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Mazur–like topological linear spaces and their products

Miroslav Hušek

Abstract. Topological linear spaces having the property that some sequentially continu-
ous linear maps on them are continuous, are investigated. It is shown that such properties
(and close ones, e.g., bornological-like properties) are closed under large products.
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Classification: 22A99, 54C08, 54B10, 54H11

J. Isbell in his talk at the 1st Prague Topological Symposium in 1961 said
that a topological linear space X satisfies Mazur’s theorem if every sequentially
continuous linear functional on X is continuous. Spaces having the just described
property are called Mazur spaces in [15]. We shall study some variations of
such a property and will call the resulting spaces Mazur-like spaces. The terms
are justified by the fact that S. Mazur was probably the first one who started
to investigate sequentially continuous linear functionals from a general point of
view. In 1946 he gave a lecture in Warsaw (see [9]) where he talked about the
following result:

Every sequentially continuous linear functional on the power R
X is of the form

f(φ) = α1φ(p1) + · · ·+ αkφ(pk) for some integer k, points p1, · · · , pk of X, and

reals α1, · · · , αk, if and only if every two-valued measure on X being zero on

points, is zero on X.

S. Mazur adds that the same result is valid if instead of a discrete space X

one takes a metric space X , and instead of the power R
X one takes the space

Cp(X) of continuous functions on X endowed with the pointwise convergence. He
promised to published details in Fund. Math. but that never happened.
J. Isbell says in [6] that the Mazur’s result was completed by V. Pták to the

form given below in 1956 (unpublished). At about the same time, S. Mrówka
published his generalization of the Mazur’s result (see [11]) that we call, together
with Isbell, Mazur theorem:

For a completely regular space X, the space Cp(X) is a Mazur space iff the space
X is realcompact.
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J. Isbell then announced generalizations of Mazur theorem to other classes of
continuous functions like differentiable ones; these results were published in [7];
see also [12] for a general characterization of linear subspaces of Cp(X) that are
Mazur.
A stronger version of Mazur spaces was defined in [3] for locally convex spaces

under the name C-sequential spaces (C stands for convex); R.M. Dudley required
all sequentially continuous linear mappings (not only linear functionals) on a given
space to be continuous; he proved that every bornological space is C-sequential.
R.F. Snipes in [13] shows that the class of C-sequential spaces is coreflective
in all topological linear spaces (or locally convex spaces), and that the class is
closed under inductive limits. For specialists in category theory, the first fact
follows directly from the definition of C-sequential spaces, the other is a direct
consequence of coreflectivity. Probably the best survey of properties of Mazur
spaces can be found in A. Wilansky’s book [15].
We recall that certain weak topologies on Mazur spaces are complete, com-

pletion of a Mazur space is a Mazur space, and that coarser linear topologies
compatible with a given Mazur space are again Mazur.
A cardinal κ is called (Ulam) nonmeasurable if there is no nontrivial two-

valued measure on κ being zero on points; equivalently, every ultrafilter on κ that
is closed under countable intersections, has a nonempty intersection; in other
words, a discrete space of cardinality κ is realcompact, i.e., can be embedded as a
closed subspace into a power of reals. See, e.g., [4] for those and other topological
notions and terms we shall use in this paper.
We shall now recall several concepts from category theory (see [1] for details

and for other notions). We shall work in an epireflective subcategory K of the
category TLS of real topological linear spaces; epireflectivity of K means that K is
closed under products and subspaces in TLS; we always assume that R ∈ K to
avoid the two trivial cases, namely the subclasses consisting of the zero space, or
of all indiscrete topological linear spaces. We shall consider nontrivial coreflective
classes C in K. By ‘nontrivial’ we understand that the class contains R, to avoid
almost exotic spaces, i.e., those having zero continuous linear functionals only.
The coreflectivity for C in our case means that the class C is closed under quotients
and under inductive limits in K. Equivalently, for every space X ∈ K there exists
a finer space cX belonging to C such that every continuous linear mapping from
a space in C to X is continuous already into the finer space cX . Every class of
spaces from K has a coreflective hull in K. Since finite products coincide with
finite free sums, every coreflective class is finitely productive (i.e., closed under
finite products). By LCS we denote the epireflective subclass of TLS consisting of
locally convex spaces.
It is known that a product of nontrivial bornological spaces is bornological

iff the index set of the product is nonmeasurable (the so called Mackey-Ulam
theorem); the same assertion is true for Mazur spaces (by the Mazur theorem)
The last mentioned result is reproved in [5] as a part of a more general result for
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topological groups. Since its proof uses some previous results about topological
groups that are not needed for topological linear spaces, we shall give here a
simplified proof of the result and, at the same time, prove a more general theorem
containing both results mentioned at the beginning of this paragraph (and other),
as special cases.

