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Remarks on continuous images

of Radon-Nikodým compacta

M. Fabian†, M. Heisler, E. Matoušková††

Abstract. A family of compact spaces containing continuous images of Radon-Nikodým
compacta is introduced and studied. A family of Banach spaces containing subspaces of
Asplund generated (i.e., GSG) spaces is introduced and studied. Further, for a continu-
ous image of a Radon-Nikodým compact K we prove: If K is totally disconnected, then
it is Radon-Nikodým compact. If K is adequate, then it is even Eberlein compact.

Keywords: Asplund generated space, continuous image of Radon-Nikodým compact,
totally disconnected compact, adequate compact, Eberlein compact

Classification: 46B22

Introduction

A Banach space X is called Asplund if every subspace of it has separable dual.
X is called Asplund generated (or GSG) if it contains a linear continuous image of
an Asplund space as a dense set. Thus, every weakly compactly generated space
is Asplund generated.
All topological spaces in this note are assumed to be Hausdorff. A compact

space is called Radon-Nikodým if it can be found, up to a homeomorphism, in
the dual to an Asplund space, endowed with the weak∗ topology. Note that every
Eberlein compact is Radon-Nikodým. We recall

Theorem 0 ([St1], [F, Theorem 1.5.4]). For a compact space K the following
assertions are equivalent:

(i) K is a Radon-Nikodým compact;
(ii) C(K) is an Asplund generated space;
(iii) the dual unit ball

(
BC(K)∗ , w

∗
)
endowed with the weak∗ topology is

a Radon-Nikodým compact.

Corollary 1 ([F, Theorem 1.5.5]). For a compact spaceK the following assertions
are equivalent:

(i) K is a continuous image of a Radon-Nikodým compact;
(ii) C(K) is a subspace of an Asplund generated space;
(iii)

(
BC(K)∗ , w

∗
)
is a continuous image of a Radon-Nikodým compact.

† Supported by grants AV 101-95-02, AV 101-97-02, and GAČR 201-94-0069.
†† Supported by grant GAČR 201-94-0069.
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Corollary 2 ([F, Theorem 1.5.6]). For a Banach space Z the following assertions
are equivalent:

(i) Z is a subspace of an Asplund generated space;
(ii) the dual unit ball

(
BZ∗ , w∗

)
is a continuous image of a Radon-Nikodým

compact;

(iii) C((BZ∗ , w∗)) is a subspace of an Asplund generated space.

A main open question raised by Namioka [N1], [N2], but going back to Grothen-
dieck’s memoir [Gr], sounds as:

(∗) Is a continuous image of a Radon-Nikodým compact a Radon-Nikodým
compact?

A related question for Banach spaces has a negative answer: There exists
an Asplund generated space and its subspace which is not Asplund generated.
Indeed, Stegall [St1] observed that Rosenthal’s counterexample [Ro] of a weakly
compactly generated space (L1 on a “big” measure space) and its non weakly
compactly generated subspace fits the job. For another example (now of the
form C(K)) see [A1]. However, according to [BRW], the dual unit ball of such
subspaces is Eberlein, hence Radon-Nikodým compact.
Note also that if (∗) has a positive answer then (∗∗) below has a positive answer

and vice versa.

(∗∗) If Z is a subspace of X and (BX∗ , w∗) is a Radon-Nikodým compact, is
such the compact (BZ∗ , w∗)?

To see this, let ϕ be a continuous mapping of a Radon-Nikodým compact L onto
a compact K. Then the assignment f 7→ f ◦ ϕ maps the Banach space C(K)
onto a closed subspace of C(L) isometrically. We observe that (BC(L)∗ , w

∗) is a

Radon-Nikodým compact by Theorem 0. Now assume that (∗∗) has a positive
answer. Then (BC(K)∗ , w

∗) is a Radon-Nikodým compact and hence so is K.

