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Monotone sequent calculus and resolution

Marta B́ılková

Abstract. We study relations between propositional Monotone Sequent Calculus (MLK
— also known as Geometric Logic) and Resolution with respect to the complexity of
proofs, namely to the concept of the polynomial simulation of proofs. We consider
Resolution on sets of monochromatic clauses. We prove that there exists a polynomial
simulation of proofs in MLK by intuitionistic proofs. We show a polynomial simulation
between proofs from axioms in MLK and corresponding proofs of contradiction (refu-
tations) in MLK. Then we show a relation between a resolution refutation of a set of
monochromatic clauses (CNF formula) and a proof of the sequent (representing corre-
sponding DNF formula) in MLK. Because monotone logic is a part of intuitionistic logic,
results are relevant for intuitionistic logic too.

Keywords: intuitionistic propositional logic, monotone logic, sequent calculus, resolu-
tion, complexity of proofs
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1. Introduction

In this article we consider some proof systems for propositional logic. One of
them is the Monotone Sequent Calculus — MLK ([4], [1]). This is the classical
sequent calculus LK restricted to monotone formulas — formulas in the basis
∨, ∧. Monotone logic is also known as Geometric Logic. Rules of MLK are
structural rules, logical rules for ∧ and ∨, and the cut rule. The only monotone
tautological formula is the constant of truth T (because there is no rule of ¬ or
→ in MLK, we cannot get any tautological sequent with an empty antecedent);
proofs in MLK are proofs of tautological sequents or proofs of contradiction —
proofs of the empty sequent from assumptions. We measure the complexity of
a proof by the number of uses of rules, i.e. steps of a proof.
We say that there exists a polynomial simulation ([3]) between two proof sys-

tems if one can construct in polynomial time a proof in one system from a proof in
the other. It provides a more subtle relation between proof systems than compar-
ison of lengths of proofs does. In Section 2 we prove (by polynomial simulation of
proofs) that monotone logic is a part of intuitionistic logic. Let us recall that Intu-
itionistic Sequent Calculus–LJ is obtained from the classical one by admitting at
most one formula in succedent of each sequent ([5]). The idea of the proof is sim-
ple: we interpret the succedent as a disjunction. Let us note that our simulations
actually change the number of steps also only polynomially.
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The second proof system we consider here is the Resolution. This is a refutation
system for formulas in CNF which are represented as sets of clauses (resolution
can be seen as a proof system for tautologies in DNF). Clauses are disjunctions of
literals , we consider them as sets of literals. Literals are propositional variables
and their negations. The only rule is the resolution rule:

A ∪ {p} B ∪ {¬ p}

A ∪ B
.

Resolution has no axioms, a proof starts with a set of clauses which is intended
to be refuted. This is done by deriving the empty clause. A resolution proof can
be represented by a tree, then the complexity of a proof is the number of nodes.

2. Monotone and intuitionistic proofs

In the following theorem we show polynomial simulation of proofs in MLK by
intuitionistic proofs.

Theorem 2.1. Let P be a proof of the sequent Γ ⇒ A1, A2, . . . , An in MLK.

Then there exists a proof Q of the sequent Γ ⇒ A1 ∨ A2 ∨ · · · ∨ An in MLK,

which is an intuitionistic proof. Q can be constructed in polynomial time from P .

Moreover, if P is in a tree form than Q is in a tree form too.

Proof: First we prove the principle of associativity for ∨:

A ⇒ A

A ⇒ A ∨ (B ∨ C)

B ⇒ B
B ⇒ B ∨ C

B ⇒ A ∨ (B ∨ C)
∨-l

(A ∨ B)⇒ A ∨ (B ∨ C)

C ⇒ C
C ⇒ B ∨ C

C ⇒ A ∨ (B ∨ C)
∨-l

(A ∨ B) ∨ C ⇒ A ∨ (B ∨ C)

