, V. Anandam

Abstract. Let R be a Riemannian manifold without a biharmonic Green function defined
on it and Ω a domain in R. A necessary and sufficient condition is given for the existence
of a biharmonic Green function on Ω.

Keywords: biharmonic Green functions

Classification: 31C12, 31B30

1. Introduction

In a Riemannian manifold R, we say that a domain Ω is a biharmonic Green
domain if there exists a positive solution Qy(x) for the equation ∆

2Qy(x) = δy(x)
in Ω, where y is some point in Ω and ∆ is the Laplace-Beltrami operator in R.
Some necessary and sufficient conditions for R to be a biharmonic Green space
are given in Sario et al. [8, Chapter VIII]. In this note we give a necessary and
sufficient condition for a domain Ω in R to be a biharmonic Green domain when
R itself is not a biharmonic Green space.

2. Preliminaries

Let R be an oriented Riemannian manifold of dimension n ≥ 2 with local
parameters x = (x1, . . . xn) and a C∞ metric tensor gij such that gijx

ixj is
positive definite. If D is the determinant of gij , denote the volume element by

dx = D
1

2 dx1 . . . dxn; ∆ = dδ + δd is the Laplace-Beltrami operator acting on
R in the sense of distributions; in the Euclidean case, ∆ reduces to the form

∆u = −
∑n

i=1
∂2u
∂x2

i

. A continuous function h on an open set is harmonic, by

definition, if ∆h = 0. To every open set w in R, let H(w) denote the class of
harmonic functions on w. Then these harmonic functions have the sheaf property,
solve locally the Dirichlet problem and possess the Harnack property; that is, they
satisfy the axioms 1, 2, 3 of Brelot in the axiomatic potential theory ([5, pp. 13–
14]). Consequently, we can use all the notions and the results of this axiomatic
theory in the context of a Riemannian manifold; some of these are the following:

(1) Let w be a regular open set in R, that is w is relatively compact in R and
each boundary point of w is regular for the Dirichlet problem. A compact
set k in w is said to be outerregular if w \ k is a regular open set. Given
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a compact set k and a domain w, one can construct a regular domain w0

and an outerregular compact set k0 such that k ⊂
◦
k0 ⊂ k0 ⊂ w0 ⊂ w (see

Loeb [6]).
(2) (See [5, pp. 37, 38 and 47]). If s > 0 is a superharmonic function on a
domain Ω ⊂ R and if e is a subset of Ω, the reduced function by definition
is

Re
s(x) = inf{t(x) : t ≥ 0 superharmonic on Ω and t ≥ s on e};

and its l.s.c. regularization is the balayage R̂e
s(x) = lim infy→x

Re
s(y). In a

domain Ω with a positive potential, a set e is polar if and only if Re
1(x) = 0

at some point x, or, equivalently R̂e
1 ≡ 0.

(3) If there is a positive potential on Ω, we define on Ω the Green function
G(x, y) = Gy(x) with pole y ∈ Ω, so that ∆Gy = δy. Then for any poten-
tial p on Ω, ∆p = µ is a Radon measure and p(x) =

∫
ΩG(x, y) dµ(y). Also

it is proved in [7] that given a Radon measure µ ≥ 0 on Ω,
∫
ΩG(x, y) dµ(y)

is a potential if and only if
∫

Ω
R̂w
1 (x) dµ(x) < ∞ for some nonempty open set w in Ω.

(4) More generally, we have the following result in [3]: Let Ω be a domain in R
with or without positive potentials. Let µ ≥ 0 be a Radon measure on Ω.
Then there exists a superharmonic function s on Ω such that ∆s = µ.
This result is in fact a simple generalization of a classical result of Brelot
[4] in R

n.

Lemma 2.1. Let Ω be a domain in R such that Ω has the Green function G(x, y)
defined on it. Then for a Radon measure µ ≥ 0 on Ω,

∫
ΩG(x, y) dµ(y) is a

potential if and only if for one (and hence any) nonpolar compact set k in Ω,∫
ΩRk
1 dµ < ∞.