Note that if (BZ∗ , w∗) is a Radon-Nikodým compact, then Z may not be
Asplund generated, see [F, Theorem 1.6.3].
The aim of this note is twofold. First we define and study a class of com-

pacta which is, at least formally, larger than that of continuous images of Radon-
Nikodým compacta. We call them countably lower fragmentable compacta. Par-
alelly we do the same for a Banach space counterpart of such compacta. Namely,
we consider Banach spaces whose dual unit ball with the weak∗ topology is count-
ably lower fragmentable. This class extends, at least formally, the class of sub-
spaces of Asplund generated spaces.
The second part studies our concepts in the framework of totally disconnected

compacta. We prove, in a different way, a result of Argyros that a totally discon-
nected compact, which is a continuous image of a Radon-Nikodým compact, is

Radon-Nikodým compact ([A2]). We also get that, an adequate compact, which
is a continuous image of a Radon-Nikodým compact is even Eberlein compact.
We hope that this note will bring a bit of light to the open questions mentioned

above.
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Countably lower fragmentable compacta

Let X be a Banach space, H a set in X∗, A a bounded set in X and ∆ > 0.
We say that

(i) H is (A,∆)-fragmentable if for every nonempty set M ⊂ H there is a
weak∗ open set G ⊂ X∗ such that M ∩G 6= ∅ and

diamA(M ∩G) := sup{〈x∗1 − x∗2, x〉 : x
∗
1, x

∗
2 ∈M ∩G, x ∈ A} ≤ ∆;

(ii) H is (A,∆)-dentable if for every nonempty set M ⊂ H there are x ∈ X
and α > 0 such that diamAS(M,x, α) ≤ ∆, where

S(M,x, α) = {x∗ ∈M : 〈x∗, x〉 > sup〈M,x〉 − α};

(iii) H is (A,∆)-separable if there exists an at most countable set C ⊂ H such
that for every x∗ ∈ H there is y∗ ∈ C such that sup{|〈x∗ − y∗, x〉| : x ∈
A} ≤ ∆;

(iv) the dual X∗ is countably weak∗ dentable if there exist bounded sets An,p,
n, p ∈ N, in X such that

⋃∞
n=1An,p = X for every p ∈ N and the dual

unit ball BX∗ is (An,p,
1
p)-dentable for every n, p ∈ N. (Note that in [H1]

such an X is called a countably dentable space.)

Let K be a compact space, A a bounded set in C(K), and ∆ > 0. We say that

(i) K is (A,∆)-fragmentable if for every nonempty set M ⊂ K there is an
open set G ⊂ K such that M ∩G 6= ∅ and

diamA(M ∩G) := sup{f(k1)− f(k2) : k1, k2 ∈M ∩G, f ∈ A} ≤ ∆;

(ii) K is (A,∆)-separable if there exists an at most countable set C ⊂ K such
that for every k ∈ K there is k′ ∈ C such that sup{|f(k) − f(k′)| : f ∈
A} ≤ ∆;

(iii) K is countably lower fragmentable if there exist bounded sets An,p, n, p ∈

N, in C(K) such that
⋃∞

n=1An,p = C(K) and K is (An,p,
1
p )-fragmentable

for every p ∈ N.

Propositions below relate the above concepts mutually and to the known no-
tions of Radon-Nikodým compacta and Asplund generated spaces.

Proposition 1. Let K be a compact space, A a bounded subset of C(K) and
∆ > 0. Let κ : K → C(K)∗ be the canonical mapping sending k ∈ K to the point
mass δk. Then:

(i) K is (A,∆)-fragmentable if and only if (κ(K), w∗) is (A,∆)-fragmentable
if and only if κ(K) is (A,∆)-dentable;

(ii) K is (A,∆)-separable if and only if κ(K) is (A,∆)-separable;
(iii) if C(K)∗ is countably weak∗ dentable, then K is countably lower frag-

mentable.



