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Surjective factorization of holomorphic mappings

Manuel González, Joaqúın M. Gutiérrez

Abstract. We characterize the holomorphic mappings f between complex Banach spaces
that may be written in the form f = T ◦ g, where g is another holomorphic mapping
and T belongs to a closed surjective operator ideal.
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1. Introduction and preliminary results

In recent years many authors [1], [2], [7], [9], [10], [15], [19], [20] have studied
conditions on a holomorphic mapping f between complex Banach spaces so that
it may be written in the form either f = g ◦ T or f = T ◦ g, where g is another
holomorphic mapping and T a (linear bounded) operator belonging to certain
classes of operators.
A rather thorough study of the factorization of the form f = g ◦ T , where T is

in a closed injective operator ideal, was carried out by the authors in [10]. In the
present paper we analyze the case f = T ◦ g.
If f = T ◦ g, with T in the ideal of compact operators, and g is holomorphic on

a Banach space E then, since g is locally bounded, f will be “locally compact” in
the sense that every x ∈ E has a neighborhood Vx such that f(Vx) is relatively
compact. It is proved in [2] that the converse also holds: every locally compact
holomorphic mapping f can be written in the form f = T ◦ g, with T a compact
operator. Similar results were given in [20] for the ideal of weakly compact oper-
ators, in [15] for the Rosenthal operators, and in [19] for the Asplund operators.
We extend this type of factorization to every closed surjective operator ideal.

Throughout, E, F and G will denote complex Banach spaces, and N will be
the set of natural numbers. We use BE for the closed unit ball of E, and B(x, r)
for the open ball of radius r centered at x. If A ⊂ E, then Γ̄(A) denotes the
absolutely convex, closed hull of A, and if f is a mapping on E, then

‖f‖A := sup{|f(x)| : x ∈ A}.

We denote by L(E, F ) the space of all operators from E into F , endowed with
the usual operator norm. A mapping P : E → F is a k-homogeneous (continuous)
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polynomial if there is a k-linear continuous mapping A : E × (k). . . × E → F such
that P (x) = A(x, . . . , x) for all x ∈ E. The space of all such polynomials is

denoted by P(kE, F ). A mapping f : E → F is holomorphic if, for each x ∈ E,

there are r > 0 and a sequence (Pk) with Pk ∈ P(kE, F ) such that

f(y) =

∞
∑

k=0

Pk(y − x)

uniformly for ‖y − x‖ < r. We use the notation

Pk =
1

k!
dkf(x),

while H(E, F ) stands for the space of all holomorphic mappings from E into F .
We say that a subset A ⊂ E is circled if for every x ∈ A and complex λ with

|λ| = 1, we have λx ∈ A.
For a general introduction to polynomials and holomorphic mappings, the

reader is referred to [5], [16], [17]. The definition and general properties of oper-
ator ideals may be seen in [18].
An operator ideal U is said to be injective ([18, 4.6.9]) if, given an operator

T ∈ L(E, F ) and an injective isomorphism i : F → G, we have that T ∈ U
whenever iT ∈ U . The ideal U is surjective ([18, 4.7.9]) if, given T ∈ L(E, F )
and a surjective operator q : G → E, we have that T ∈ U whenever Tq ∈ U . We
say that U is closed ([18, 4.2.4]) if for all E and F , the space U(E, F ) := {T ∈
L(E, F ) : T ∈ U} is closed in L(E, F ).
Given an operator T ∈ L(E, F ), a procedure is described in [4] to construct

a Banach space Y and operators k ∈ L(E, Y ) and j ∈ L(Y, F ) so that T = jk.
We shall refer to this construction as the DFJP factorization. It is shown in [12,
Propositions 1.6 and 1.7] (see also [8, Proposition 2.2] for simple statement and
proof) that given an operator T ∈ L(E, F ) and a closed operator ideal U ,
(a) if U is injective and T ∈ U , then k ∈ U ;
(b) if U is surjective and T ∈ U , then j ∈ U .