In the first part we shall introduce some definitions and basic properties of
spaces we are interested in. The second part contains our main result, namely
that certain classes of topological linear spaces containing a class of Mazur-like
spaces, are closed under large products. In the third part, examples are given
showing that the previous results are not valid in TLS, and subclasses of TLS are
suggested, where the results hold.

1. Mazur-like classes

In this section, all spaces are supposed to be locally convex (K = LCS). We shall
now give a rather general definition of spaces similar to Mazur spaces for which
the analog of Mackey-Ulam theorem holds. In modifications of Mazur spaces one
can use various ranges of linear mappings (instead of R) and various classes of
mappings that are requested to be continuous; in this last variation we restrict
ourself to some classes only:

Definition 1. Let R be a class of topological linear spaces and S be a class of
linear mappings. A locally convex space X is called an R-S-space if every linear
mapping from S defined onX into a topological linear space fromR is continuous.

Thus Mazur spaces are R-S-spaces, where S is the class of all sequentially con-
tinuous linear mappings (we shall write R-S instead of more precise {R}-S) We
shall mostly consider cases where S is related to sequentially continuous linear
mappings.
Every R-S-space is an R′-S′-space for R ⊃ R′ and S ⊃ S′. For given R, S,

the class of R-S-spaces is coreflective.
Two extreme cases will be used in the sequel. We shall say that a linear

mapping f : X → Y is strongly sequentially continuous if it preserves convergence
of well-ordered nets of nonmeasurable length (i.e., if a well-ordered net, or a
chain in another terminology, {xα}α<κ converges to 0 in X , κ is a nonmeasurable
cardinal, then {fxα}α<κ converges to 0 in Y ). Clearly, every strongly sequentially
continuous linear mapping is sequentially continuous.
We shall say that a linear mapping f : X → Y is weakly sequentially continuous

if {fxn} converges to 0 in Y whenever {xn} is such a sequence in X that {αnxn}
converges to 0 for every sequence {αn} of reals (such a sequence {xn} will be
called strongly convergent to 0). Clearly, every sequentially continuous linear
mapping is weakly sequentially continuous.

Definition 2. The R-S-spaces are called strong Mazur spaces for R equal to
all locally convex spaces and S equal to all weakly sequentially continuous linear
mappings.
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The R-S-spaces are called weak Mazur spaces for S equal to all strongly se-
quentially continuous linear mappings.

It is easy to show that R is strong Mazur, so that every coreflective class
containing all strong Mazur spaces is a nontrivial coreflective class.
Every strong Mazur space is bornological (if {xn} strongly converges to 0 then

for every sequence {αn} in R the set {αnxn} is bounded and thus {fxn} must
converge to 0 provided that f preserves bounded sets).
We shall consider coreflective classes C containing all strong Mazur spaces.

For examples of such C we may take all bornological spaces, all ultrabornological
spaces, all semibornological spaces (see, e.g., [15] and [8] for these concepts), all
(weak) Mazur spaces, all locally convex spaces defined by the property that every
their linear functional continuous on a class of sets containing all null sequences
(together with the point zero) is continuous. In the last example we may take
the class of compact sets (then we get that k-continuous linear functionals are
continuous) or of countable sets, or of bounded sets. The first examples of this
paragraph up to Mazur spaces are examples of classes contained in the class of
weak Mazur spaces.
The coreflective classes containing strong Mazur spaces and composed of weak

Mazur spaces will be called Mazur-like classes in this paper.

2. Productivity

As in the previous section we assume that K = LCS. The original Mazur’s result
from 1946 asserts that a power R

κ is a Mazur space iff κ is nonmeasurable. We
shall now generalize that result not in the direction used by Pták and Mrówka
— they replaced κ by a topological space; we shall replace the copies of R in the
power by arbitrary spaces from a Mazur-like class.
The method of the main proof is a modification of the Mazur’s method used

in [10]. First, we need the following easy assertion:

Lemma 1. Every linear mapping on X into a locally convex space that is con-

tinuous on the strong Mazur coreflection of X , is weakly sequentially continuous

on X .

Proof: Suppose that X has a topology τ and its strong Mazur coreflection has a
topology cτ . It suffices to show that every sequence {xn} strongly converging to
zero in (X, τ), converges to zero in (X, cτ). Take the finest topology t on the set X
such that every {xn} converging strongly to zero in τ converges to zero in t. Then
(X, t) has the same sequences strongly converging to zero as (X, τ) has, and the
finest locally convex space (X, t′) coarser than (X, t) is strongly Mazur (indeed,
continuous linear maps on (X, t′) coincide with continuous linear maps on (X, t),
and the last ones coincide with those linear maps on X preserving convergence
of the generating sequences, i.e., convergence of sequences strongly converging to
zero in (X, τ)). Thus (X, t) is finer than (X, cτ). �
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Theorem 1. Every coreflective class containing the class of strong Mazur spaces

is closed under products of nonmeasurably many spaces.