62 M.Fabian, M.Heisler, E.Matoušková

Proof: Everything is trivial but the fact that (A,∆)-fragmentability ofK implies
(A,∆)-dentability of κ(K). So assume thatK is (A,∆)-fragmentable and consider
∅ 6= κ(M) ⊂ κ(K). We find an open set G ⊂ K such that M ∩ G 6= ∅ and
diamA(M ∩G) ≤ ∆. Pick k ∈M ∩G and find f ∈ C(K) such that f(k) = 1 and
f(k′) = 0 for all k′ ∈ K\G. Then surely S := S(κ(M), f, 1/2) ⊂ κ(M) ∩ κ(G) =
κ(M ∩G) and so diamAS ≤ diamA(M ∩G) ≤ ∆. �

Proposition 2. (i) If X is an Asplund space, then X∗ is countably weak∗

dentable.

(ii) If Z is a subspace of a Banach space X and X∗ is countably weak∗

dentable, then so is Z∗.

(iii) If T : X → Y is a linear continuous mapping, with TX = Y , and X∗ is

countably weak∗ dentable, then so is Y ∗.

(iv) If Z is a subspace of an Asplund generated space, then Z∗ is countably

weak∗ dentable.

(v) If Z∗ is countably weak∗ dentable, then Z is a weak Asplund space, that
is, that every continuous convex function on Z is Gâteaux differentiable
at the points of a dense Gδ set.

Proof: (i) the sets An,p = nBX , n, p ∈ N, fit the job. (ii), (iii), and (v) are
proved in [H1]. (iv) follows by putting together (i), (ii) and (iii). �

Proposition 3. Continuous images of Radon-Nikodým compacta are countably

lower fragmentable.

Proof: Put together Corollary 1, Proposition 2(iv), and Proposition 1(iii). �

We do not know if the converse to (iv) in Proposition 2 holds. Likewise, it
is unclear if Proposition 3 can be reversed. Using Corollary 1, Theorem 1 and
Theorem 2, we can check that these two questions are equivalent.

The effort below is devoted to proving a converse to the implication (iii) in
Proposition 1. Actually, we prove a complete analogue of Corollary 1:

Theorem 1. For a compact space K the following assertions are equivalent:

(i) K is a countably lower fragmentable compact;
(ii) the dual C(K)∗ is countably weak∗ dentable;
(iii) the dual unit ball (BC(K)∗ , w

∗) is a countably lower fragmentable com-
pact.

The proof is a compilation of several lemmas listed (and proved) below.

Lemma 1. Let K be a compact space, A ⊂ C(K) a bounded set and ∆ > 0.
Then K is (A,∆)-fragmentable if and only if for every at most countable set
A0 ⊂ A the space K is (A0,∆)-separable.

Proof: Throughout the whole proof we use techniques known from the theory
of Asplund spaces, see [Ph]. Assume that K is (A,∆)-fragmentable and take
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a countable set A0 ⊂ A. Let Z be the closed linear span of A0; so Z is a separable
Banach space. For k ∈ K define φ(k)(z) = z(k), z ∈ Z. Then φ(k) ∈ Z∗ and the
mapping φ : K → (Z∗, w∗) is continuous. Hence (φ(K), w∗) is a compact space.
We claim that φ(K) is (A0,∆)-fragmentable. Take ∅ 6= M ⊂ φ(K). Using

Zorn’s lemma, we find a closed set N ⊂ K, minimal with respect to the inclusion,
such that φ(N) is equal to the weak∗ closure M

∗
of M . Since K is (A0,∆)-

fragmentable, there is an open set U ⊂ K such that N ∩U 6= ∅ and diamA0(N ∩
U) ≤ ∆. The set N\U is closed so φ(K)\φ(N\U) is an open set in (φ(K), w∗).
We find a weak∗ open set G ⊂ Z∗ such that φ(K)\φ(N\U) = G ∩ φ(K). Also