We say that U is factorizable if, for every T ∈ U(E, F ), there are a Banach space
Y and operators k ∈ L(E, Y ) and j ∈ L(Y, F ) so that T = jk and the identity
IY of the space Y belongs to U .
We now give a list of closed operator ideals which are injective, surjective or

factorizable. We recall the definition of the most commonly used, and give a
reference for the others.
An operator T ∈ L(E, F ) is (weakly) compact if T (BE) is a relatively (weakly)

compact subset of F ; T is (weakly) completely continuous if it takes weak Cauchy
sequences in E into (weakly) convergent sequences in F ; T is Rosenthal if every
sequence in T (BE) has a weak Cauchy subsequence; T is unconditionally con-
verging if it takes weakly unconditionally Cauchy series in E into unconditionally
convergent series in F .
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Closed operator ideals Injective Surjective Factorizable

compact operators Yes Yes No
weakly compact Yes Yes Yes

Rosenthal Yes Yes Yes

completely continuous Yes No No
weakly completely continuous Yes No No
unconditionally converging Yes No No
Banach-Saks [13,§3] Yes Yes Yes

weakly Banach-Saks [13, §3] Yes No No
strictly singular [18, 1.9] Yes No No
separable range Yes Yes Yes

strictly cosingular [18, 1.10] No Yes No
limited [3] No Yes No
Grothendieck [6] No Yes No
decomposing (Asplund) [18, 24.4] Yes Yes Yes

Radon-Nikodým [18, 24.2] Yes No No
absolutely continuous [14, §3] Yes No No

The results on this list may be found in [18] and the other references given, for
the injective and surjective case. The factorizable case may be seen in [12].

If U is an operator ideal, the dual ideal Ud is the ideal of all operators T such
that the adjoint T ∗ belongs to U . Easily, we have:

U is closed injective =⇒ Ud is closed surjective

U is closed surjective =⇒ Ud is closed injective

The list above might therefore be completed with some more dual ideals.
Moreover, to each T ∈ L(E, F ) we can associate an operator T q : E∗∗/E →

F ∗∗/F given by T q(x∗∗+E) = T ∗∗(x∗∗)+F . Let Uq := {T ∈ L(E, F ) : T q ∈ U}.
Then, if U is injective (resp. surjective, closed), so is Uq ([8, Theorem 1.6]).

Remark 1. There is another notion of factorizable operator ideal which may be
used. We say that U is DFJP factorizable ([8, Definition 2.3]) if, for every T ∈ U ,
the identity of the intermediate space in the DFJP factorization of T belongs to U .
Clearly, every DFJP factorizable operator ideal is factorizable. The following
example shows that the converse is not true. LetA be the ideal of all the operators
that factor through a subspace of c0. Clearly, A is factorizable. Consider the
operator T : ℓ2 → ℓ2 given by T ((xn)) := (xn/n). We have T ∈ A. The
intermediate space in the DFJP factorization is an infinite dimensional reflexive
space. Clearly, the identity map on it does not belong to A.
All the factorizable ideals on the table above are DFJP factorizable ([8]). Note

also that, if U is DFJP factorizable, then so are Ud and Uq ([8]).
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2. Surjective factorization

In this section, we study the factorizations in the form T ◦g, with T ∈ U , where
U is a closed surjective operator ideal.

Lemma 2 ([13, Proposition 2.9]). Given a closed surjective operator ideal U , let
S ∈ L(E, F ) and suppose that for every ǫ > 0 there are a Banach space Dǫ and

an operator Tǫ ∈ U(Dǫ, F ) such that

S(BE) ⊆ Tǫ(BDǫ
) + ǫBF .

Then, S ∈ U .