Proof: This is a more useful reformulation of Theorem 3.1 [7]. First note that

Rk
1 is µ-measurable. For Rk

1 = infn Rwn

1 where wn is a decreasing sequence of

relatively compact open sets such that k =
⋂

wn. Since each Rwn

1 = R̂wn

1 is l.s.c.,

it is µ-measurable and hence Rk
1 is µ-measurable.

(1) Suppose
∫
ΩG(x, y) dµ(y) is a potential on Ω and k is a nonpolar compact

set in Ω. Then for some x0 ∈ k,
∫
ΩG(x0, y) dµ(y) < ∞. If G(x0, y) ≥ a

on k, G(x0, y) ≥ aRk
1 on Ω and hence

∫
ΩRk
1 dµ < ∞.

(2) Conversely, suppose
∫
ΩRk
1 dµ < ∞ for some nonpolar compact set k.

Since Rk
1 = infn Rwn

1 , we can find an open set w and an outerregular

compact set A such that k ⊂
◦
A ⊂ A ⊂ w and

∫
ΩRw
1 dµ < ∞. Now p(x) =
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∫
A G(x, y) dµ(y) is a potential on Ω; hence p(x0) < ∞ for some x0 ∈ k. If

a ≤ G(x0, y) ≤ b on ∂A, then aRk
1(y) ≤ G(x0, y) ≤ bRA

1 (y) on Ω \ A and
hence

∫
Ω\A G(x0, y) dµ(y) is finite, which implies that

∫
ΩG(x0, y) dµ(y) is

finite and hence
∫
ΩG(x, y) dµ(y) is a potential on Ω.

�

The following form of Lemma 2.1, without an explicit reference to the reduced
functions, is convenient for applications.

Lemma 2.2. Let Ω be a domain in R with the Green function G(x, y) defined
on it; µ ≥ 0 is a Radon measure on Ω. Then the following are equivalent:

(1) There exists a superharmonic function s > 0 on Ω such that
∫
Ω s dµ < ∞.

(2) p(x) =
∫
ΩG(x, y) dµ(y) is a potential on Ω.

(3) For any locally bounded potential q(x) with compact harmonic support
on Ω,

∫
Ω q dµ < ∞.

Proof: (1)⇒(2): Let k be a nonpolar compact subset of Ω. If s ≥ α > 0 on k,

then αRk
1 ≤ s on Ω and hence

∫
ΩRk
1 dµ ≤ 1

α

∫
Ω s dµ < ∞. Hence by Lemma 2.1,

p(x) =
∫
ΩG(x, y) dµ(y) is a potential on Ω.

(2)⇒(3): Let q be a locally bounded potential on Ω, with compact harmonic

support A. Let k be an outerregular compact set such that A ⊂
◦
k. Then Rk

q = q

on Ω \ k. For, R̂k
q ≤ q on Ω and hence t = q − R̂k

q on Ω \ k extended by 0 on k
is a positive subharmonic function less or equal to q on Ω; hence t ≤ 0, so that

q = R̂k
q = Rk

q on Ω \ k. Consequently, if q ≤ α on k, then q ≤ αRk
1 on k; also

on Ω \ k, q = Rk
q ≤ Rk

α = αRk
1 . Thus q ≤ αRk

1 on Ω. Now assumption (2) along

with Lemma 2.1 shows that
∫
ΩRk
1 dµ < ∞. Hence

∫
Ω q dµ < ∞.

(3)⇒(1): Let k be a nonpolar compact set. Let s = R̂k
1 on Ω. Then s > 0 is a

superharmonic function that is bounded on Ω and has compact harmonic support.
Hence by (3),