M
∗
∩ G = M

∗
\φ(N\U) and this set is nonempty because of the minimality of

N and since N ∩ U 6= ∅. Further we observe that M ∩G ⊂ φ(N ∩ U). Therefore

diamA0(M ∩G) = sup{〈z∗1 − z∗2 , z〉 : z
∗
i ∈M ∩G, z ∈ A0}

≤ sup{〈z∗1 − z∗2 , z〉 : z
∗
i ∈ φ(N ∩ U), z ∈ A0}

= sup{〈φ(k1)− φ(k2), z〉 : ki ∈ N ∩ U, z ∈ A0}

= sup{z(k1)− z(k2) : ki ∈ N ∩ U, z ∈ A0}

= diamA0(N ∩ U) ≤ ∆.

The claim is thus proved.
Now assume thatK is not (A0,∆)-separable. Then there exists an uncountable

set C ⊂ K such that

sup{|f(k)− f(k′)| : f ∈ A0} > ∆ whenever k, k′ ∈ C and k 6= k′.

Then

sup{|〈φ(k)− φ(k′), f〉| : f ∈ A0} > ∆ whenever k, k′ ∈ C, and k 6= k′.

Since Z is a separable Banach space, there is a sequence {zn : n ∈ N} contained
in and dense in the unit ball of Z. Define a mapping ψ : (Z∗, w∗) → R

N by
the formula ψ(z∗)(n) = 〈z∗, zn〉, z∗ ∈ Z∗, n ∈ N; it is injective and continuous.
It then follows that ψ(φ(K)) is a metrizable compact. Hence (φ(K), w∗) is a
metrizable compact and L := (φ(C), w∗) is a metrizable separable space. Thus,
the topology on L has a countable basis, say B. Put B0 = {U ∈ B : L ∩ U is at
most countable}. Then the set L∩

( ⋃
B0

)
is at most countable and hence the set

L̃ = L\
(⋃

B0
)
is nonempty. We shall check that L̃ has no isolated point. So take

any z∗ ∈ L̃. If z∗ ∈ U ∈ B, then U /∈ B0 and hence the set L ∩ U is uncountable
and so is the set L̃ ∩ U . Therefore z∗ is not an isolated point of L̃.
Now we apply the claim to the (nonempty) set M := L̃ ⊂ φ(K). We get a

weak∗ open set G ⊂ Z∗ such that L̃∩G 6= ∅ and diamA0(L̃∩G) ≤ ∆. According

to the property of the set C, we then conclude that L̃ ∩ G is a singleton. This
means that L̃ ∩ G consists of an isolated point of L̃. However L̃ does not have
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isolated points. This is a contradiction and therefore K is (A0,∆)-separable.
Second, assume K is not (A,∆)-fragmentable. For s ∈ {0, 1} ∪ {0, 1}2 ∪ . . . we
shall construct nonempty open sets Gs ⊂ K, functions fs ∈ A, and numbers
∆s > ∆ as follows: Put G0 = G1 = K. Assume that for some s = (s1, . . . , sn) we
already have nonempty open sets Gs ⊂ K with diamAGs > ∆. We find fs ∈ A
and k0, k1 ∈ Gs such that fs(k1) − fs(k0) > ∆. Then we find ∆s satisfying
fs(k1)− fs(k0) > ∆s > ∆. Take a > 0 so that fs(k1) > a > fs(k0) + ∆s. Then
put

G̃s,0 = {k ∈ Gs : fs(k) < a−∆s}, G̃s,1 = {k ∈ Gs : fs(k) > a}.

Thus kj ∈ G̃s,j , j = 0, 1. Find open sets Gs,j such that kj ∈ Gs,j ⊂ Gs,j ⊂ G̃s,j ,

j = 0, 1. This finishes the induction step. Now putA0 = {fs : s ∈ {0, 1}∪{0, 1}2∪
. . . }; this is a countable subset of A. For every σ = (s1, s2, . . . ) ∈ {0, 1}N choose
kσ ∈

⋂
n∈N

Gs1,s2,...,sn; such a kσ exists. Observe that

sup{|f(kσ)−f(kσ′)| : f ∈ A0} > ∆ whenever σ, σ′ ∈ {0, 1}N, and σ 6= σ′.