A ⇒ A
A ⇒ A ∨ B

A ⇒ (A ∨ B) ∨ C

B ⇒ B
B ⇒ A ∨ B

B ⇒ (A ∨ B) ∨ C

C ⇒ C

C ⇒ (A ∨ B) ∨ C
∨-l

B ∨ C ⇒ (A ∨ B) ∨ C
∨-l

A ∨ (B ∨ C)⇒ (A ∨ B) ∨ C

Now we can omit parentheses from descriptions of formulas in which only ∨ occurs.
This makes the proof more transparent.
Let P be a proof of the sequent Γ⇒ ∆, where ∆ ≡ {A1, A2, . . . , An}, Ai ∈ ∆,

in MLK. We want to get a proof Q of the sequent Γ ⇒ A1 ∨ A2 ∨ · · · ∨ An. We
replace right sides of all sequents in P which are sets of formulas by disjunction
of these formulas. Because there is no possibility of passage between the left
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side and the right side of sequents in MLK, we leave left sides without change.
The resulting sequence is not yet a proof. We have to modify it as follows.
Axioms: axioms remain without change (as in P ).
Structural rules

Weakening–r: we replace it by ∨-r
Contraction–r: we want to get:

Γ⇒ A ∨ A ∨ D
Γ⇒ A ∨ D

We get it in this way (we insert the following part):

A ⇒ A∨-r
A ⇒ A ∨ D A ∨ D ⇒ A ∨ D

∨-l
A ∨ A ∨ D ⇒ A ∨ D Γ⇒ A ∨ A ∨ D

cut
Γ⇒ A ∨ D

Exchange–r: we want to get:

Γ⇒ G ∨ A ∨ B ∨ D
Γ⇒ G ∨ B ∨ A ∨ D

We insert the following part:

G ⇒ G∨-r
G ⇒ G ∨ B ∨ A

A ⇒ A
A ⇒ G ∨ B ∨ A

∨-l
G ∨ A ⇒ G ∨ B ∨ A

B ⇒ B ∨-r
B ⇒ G ∨ B ∨-r

B ⇒ G ∨ B ∨ A
∨-l

G ∨ A ∨ B ⇒ G ∨ B ∨ A
∨-r

G ∨ A ∨ B ⇒ G ∨ B ∨ A ∨ D

G ∨ A ∨ B ⇒ G ∨ B ∨ A ∨ D
D ⇒ D ∨-r

D ⇒ G ∨ B ∨ A ∨ D
∨-l

G ∨ A ∨ B ∨ D ⇒ G ∨ B ∨ A ∨ D

G ∨ A ∨ B ∨ D ⇒ G ∨ B ∨ A ∨ D Γ⇒ G ∨ A ∨ B ∨ D
cut

Γ⇒ G ∨ B ∨ A ∨ D

Logical rules

∨–r: we want to get:

Γ⇒ A ∨ D
Γ⇒ A ∨ B ∨ D

We insert the following part:

A ⇒ A
∨-r

A ⇒ A ∨ B ∨ D
D ⇒ D

D ⇒ A ∨ B ∨ D
∨-l

A ∨ D ⇒ A ∨ B ∨ D

B ⇒ B
∨-r

B ⇒ A ∨ B ∨-r
B ⇒ A ∨ B ∨ D

∨-l
A ∨ D ∨ B ⇒ A ∨ B ∨ D
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A ∨ D ∨ B ⇒ A ∨ B ∨ D
Γ⇒ A ∨ D ∨-r
Γ⇒ A ∨ D ∨ B

cut
Γ⇒ A ∨ B ∨ D

We want to get:

Γ⇒ A ∨ D
Γ⇒ B ∨ A ∨ D

We leave it without change.

The cut rule: we want to get:

Γ⇒ A ∨ D A,Γ⇒ D

Γ⇒ D

We insert the following part:

A,Γ⇒ D

D ⇒ D weakening-l
D,Γ⇒ D

∨-l
A ∨ D,Γ⇒ D Γ⇒ A ∨ D

cut
Γ⇒ D

∧–r: we want to get:

Γ⇒ A ∨ D Γ⇒ B ∨ D

Γ⇒ (A ∧ B) ∨ D

We insert the following part:

A ⇒ A
A, B ⇒ A

B ⇒ B
A, B ⇒ B

∧-r
A, B ⇒ A ∧ B

∨-r
A, B ⇒ (A ∧ B) ∨ D

D ⇒ D ∨-r
D ⇒ (A ∧ B) ∨ D

∨-l
A ∨ D, B ⇒ (A ∧ B) ∨ D

A ∨ D, B ⇒ (A ∧ B) ∨ D D ⇒ (A ∧ B) ∨ D
∨-l

A ∨ D, B ∨ D ⇒ (A ∧ B) ∨ D

A ∨ D, B ∨ D ⇒ (A ∧ B) ∨ D
∧-l
(A ∨ D) ∧ (B ∨ D)⇒ (A ∧ B) ∨ D

Γ⇒ A ∨ D Γ⇒ B ∨ D
∧-r

Γ⇒ (A ∨ D) ∧ (B ∨ D)
cut

Γ⇒ (A ∧ B) ∨ D

Thus we have got a proof Q with only one formula in the succedent of each
sequent, i.e. intuitionistic proof. We have constructed Q polynomially because
every inserted part has a constant number of uses of rules and the new steps use
only old formulas and, hence, the size of each step (considering lengths of formulas)
can be bounded in terms of the original proof P . Since we have inserted just tree-
like parts it is easy to see that if P is in a tree-form then Q is in a tree-form too.

�
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3. Monotone and resolution proofs

The following definition introduces a special form of clauses.

Definition 3.1. A monochromatic clause is a clause containing only positive or
only negative literals.

We present two examples of tautologies, whose negations can be represented
as sets of monochromatic clauses — PHP and CLIQUE.
An interesting tautology the negation of which can be represented as a set

of monochromatic clauses is PHPn+1
n . This is the Pigeon Hole Principle, which

states that if n+1 pigeons go into n holes, then there is some hole with more than
one pigeon in it. We can represent PHPn+1

n by the following monotone sequent
([1]):

PHPn+1
n ≡

n+1∧

i=1

n∨

j=1

pi,j ⇒
n∨

k=1

n+1∨

i,j=1i6=j

(pi,k ∧ pj,k).

In Resolution we get:

¬PHPn+1
n ≡

n+1∧

i=1

n∨

j=1

pi,j ∧

n∧

k=1

n+1∧

i,j=1 i6=j

(¬pi,k ∨ ¬pj,k).

It is known ([1]) that PHP has quasipolynomial-size proofs in MLK whereas in
resolution it has only exponential proofs ([4]). Thus resolution is exponentially
separated from MLK.
Another example is CLIQUEn

k . For k ≤ n, the (n, k)-Clique Principle states
that a graph on 1, . . . , n containing a k-clique cannot be colored with k − 1 col-
ors. In the article [1] the Clique principle CLIQUEn

k
is expressed by a monotone

sequent slightly stronger to make possible to reduce it to PHPk−1 in MLK. One
can say that this is another tautology; however, from point of view of true values
all tautologies are the same. We want to express it as a set of monochromatic
clauses by using two functions — the clique function and the function of coloring.
We have a graph G on 1, . . . , n. For every i, j ∈ {1, . . . , n} let xi,j be a proposi-
tional variable whose meaning is that there is an edge between i-th and j-th node
in G. A clique is coded by a mapping from {1, . . . , k} into {1, . . . , n}. For every
i ∈ {1, . . . , n} and every l ∈ {1, .., k} let ¬yl,i be a literal whose meaning is that
i-th node of G is l-th node of the clique. We define it negatively to get a set of
monochromatic clauses. For every i ∈ {1, . . . , n} and every l ∈ {1, . . . , k − 1} let
zl,i be a propositional variable whose meaning is that i-th node of G is colored
by l-th color. Now we code the clique function as follows:

n∧

i,j=1 i6=j

k∧

m,l=1

(ym,i ∨ yl,j ∨ xi,j) ∧
k∧

m=1

n∨

i=1

¬ym,i ∧
n∧

i=1

k∧

m,l=1 m6=l

(ym,i ∨ yl,i)
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and the function of the coloring as follows:

n∧

i,j=1 i6=j

k−1∧

l=1

(¬xi,j ∨ ¬zl,i ∨ ¬zl,j) ∧

n∧

i=1

k−1∨

l=1

zl,i.

Thus we have got the set of monochromatic clauses.
In the following proposition we show a relation between proofs and refutations

in Monotone Sequent Calculus.