∫
Ω s dµ < ∞. �

3. Biharmonic Green domains

Let Ω be a domain in R. Given y ∈ Ω, let w be a regular domain for the
Dirichlet problem such that y ∈ w ⊂ w ⊂ Ω. Let vw(x, y) be the biharmonic
Green function on w with biharmonic singularity y, that is ∆2vw(x, y) = δy(x),
and with boundary conditions vw/∂w = 0 and ∆vw/∂w = 0. Then vw increases
with w. Write vΩ(x, y) = limw→Ω vw(x, y) if the limit exists for some regular
exhaustion {w}. vΩ(x, y) is called the biharmonic Green function on Ω and its
existence is independent of the regular exhaustion {w} and the choice of the
singular point y (see Sairo et al. [8, pp. 300–307]). When vΩ(x, y) exists on Ω, it
can be written as vΩ(x, y) =

∫
ΩG(x, z)G(z, y) dz.
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Definition 3.1. A domain Ω in R is said to be a biharmonic Green domain if
and only if the biharmonic Green function vΩ(x, y) exists on Ω.

The following theorem is a collection of known results about vΩ(x, y).

Theorem 3.2. Let Ω be a domain in R, carrying the harmonic Green function
G(x, y). Then the following are equivalent:

(1) Ω is a biharmonic Green domain.
(2) For one (and hence any) y ∈ Ω, there exists a potential qy(x) on Ω such

that ∆2qy = δy.

(3) There exists a potential Q(x) > 0 on Ω such that ∆Q(x) is a superhar-
monic function.

(4) There exist potentials p and q on Ω such that ∆q = p. (q is called a
bipotential.)

Proof: (1)⇒(2): Let v(x, y) be the biharmonic Green function on Ω. Since
v(x, y) =

∫
ΩG(x, z)G(z, y) dz, for fixed y, vy(x) = v(x, y) is a potential on Ω and

∆vy(x) = Gy(x) (see [8, p. 300]); hence ∆
2vy = δy .

(2)⇒(3): For some potential q on Ω, let ∆2q = δy. Since ∆
2q = ∆Gy , ∆q(x) =

Gy(x)+ (a harmonic function) on Ω. That is, ∆q = s is a superharmonic function
on Ω; note that s > 0 since q is a potential > 0.

(3)⇒(4): See Theorem 3.2 in [1].

(4)⇒(1): This is a consequence of Theorem 4.2 in [1]. �

Theorem 3.3. A domain Ω in R is a biharmonic Green domain if and only if
there exists a superharmonic function s > 0 on Ω such that

∫
Ω s2 dx < ∞.

Proof: (1) Let Ω be a biharmonic Green domain. Then there exist potentials
p > 0 and q > 0 on Ω such that ∆q = p. This means that if G(x, y) is the Green
function on Ω with ∆Gy = δy, q(x) =

∫
ΩG(x, y)p(y) dy since q is a potential

with the associated measure dµ(x) = (∆q)dx = pdx in the Riesz representa-
tion. This implies (by Lemma 2.1) that for any nonpolar compact set k in Ω,∫
ΩRk
1(y)p(y) dy < ∞. Moreover, since p is a potential on Ω, for some λ > 0,

Rk
1 ≤ λp on Ω. Consequently, with s = R̂k

1 we have
∫
Ω s2 dx < ∞.

(2) Conversely, let s > 0 be superharmonic on Ω such that
∫
Ω s2 dx < ∞. Since

for a nonpolar compact k in Ω, Rk
1 ≤ λs for some λ > 0,

∫
ΩRk
1(y)R̂

k
1(y) dy < ∞.

This implies (Lemma 2.1) that q(x) =
∫
ΩG(x, y)R̂k

1(y) dy is a potential on Ω so

that ∆q = R̂k
1 . Since R̂k

1 is a potential on Ω, we conclude that Ω is a biharmonic
Green domain. �

Corollary 1. Any domain in R
n, n ≥ 5, is a biharmonic Green domain; and R

n

for 2 ≤ n ≤ 4 is not a biharmonic Green space. (Sario et al. [8, pp. 300–302] and
[2, Theorem 5.5]).
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Proof: (a) Let Ω be a domain R
n, n ≥ 5. Note that s(x) = |x|2−n is a positive

superharmonic function such that
∫
Ω s2 dx ≤ ∞. Hence Ω is a biharmonic Green

domain.