Therefore the space K is not (A0,∆)-separable. �

Lemma 2. Let K be a compact space, A ⊂ C(K) a bounded countable set
and ∆ > 0. If K is (A,∆)-separable, then the unit ball BC(K)∗ in C(K)

∗ is

(A, 2∆)-separable.

Proof: We shall immitate an argument due to W.B. Moors, see the proof of [F,
Lemma 1.5.3]. Let {kn : n ∈ N} be a sequence which is (A,∆)-dense in K, i.e.
for every k ∈ K there exists n ∈ N such that sup{|f(k)− f(kn)| : f ∈ A} ≤ ∆.
Denote

H = {ν ∈ C(K)∗ : sup |〈ν,A〉| ≤ ∆},

and
Kn =

{
k ∈ K : δk ∈ {δk1 , . . . , δkn

}+H
}
, n ∈ N.

(Here δk ∈ C(K)∗ means the point mass measure at k ∈ K.) Clearly H is
convex symmetric and weak∗ closed, Kn is closed, and K =

⋃∞
n=1Kn. Take any

µ ∈ BC(K)∗ . (We use here and below F. Riesz’ representation theorem.) We find

n ∈ N so that |µ|(K\Kn) < ∆/(2c) where c = sup{‖f‖ : f ∈ A}. (|µ| means the
total variation of µ.) Define

ν(M) = µ(M ∩Kn), M ⊂ K Borel.

Then ν ∈ BC(K)∗ and ‖µ− ν‖ ≤ |µ|(K\Kn) < ∆/(2c); so µ ∈ ν + 12H . Now we

observe, using the separation theorem, that ν belongs to the weak∗ closed convex
hull of {±δk : k ∈ Kn}. Thus, denoting S = co{±δk1,±δk2 , . . . }, we have

µ ∈ ν + 12H ⊂ co ∗{±δk : k ∈ Kn}+
1
2H

⊂ co{±δk1 , . . . ,±δkn
}+H + 12H ⊂ S + 32H.

Therefore BC(K)∗ ⊂ S + 32H . Now we observe that S is a norm separable set,

hence S is also (A,∆/2)-separable. Thus BC(K)∗ is (A, 2∆)-separable. �
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Lemma 3. Let X be a Banach space, A a bounded set in X , ∆ > 0 and assume
that BX∗ is (A,∆)-fragmentable. Then BX∗ is (A, 2∆)-dentable.

Proof: We just copy the proof of (iv) ⇒ (i) in [NP, Lemma 3]. �

Lemma 4. Let L be a compact space, X a linear subset of C(L) which separates
the points of L, and ∆ > 0. Suppose that there exist bounded sets An ⊂ X ,
n ∈ N, such that

⋃∞
n=1An = X and L is (An,∆)-fragmentable for each n ∈ N.

Then there exist bounded sets F1 ⊂ F2 ⊂ · · · ⊂ C(L) such that
⋃∞

n=1 Fn = C(L),
and L is (Fn, 2∆)-fragmentable for each n ∈ N.

Proof: Denote by 1 the function on L which is identically equal to one. We
observe that L is (A,∆)-fragmentable where A is the convex symmetric hull of
the set An∪{n ·1}. Therefore, by considering the linear span of {1}∪X instead of
X and the convex symmetric hull of An ∪{n · 1} instead of An for each n ∈ N, we
may, and do assume that X contains the constants and the sets An are bounded,
convex, and symmetric.
Put E1 = A1. If En was already defined for some n ∈ N, let En+1 be the

convex symmetric hull of the set

{f1 ∨ f2 : f1, f2 ∈ An+1 ∪ En},

where f ∨g denotes the pointwise maximum of the functions f and g. Clearly L is
(E1,∆)-fragmentable. Suppose L is (En,∆)-fragmentable for some n ∈ N. Then
L is also (An+1 ∪ En,∆)-fragmentable. Take f, g ∈ En ∪ An+1 and l1, l2 ∈ L.
Then

(f∨g)(l1)−(f∨g)(l2) ≤ max{f(l1)−f(l2) , g(l1)−g(l2)} ≤ diamEn∪An+1
{l1, l2}.