We denote by CU (E) the collection of all A ⊂ E so that A ⊆ T (BZ) for some
Banach space Z and some operator T ∈ U(Z, E) (see [21]).
The following probably well-known properties of CU will be needed:

Proposition 3. Let U be a closed surjective operator ideal. Then:

(a) if A ∈ CU (E) and B ⊂ A, then B ∈ CU (E);
(b) if A1, . . . , An ∈ CU (E), then ∪n

i=1Ai ∈ CU (E) and
∑n

i=1 Ai ∈ CU (E);
(c) if A ⊂ E is bounded and, for every ǫ > 0, there is a set Aǫ ∈ CU (E) such
that A ⊆ Aǫ + ǫBE , then A ∈ CU (E).

(d) if A ∈ CU (E), then Γ̄(A) ∈ CU (E);

Proof: (a) is trivial and (b) is easy. Both are true without any assumption on
the operator ideal U .

(c) For A ⊂ E bounded, consider the operator

T : ℓ1(A) −→ E given by T ((λx)x∈A) =
∑

x∈A

λxx.

Given ǫ > 0, there is Aǫ ∈ CU (E) such that A ⊆ Aǫ + ǫBE . Therefore,

A ⊆ T
(

Bℓ1(A)

)

⊆ Γ̄(A) ⊆ Γ(A) + ǫBE ⊆ Γ(Aǫ) + 2ǫBE .

Clearly, Γ(Aǫ) ∈ CU (E). Hence, T ∈ U (by Lemma 2), and A ∈ CU (E).

(d) If A ∈ CU (E), there is a space Z and T ∈ U(Z, E) such that A ⊆ T (BZ).
Therefore, for all ǫ > 0,

Γ̄(A) ⊆ T (BZ) ⊆ T (BZ) + ǫBE .

Now, it is enough to apply part (c). �

We shall denote by HU (E, F ) the space of all f ∈ H(E, F ) such that each
x ∈ E has a neighborhood Vx with f(Vx) ∈ CU (F ). Easily, a polynomial P ∈

P(kE, F ) belongs to HU (E, F ) if and only if P (BE) ∈ CU (F ). The set of all such

polynomials will be denoted by PU (
kE, F ).

The following result is an easy consequence of the Hahn-Banach theorem and
the Cauchy inequality
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Lemma 4 ([20, Lemma 3.1]). Given f ∈ H(E, F ), a circled subset U ⊂ E, and
x ∈ E, we have

1

k!
dkf(x)(U) ⊆ Γ̄(f(x+ U))

for every k ∈ N.

Proposition 5. Let U be a closed surjective operator ideal, and f ∈ H(E, F ).
The following assertions are equivalent:

(a) f ∈ HU (E, F );
(b) there is a zero neighborhood V ⊂ E such that f(V ) ∈ CU (F );

(c) for every k ∈ N and every x ∈ E, we have that dkf(x) ∈ PU (
kE, F );

(d) for every k ∈ N, we have that dkf(0) ∈ PU (
kE, F ).

Proof: (a) ⇒ (c) and (b) ⇒ (d) follow from Lemma 4.

(d) ⇒ (a). Let x ∈ E. There is ǫ > 0 such that

f(y) =

∞
∑

k=0

1

k!
dkf(0)(y)

uniformly for y ∈ B(x, ǫ) ([17, §7, Proposition 1]). By Proposition 3 (b), for each
m ∈ N, we have

{ m
∑

k=0

1

k!
dkf(0)(y) : y ∈ B(x, ǫ)

}

∈ CU (F ).

Using the uniform convergence on B(x, ǫ), and Proposition 3 (c), we conclude that
f(B(x, ǫ)) ∈ CU (F ).

(a) ⇒ (b) and (c) ⇒ (d) are trivial. �

If A is a closed convex balanced, bounded subset of F , FA will denote the
Banach space obtained by taking the linear span of A with the norm given by its
Minkowski functional.

Theorem 6. Let U be a closed surjective operator ideal, and f ∈ H(E, F ). The
following assertions are equivalent:

(a) f ∈ HU (E, F );
(b) there is a closed convex, balanced subset K ∈ CU (F ) such that f is a
holomorphic mapping from E into FK ;

(c) there is a Banach space G, a mapping g ∈ H(E, G) and an operator
T ∈ U(G, F ) such that f = T ◦ g.