Proof: Take a coreflective class C containing all strong Mazur spaces. Suppose
that every Xi, i ∈ I, belongs to C and |I| is nonmeasurable. We want to show that
X = ΠIXi belongs to C. Since every locally convex space can be embedded into a
product of pseudonormable linear spaces, it suffices to show that every continuous
linear mapping f from the coreflection (in C) of X into a normable space M is
continuous on X . Our condition that C contains all strong Mazur spaces implies
that f is weakly sequentially continuous on X (use Lemma 1). We show that f

depends on finitely many coordinates and our theorem then follows from the fact
that C is finitely productive.
Define J = {i ∈ I : fx is nonzero for some xi ∈ X with prI\{i}xi = 0}. We may

choose such xi that ||fxi|| = 1. The set J is finite because otherwise every one-
to-one sequence {xin} composed of just constructed points strongly converges to
0 but their f -images are far from 0. Now we prove that f depends on J . Suppose
that it is not the case. Thus there is some x ∈ X with fx 6= 0 and prJx = 0. We
shall get a contradiction by showing that |I| must then be measurable.
We say in this proof that a subset K ⊂ I \J has the property (p) if there exists

xK ∈ X with fxK 6= 0 and prI\K(xK) = 0 (thus I \ J has (p)). We assert that

there exists K ⊂ I \ J having the property (p) and such that there are no two
disjoint subsets of K both having (p). If not, then there is a disjoint sequence
{Kn} of subsets of I \ J such that every Kn has (p) and there is a sequence
{αn} of reals such that {αnf(xKn

)} does not converge to zero in M . This is a
contradiction with the weak sequential continuity of f because {xKn

} strongly
converges to zero in X .
Now it suffices to define µ on all subsets of K to be 0 or 1 depending whether

the subset has not or has the property (p). Clearly, µ is a nontrivial two-valued
measure being zero on all finite sets. That is a contradiction with our assumption
that I is nonmeasurable.
Thus, f depends on the finite set J in the sense that there is a linear mapping

g on ΠJXi such that f = g prJ . Clearly, g is continuous on c(ΠJXi) (since
ΠJXi is a retract of ΠIXi and, thus, c(ΠJXi) = ΠJXi is a retract of c(ΠIXi)).
Consequently, g is continuous on ΠJXi and, therefore, f is continuous on X . �

In the preceding proof, we could use the known result by S. and P. Dierolf
from [2] (see also [14, Theorems 5.17, 5.21], or [8, Lemma 8.8.3]): In a coreflective
subcategory C of spaces, a product of κ its nontrivial members belongs to C iff R

κ

belongs to C. For us, it would be no simplification and so, our proof deals with
general products instead of powers of reals. We shall use the mentioned result in
the proof of Theorem 2.
A ‘converse’ of preceding Theorem (i.e., products of measurably many members

of a coreflective class C does not belong to C) is not true without adding some
conditions on C or on the spaces under consideration: one of the coreflective classes
fulfilling the condition of Theorem 1 is the class of all spaces that is certainly
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productive. So, to get a converse, our C cannot be too large. Also, every product
of indiscrete spaces is indiscrete and may belong to C for any index set of the
product.

Theorem 2. Let C be a coreflective class contained in the class of weak Mazur
spaces. No product of measurably many nontrivial Hausdorff spaces from C be-
longs to C.

Proof: Using the P. and S. Dierolf’s result mentioned after the proof of The-
orem 1, it suffices to show that a power R

I does not belong to C whenever |I|

is measurable. We shall show that R
I is not a weak Mazur space. There is a

two-valued measure µ on I that is zero on countable sets and has the value 1
on I. As a mapping {0, 1}I → {0, 1}, µ is strongly sequentially continuous but
not continuous. Now it suffices to extend µ to a strongly sequentially continuous
linear functional on R

I ; the extension will not be continuous since its restriction
to {0, 1}I is not continuous. For every x = {ri}I ∈ R

I define fx to be that
unique real number r such that µ{i ∈ I : ri = r} = 1 (recall that µ is (2ω)+-
additive). Clearly, f(αx) = αfx for every real number α. To show additivity
f(x+ y) = fx+ fy, where x is as before and y = {si}I , it suffices to realize that
if µ{i ∈ I : ri = r} = 1, µ{i ∈ I : si = s} = 1, then µ{i ∈ I : ri + si = r + s} = 1.
Similarly one can show that f is strongly sequentially continuous: take κ non-
measurable and a long sequence xα = {rα,i}I , α < κ, converging to zero in R

I

and suppose that for each α, µ{i ∈ I : rα,i = rα} = 1; then µ{i ∈ I : rα,i = rα

for each α} = 1, thus f(xα) converge to 0 because rα converge to 0. �

Corollary. A product of nontrivial Hausdorff spaces from a Mazur-like class C
belongs to C iff the number of spaces in the product is nonmeasurable.