Hence L is also (B,∆)-fragmentable where B = {f ∨ g : f, g ∈ En ∪An+1}, and
finally, L is (En+1,∆)-fragmentable.
Clearly, E1 ⊂ E2 ⊂ . . . , and the set Y =

⋃∞
n=1En is closed under the operation

of taking pointwise maximum and minimum of two functions, separates the points
of L, and contains the constant functions. We shall show that Y is a linear
subset of C(L). Then, by the Stone-Weierstrass theorem (see the proof of [DS,
Theorem IV.6.16]), Y is dense in C(L). Therefore the sets

Fn = En +
∆
2 BC(L), n ∈ N,

have the required properties.
Since each of the sets E1 ⊂ E2 ⊂ . . . is convex and symmetric, in order to

show that Y is linear it is enough to find for each n ∈ N, each f ∈ En, and
each c > 0 some i ∈ N so that cf ∈ Ei. We shall show this by induction on n.
If f ∈ E1 (= A1) and c > 0 then cf ∈ X and hence there exists i ∈ N so that
cf ∈ Ai ⊂ Ei. Suppose that the statement holds for some n ∈ N, and let f ∈ En+1
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and c > 0 be given. Then there exist m ∈ N, f1, f2, . . . , f2m ∈ An+1 ∪ En, and
λ1, . . . , λm ∈ R such that

∑m
j=1 |λj | ≤ 1 and

f =

m∑

j=1

λj(f2j−1 ∨ f2j).

For each j ∈ {1, . . . , 2m} we find ij ∈ N so that cfj ∈ Eij , and put i = 1 +

max{i1, i2, . . . , i2m}. Then

cf =

m∑

j=1

λj((cf2j−1) ∨ (cf2j)) ∈ Ei.

�

Proof of Theorem 1: : (i)⇒(ii). Assume that K is a countably lower frag-
mentable compact. Let An,p be the sets from the definition of countable lower

fragmentability. Fix any n, p ∈ N. We know that K is (An,p,
1
p )-fragmentable. By

Lemma 1, for every countable set A0 ⊂ An,p, the space K is (A0,
1
p )-separable.

Then, by Lemma 2, BC(K)∗ is (A0,
2
p )-separable for every such A0. Again, by

Lemma 1, BC(K)∗ is (An,p,
2
p)-fragmentable. (Here, in order to be able to use

Lemma 1, we consider A0 and An,p as if they were subsets of C((BC(K)∗ , w
∗))

— this can be ensured by a canonical embedding.) Finally, by Lemma 3, BC(K)∗

is (An,p,
4
p )-dentable. This means nothing else than that (ii) holds.

(ii)⇒(iii). Let K satisfy (ii) in our theorem. We observe that the Banach
space C(K) embeds isometrically as a closed subspace into C((BC(K)∗ , w

∗))

and this subspace separates the points of BC(K)∗ . By (ii), there exist sets

An,p ⊂ C(K), n, p ∈ N, so that
⋃∞

n=1An,p = C(K) for each p ∈ N and that

BC(K)∗ is (An,p,
1
p )-fragmentable for each n, p ∈ N. Fix any p ∈ N and ap-

ply Lemma 4 for L := (BC(K)∗ , w
∗), X := C(K)

(
⊂ C((BC(K)∗ , w

∗))
)
, and

An := An,p

(
⊂ C((BC(K)∗ , w

∗))
)
, n ∈ N. In this way, we get bounded sets

Fn,p ⊂ C((BC(K)∗ , w
∗)), n, p ∈ N, so that

⋃∞
n=1 Fn,p = C((BC(K)∗ , w

∗)) for

each p ∈ N, and the compact space (BC(K)∗ , w
∗) is (Fn,p,

2
p )-fragmentable for

each n, p ∈ N.