Proof: (a) ⇒ (b) follows the ideas in the proof of [2, Proposition 3.5] and [20,
Theorem 3.7].
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For each m ∈ N and x ∈ E, define

Am(x) :=

{

λy : y ∈ B
(

x,
1

m

)

and |λ| ≤ 1

}

and

Um :=
⋃

{

B
(

x,
1

m

)

: ‖x‖ ≤ m and ‖f‖Am(x) ≤ m

}

.

For each x ∈ E there is a neighborhood of the compact set {λx : |λ| ≤ 1} on
which f is bounded. Hence, there is m ∈ N so that ‖f‖Am(x) ≤ m, which shows

that E = ∪∞
m=1Um.

Let Wm be the balanced hull of Um. Since the sets Am(x) are balanced, we
have |f(x)| ≤ m for all x ∈ Wm. Let Vm := 2

−1Wm. We have E = ∪∞
m=1Vm and

hence

(1) f(E) =

∞
⋃

m=1

f(Vm).

For each k, m ∈ N, define

Kmk := Γ̄
( 1

k!
dkf(0)(Wm)

)

∈ CU (F ).

By Proposition 3, we obtain that the set

Km :=

{ ∞
∑

k=0

2−kzk : zk ∈ Kmk

}

belongs to CU (F ). Easily, f(Vm) ⊆ Km. Hence f(Vm) ∈ CU (F ) for all m ∈ N.
By Proposition 3, we can select numbers βm > 0 with

∑

βm < ∞ so that

K := Γ̄
(

∞
⋃

m=1

βmf(Vm)
)

∈ CU (F ).

It follows from (1) that f maps E into FK .
It remains to show that f ∈ H(E, FK). Let x ∈ E. Easily, there are ǫ > 0 and

r ∈ N such that f(B(x, 2ǫ)) ⊆ rK. By Lemma 4,

(2)
1

k!
dkf(x) (B(0, 2ǫ)) ⊆ rK

for all k ∈ N. Now, for each n ∈ N and a ∈ B(0, ǫ), we have

f(x+ a)−
n

∑

k=0

1

k!
dkf(x)(a) = 2−n

∞
∑

k=n+1

2n−k 1

k!
dkf(x)(2a).
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Since K is convex and closed, we get from (2) that
∞
∑

k=n+1

2n−k 1

k!
dkf(x)(2a) ∈ rK.

Hence,

f(x+ a)−
n

∑

k=0

1

k!
dkf(x)(a) ∈ 2−nrK,

and so, the FK -norm of the left hand side is less than or equal to 2
−nr, for all

a ∈ B(0, ǫ). Thus, f is holomorphic.

(b) ⇒ (c). It is enough to note that, by Lemma 2, the natural inclusion
FK → F belongs to U .

(c) ⇒ (a). Each x ∈ E has a neighborhood Vx such that g(Vx) is bounded
in G. Hence, f(Vx) = T (g(Vx)) ∈ CU (F ). �

Theorem 7. Let U be a closed surjective, factorizable operator ideal and take
a mapping f ∈ H(E, F ). Then f ∈ HU (E, F ) if and only if there are a Banach
spaceG, a mapping g ∈ H(E, G) and T ∈ U(G, F ) such that IG ∈ U and f = T ◦g.

Remark 8. Theorem 7 implies that, if U is the ideal of weakly compact (resp.
Rosenthal, Banach-Saks or Asplund) operators and f ∈ HU (E, F ), then f factors
through a Banach space G which is reflexive (resp. contains a copy of ℓ1, has the
Banach-Saks property or is Asplund).
Moreover, if U = {T : T q has separable range}, then G is isomorphic to G1 ×

G2, with G∗∗
1 separable and G2 reflexive ([22]). If U = {T : T ∗ is Rosenthal},

then G contains no copy of ℓ1 and no quotient isomorphic to c0 ([11]).
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