Proposition 3.2. (i) Let P be a proof of the sequent A1, . . . , An ⇒ B1, . . . , Bm

in MLK. Then there exists a proof P ′ of contradiction (the empty sequent) in MLK
from assumptions

⇒ A1 , . . . , ⇒ An , B1 ⇒ , . . . , Bm ⇒

P ′ can be constructed in polynomial time from P .

(ii) Let Q be a proof of contradiction from assumptions

⇒ A1 , . . . , ⇒ An , B1 ⇒ , . . . , Bm ⇒

in MLK. Then there exists a proof Q′ of the sequent A1, . . . , An ⇒ B1, . . . , Bm

in MLK. Q′ can be constructed in polynomial time from Q.

Proof: (i) Suppose a proof P and assumptions as in the theorem are given. We
use step by step cuts of the form:

A1, . . . , An ⇒ B1, . . . , Bm ⇒ A1

A2, . . . , An ⇒ B1, . . . , Bm

...

...

An ⇒ B1, . . . , Bm ⇒ An

⇒ B1, . . . , Bm

⇒ B1, . . . , Bm B1 ⇒

⇒ B2, . . . , Bm

...

...

⇒ Bm Bm ⇒

⇒

We take the proof P with added assumptions and cuts as the proof P ′.
|P ′| = |P |+m+ n .
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(ii) Suppose a proof Q of the empty sequent is given. We get a proof Q′ by the
following modification of the proof Q: we add A1, . . . , An into the antecedent of
each sequent in Q and B1, . . . , Bm into the succedent of each sequent in Q. By
this modification we get sequents of the following form from previous assumptions:
for i ∈ {1, . . . , m}, j ∈ {1, . . . , n}

A1, . . . , An, Bi ⇒ B1, . . . , Bm

A1, . . . , An ⇒ Aj , B1, . . . , Bm.

These sequents are provable from axioms by using the rule of weakening (in (m+
n)·(m+n−1) steps). The endsequent of the proofQ′ is A1, . . . , An ⇒ B1, . . . , Bm.
|Q′| = |Q|+ (m+ n) · (m+ n − 1) . �

In the next corollary we show an application of this proposition to the Resolu-
tion. (Limit ci (dk) denotes length of i-th positive (k-th negative) clause. pi,j , qk,l

denote propositional variables that need not be distinct).

Corollary. Let us have a resolution proof P of the contradiction from the formula

¬ϕ : (
m∧

i=1

ci∨
j=1

pi,j)∧(
n∧

k=1

dk∨
l=1

¬qk,l), (i.e., from the set of monochromatic clauses).

We represent the formula ϕ by the following monotone sequent:

(1)

c1∨

j=1

p1,j , . . . ,

cm∨

j=1

pm,j ⇒

d1∧

l=1

q1,l, . . . ,

dn∧

l=1

qn,l .

Then the sequent (1) has in the Monotone Sequent Calculus a proof Q. Q can be

constructed in polynomial time from the resolution proof P . Consequently, the

same is true for Intuitionistic Sequent Calculus.

Proof: We translate the proof P as follows:

(i) instead of each clause
ci∨

j=1
pi,j , we take the sequent ⇒ pi,1, . . . , pi,ci

;

(ii) instead of each clause
dk∨
l=1

¬qk,l, we take the sequent qk,1, . . . , qk,dk
⇒ ;

(iii) instead of each use of the resolution rule on pi,j (resp. qk,l), we use the cut
on pi,j (resp. qk,l).
Thus we get a proof of the empty sequent in Monotone Sequent Calculus. Now

we use the part (ii) of the proposition to get the proof Q. We add
c1∨

j=1
p1,j , . . . ,

cm∨
j=1

pm,j into the antecedent of each sequent and
d1∧
l=1

q1,l, . . . ,
dn∧
l=1

qn,l into

the succedent of each sequent. We continue as in the proof (ii). �
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We have shown that there is some connection between Monotone Sequent Cal-
culus and Resolution (and thus between Intuitionistic Sequent Calculus and Res-
olution, too) in the sense of the polynomial simulation of proofs. It is a new result
of A. Atserias [2] that onto and functional versions of PHP have polynomial proofs
in MLK and hence in Intuitionistic Sequent Calculus. It is an open question if the
Clique Principle has at least quasipolynomial proofs in these systems. Another
question is if there exist sequents with short proofs in LJ but not in MLK.
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