(iii)⇒(i). Let An,p ⊂ C((BC(K)∗ , w
∗)), n, p ∈ N, do the job in (iii). Then

the sets A′
n,p =

{
f|K : f ∈ An,p

}
do the job for (i). (We assumed that K is a

subspace of (BC(K)∗ , w
∗).) �

Theorem 2. For a Banach space X the following assertions are equivalent:

(i) the dual space X∗ is countably weak∗ dentable;

(ii) the compact space (BX∗ , w∗) is countably lower fragmentable;
(iii) the dual C((BX∗ , w∗))∗ is countably weak∗ dentable.
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Proof: (i)⇒(ii) follows from Lemma 4. (ii)⇒(iii) follows from (i)⇒(ii) in Theo-
rem 1. (iii)⇒(i) follows from Proposition 2(ii).

�

Countably lower fragmentable compacta which are totally

disconnected

A topological space is called totally disconnected if its topology has a basis
consisting from sets which are both open and closed. Thus, a compact space
is totally disconnected if and only if it is homeomorphic to a closed subspace
of the product {0, 1}Γ for some set Γ. For A ⊂ Γ we define χA : Γ → {0, 1}
as χA(γ) = 1 if γ ∈ A and χA(γ) = 0 if γ ∈ Γ\A. If k ∈ {0, 1}Γ, we put
supp k = {γ ∈ Γ : k(γ) = 1}. A compact space K is called adequate if it is a
closed subspace of {0, 1}Γ for some set Γ,

(i) χ{γ} ∈ K for every γ ∈ Γ, and

(ii) if B ⊂ A ⊂ Γ and χA ∈ K, then χB ∈ K.

Theorem 3. For a totally disconnected compact spaceK the following assertions
are equivalent:

(i) K is a Radon-Nikodým compact (i.e., C(K) is Asplund generated);
(ii) K is a continuous image of a Radon-Nikodým compact (i.e., C(K) is a
subspace of an Asplund generated space);

(iii) K is a countably lower fragmentable compact (i.e., C(K)∗ is countably
weak∗ dentable);

(iv) if ϕ is a homeomorphism of K into {0, 1}Γ, then there exist sets Γn ⊂ Γ,
n ∈ N, with

⋃∞
n=1 Γn = Γ, such that for every n ∈ N and every ∅ 6= M ⊂

K there are an open set G ⊂M and Γ′ ⊂ Γn such that suppϕ(k)∩Γn = Γ
′

whenever k ∈M ∩G.

If K is an adequate compact, then the above conditions are equivalent with:

(v) K is an Eberlein compact (i.e., C(K) is weakly compactly generated).

Proof: (i)⇒(ii) is trivial. (ii)⇒(iii) is Proposition 3.

(iii)⇒(iv) Let An,p, n, p ∈ N, be the sets guaranteeing the countable lower

fragmentability of K and let ϕ : K → {0, 1}Γ be a continuous injection. For
γ ∈ Γ put πγ(k) = ϕ(k)(γ), k ∈ K; thus πγ ∈ C(K). Define

Γn = {γ ∈ Γ : πγ ∈ An,2}, n ∈ N.

Then
⋃∞

n=1 Γn = Γ. Now take ∅ 6= M ⊂ K and fix n ∈ N. We find an open set

G ⊂ K such that M ∩ G 6= ∅ and diamAn,2
(M ∩ G) ≤ 1

2 . Take k, k
′ ∈ M ∩ G.

Then for every γ ∈ Γn we have πγ ∈ An,2 and so

|πγ(k)− πγ(k
′)| ≤

1

2
.
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This means that suppϕ(k) ∩ Γn = suppϕ(k
′) ∩ Γn and so (iv) is satisfied.