(b) Suppose R
n, 2 ≤ n ≤ 4, is a biharmonic Green space. Then there exists a

superharmonic function s > 0 in R
n such that

∫
Rn s2 dx < ∞. If B is the closed

unit ball in R
n, then for some λ > 0, RB

1 ≤ λs and hence
∫
Rn(RB

1 )
2 dx < ∞. But

RB
1 = |x|2−n on R

n \B. Hence we should have
∫ ∞
1

∫
∂B r4−2nrn−1 dr dw is finite,

that is,
∫ ∞
1 r3−n dr is finite, a contradiction when 2 ≤ n ≤ 4. �

Corollary 2. Suppose the Riemannian manifold R is not a biharmonic Green
space. If Ω is a biharmonic Green domain in R, then e = R \ Ω is not compact.

Proof: Suppose e is compact. Let k be an outerregular compact set such that e ⊂
◦
k ⊂ k. Since Ω is a biharmonic Green domain there exists s > 0 superharmonic on

Ω such that
∫
Ω s2 dx < ∞. Suppose inf∂k s(x) = λ. Then λR̂k

1 ≤ s on Ω\k = R\k

and hence
∫
Ω\k(R̂

k
1)
2 dx < ∞; also

∫
k(R̂

k
1)
2 dx < ∞, and hence

∫
R(R̂

k
1)
2 dx < ∞.

This means that R is a biharmonic Green space, contradicting the hypothesis.
�

Corollary 3 ([2, Theorem 5.4]). If Ω is a biharmonic Green domain in R
n,

2 ≤ n ≤ 4, then e = R
n \ Ω is neither locally polar nor compact.

Proof: (a) Since R
n, 2 ≤ n ≤ 4, is not a biharmonic Green space, by the above

corollary, e is not compact.

(b) Suppose e is locally polar. Since Ω is a biharmonic Green domain, there exists
a superharmonic function s > 0 such that

∫
Ω s2 dx < ∞. Now e = R

n \ Ω being

locally polar by the assumption,
∫
e dx = 0 and s extends as a superharmonic

function u > 0 on R
n. Hence

∫
Rn u2 dx < ∞ which means that R

n, 2 ≤ n ≤ 4, is
a biharmonic Green space, a contradiction. �

4. Biharmonic potentials and quasiharmonic potentials

If there exists a nonconstant positive harmonic function on Ω, then we can
define the harmonic Green function G(x, y) on Ω. However, we know that this
sufficient condition for the existence of the harmonic Green function is not a
necessary condition, as for example in R

n, n ≥ 3. A corresponding result for the
biharmonic Green function is the following:

Proposition 4.1. Suppose that there exists a biharmonic function which is a

positive potential on Ω. Then Ω is a biharmonic Green domain.

Proof: Let b be a biharmonic function which is a positive potential on Ω. Since
b is a potential such that ∆b is harmonic, by Theorem 3.2(3), Ω is a biharmonic
Green domain. �

In view of the above proposition, we propose the following terminology.
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Definition 4.2. In a domain Ω in R, let u > 0 be a potential.

(1) u is said to be a biharmonic potential if and only if ∆2u = 0 on Ω.
(2) u is said to be a quasiharmonic potential if and only if ∆u = 1 on Ω.

Remark. Let Ω be a harmonic Green domain in R. Then there exists a quasi-
harmonic potential on Ω if and only if p(x) =

∫
ΩG(x, y) dy is a potential on Ω.

For, suppose p(x) is a potential. Then ∆p = 1 so that p(x) is a quasiharmonic
potential on Ω. Conversely, suppose q is a quasiharmonic potential on Ω. Since q
is a potential and ∆q = 1, q(x) =

∫
ΩG(x, y)∆q(y) dy =

∫
ΩG(x, y) dy.

Theorem 4.3. Let Ω be a harmonic Green domain in R. Then there exists
a biharmonic (resp. quasiharmonic) potential on Ω if and only if there are a
superharmonic function s > 0 and a harmonic function h > 0 on Ω such that∫
Ω s(x)h(x) dx < ∞ (resp.

∫
Ω s(x) dx < ∞).