(iv)⇒(i) Let ϕ : K → {0, 1}Γ be a continuous injection and let Γn, n ∈ N, be
found in (iv). Put

An = {πγ : γ ∈ Γn}, n ∈ N,

and define

ρ(k, k′) = sup
{
|f(k)− f(k′)| : f ∈ A1 ∪

1
2A2 ∪

1
3A3 ∪ · · ·

}
, k, k′ ∈ K.

Clearly, ρ is a lower semicontinuous metric on K. We shall show that ρ fragments
K, that is, that every nonempty subset of K contains a nonempty relatively open
subset whose ρ-diameter is less than an a priori given arbitrary positive number.
Then, by [N2], we can conclude that K is a Radon-Nikodým compact. So let
∅ 6= M ⊂ K and ǫ > 0 be given. Take n ∈ N so that 1/n < ǫ. By (iv), there
is an open set G1 ⊂ K, with M ∩ G1 6= ∅, and such that the set suppϕ(k) ∩ Γ1
does not depend upon k ∈ M ∩ G1. Then, again by (iv), there is an open set
G2 ⊂ K, with (M ∩G1)∩G2 6= ∅, and such that the set supp ϕ(k)∩ Γ2 does not
depend upon k ∈ (M ∩G1)∩G2. Continuing in this way, we finally find an open
set Gn ⊂ K, with M ∩G1 ∩ · · · ∩Gn 6= ∅, and such that suppϕ(k) ∩ Γn does not
depend upon k ∈ M ∩ G1 ∩ · · · ∩Gn. Put G = G1 ∩ · · · ∩Gn. Then M ∩G 6= ∅
and the set suppϕ(k) ∩ (Γ1 ∪ · · · ∪ Γn) does not depend upon k ∈M ∩G. Thus,
for k, k′ ∈M ∩G we have

ρ(k, k′) = sup
{
|f(k)− f(k′)| : f ∈ 1

n+1An+1 ∪
1

n+2An+2 ∪ · · ·
}
≤

1

n+ 1
< ǫ.

This means that K is fragmented by ρ and (i) is proved.
Finally, assume that K is an adequate compact. We find a set Γ so that K is

a subspace of {0, 1}Γ. Assume that K satisfies (iv). Let Γn, n ∈ N, be the sets
from (iv). By replacing the set Γ2 by Γ2\Γ1, the set Γ3 by Γ3\(Γ1 ∪ Γ2) and so
on, we may, and do assume that Γi ∩ Γj = ∅ whenever i 6= j. We claim that for
every k ∈ K and every n ∈ N the set suppk ∩ Γn is finite. Then the assignment
k 7→ { 1nk(γ) : if γ ∈ Γn, n ∈ N} sends K into (c0(Γ), w) continuously and
injectively and hence K is an Eberlein compact.
Assume that the claim is false. Then there exist n ∈ N and k ∈ K such that

supp k ∩ Γn is an infinite set. Let A ⊂ Γ be such that k = χA; then A ∩ Γn is an
infinite set. Denote

M = {χB : B ⊂ A ∩ Γn}.

Since K is adequate compact, M is a (nonempty) subset of K. By (iv), there
exists an open set G ⊂ K such that M ∩ G 6= ∅ and (B =) B ∩ Γn = const. for
every χB ∈M ∩G. Hence M ∩G is a singleton. However, this contradicts to the
definition of the set M and to the definition of the topology on {0, 1}Γ. �

In [T], Talagrand constructed an adequate compactK which is not Eberlein. In
[OSV], it is shown that this K is not a Radon-Nikodým compact. Stegall showed
in [St2] that this K is not a continuous image of a Radon-Nikodým compact, see
also [F, Theorem 8.3.6]. From Theorem 3 we get the same fact in an easier way.
Hence C(K) is not a subspace of an Asplund generated space.
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