Proof: Let G(x, y) be the Green function on Ω. By Lemma 2.2,
∫
Ω s(x)h(x) dx

(resp.
∫
Ω s(x) dx) is finite if and only if Q(x) =

∫
ΩG(x, y)h(y) dy (resp. Q(x) =∫

ΩG(x, y) dy) is a potential on Ω which is equivalent to saying that Q is a bihar-
monic (resp. quasiharmonic) potential on Ω, since ∆Q = h (resp. ∆Q = 1).

�

Corollary 1. Let Ω be a domain in R. If there exists a quasiharmonic potential
on Ω, then for any potential p on Ω with compact harmonic support,

∫
Ω p dx < ∞.

Consequently, there exists a unique bipotential q on Ω such that ∆q = p.

Proof: Since Ω has a quasiharmonic potential, there exists a superharmonic
function s > 0 such that

∫
Ω s dx < ∞. Let p be a potential with compact

harmonic support k. Let A be an outerregular compact set such that k ⊂
◦
A ⊂ A.

Then p = BAp on Ω \A where BAp denotes the Dirichlet solution with boundary
values p on ∂A and 0 at infinity. Hence p ≤ λs on Ω \ A for some λ > 0 so
that

∫
Ω\A p dx < ∞. Since p is locally integrable on Ω,

∫
A p dx < ∞. Hence

∫
Ω p dx < ∞. Consequently, for a nonpolar compact k,

∫
ΩRk
1(x)p(x) dx < ∞.

Hence q(x) =
∫
ΩG(x, y)p(y) dy is a potential on Ω such that ∆q = p (Lemma 2.1).

If q1 is another bipotential on Ω such that ∆q1 = p, then q1 = q+ (a harmonic
function h) on Ω. Note h ≡ 0 by the uniqueness of the Riesz representation. �

Corollary 2. Let Ω be a domain in R
n, n ≥ 2, such that R

n \ Ω is compact. If
u ≥ 0 is superharmonic on Ω and if ∆u is constant, then u is harmonic and hence
is of the form

u(x) =

{
α log |x − a|+ b(x) if n = 2, a /∈ Ω

α+ b(x) if n ≥ 3,

where α ≥ 0 and b(x) is harmonic on Ω such that |b(x)| ≤ β|x|2−n near infinity.

Proof: First we note that there is no quasiharmonic potential on Ω. For, suppose
Ω has a quasiharmonic potential. Then there exists a superharmonic function
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s > 0 on Ω such that
∫
Ω s dx < ∞. Suppose R

n \ Ω = e ⊂ {x : |x| < a}. Let

λ = inf |x|=a s(x). Then s(x) ≥ λ
∣∣x
a

∣∣2−n
on |x| > a by the minimum principle

and hence
∫ ∞
a

∫
∂B λ

(
r
a

)2−n
rn−1 dr dw ≤

∫
Ω s(x) dx < ∞. This implies that∫ ∞

a r dr < ∞, a contradiction.
Now write u = p + h on Ω where p is a potential and h is harmonic on Ω.

Since ∆p = ∆u is constant and since there is no quasiharmonic potential on Ω,
p ≡ 0. Hence u is harmonic ≥ 0 outside a compact set. Then, applying an
inversion in the unit ball to the classical representation of Bocher’s, we get the
stated expression for u. �

Remarks. (1) The above corollary implies that if a positive superharmonic func-
tion u on R

n, n ≥ 3, is biharmonic, then u is constant. Apparently, it generalizes
the result that every positive harmonic function on R

n is constant.

(2) Ω = {x : |x| ≥ 1} in R
n, n ≥ 5, is an example of a domain in which there

exists a biharmonic potential but no quasiharmonic potential. For, if s(x) =
h(x) = |x|2−n, then

∫
Ω sh dx < ∞ and hence by Theorem 4.3, there exists a

biharmonic potential on Ω. But there is no quasiharmonic potential on Ω. For,
suppose Q(x) is a potential > 0 on Ω such that ∆Q = 1; then by the above
Corollary 2, Q(x) should be harmonic, a contradiction.
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