Instead of nontrivial Hausdorff spaces one can speak about spaces having non-
trivial Hausdorff modifications.

Corollary. Let P be one of the following properties of Hausdorff spaces: borno-
logical, ultrabornological, semibornological, Mazur, C-space. Then a product of

κ many nontrivial spaces having P has P , iff κ is nonmeasurable.

3. Non-locally convex spaces

When we look carefully at the proof of Theorem 1 and find places where local
convexity was used, we see that there are three such places. In the first paragraph
we used that locally convex spaces have weak topologies with respect to normable
spaces. This was needed both in the second and third paragraphs, where we made
use of the fact that no sequence of nonzero elements in a normed space strongly
converges to zero. This last property is crucial in our proof and we shall show
that Theorem 1 is not true in the realm of all topological linear spaces, i.e., if K
= TLS.
It was proved by Noble that any product of less than s of sequential topological

groups is sequential (here s is the sequential cardinal that is a large cardinal but
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is never bigger than the real-measurable cardinal — see e.g. [5] for details). Since
every sequentially continuous group-homomorphism between topological linear
spaces is a linear mapping, we see that any product of less than s of Mazur spaces
is Mazur again. So, our example works only in the case when the real-measurable
cardinal is (Ulam) nonmeasurable — if our cardinals exist, then it is consistent
that the requested situation occurs.

Example. Let κ be a cardinal number that is real-measurable and non-measur-
able, and µ be a real-measure on κ that is 0 on points of κ and 1 on the whole
set. We shall show that X = R

κ is not an R-S-space whenever R contains the
following space Y and S consists of weakly sequentially continuous linear maps.
Denote by Y the topological linear space having as the underlying set R

κ and its
topology defined by means of the paranorm

||f || =

∫
κ

|f(x)|

1 + |f(x)|
dµ

(we regard points of Y as mappings f from κ into R). Clearly, the topologies of
X and Y are not comparable.

Claim: Every sequence converging strongly to zero in X converges strongly to

zero in Y .

It is easy to see that if a sequence {fn} strongly converges to zero in X , then
the sets Coz (fn) of points with non-zero fn-values, form a point-finite family, i.e.,
every point of κ belongs to at most finitely many of the sets Coz (fn). This implies
µ(Coz (fn))→ 0 (otherwise µ(lim supCoz (fn)) > 0 and our family would not be
point-finite) and, consequently, ||fn|| → 0 strongly in Y since ||fn|| ≤ µ(Coz(fn)).

�

Now, the identity map X → Y is weakly sequentially continuous and is not
continuous, which implies that (R)κ is not an R-S-space.

The testing range of a weakly sequentially continuous mapping on X in the
previous example cannot have a weak topology with respect to spaces having the
property that no sequence of nonzero elements strongly converges to zero. It is
not difficult to see that every continuous linear mapping F on our space Y into a
space having the just described property, is zero.
Every topological linear space can be embedded into a product of pseudometriz-

able linear spaces but, as we have just seen, not every pseudometrizable linear
space can be embedded into a product of spaces having no nontrivial sequences
strongly converging to zero. Denote by K0 the epireflective hull in TLS of spaces
having no nontrivial sequences strongly converging to zero; thus K0 consists of
spaces X having the property that for every x 6= 0 there exists a continuous linear
map from X into a space without nontrivial sequences strongly converging to 0,
with fx 6= 0. If K is a bireflective subcategory of K0 containing R, then we can
repeat Sections 1 and 2 replacing everywhere locally convex spaces by spaces from
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K and normable spaces by spaces having no nontrivial sequences strongly con-
verging to 0. We have the following result (where K0-strong Mazur space means
K0-{weakly sequentially continuous linear maps}-space):

Theorem 3. Let C be a coreflective class in K0 containing the class of K0-
strong Mazur spaces and contained in the class of weak Mazur spaces. A product

of Hausdorff spaces from C belongs to C iff the number of nontrivial coordinate
spaces is nonmeasurable.

It is clear that locally bounded spaces have no nontrivial sequences strongly
converging to zero. I do not know whether metrizable spaces belonging to K0 are
locally bounded, i.e., whether K0 is generated by locally bounded spaces.

Acknowledgment. I would like to express my thanks to my wife Marie Hušková
for her valuable help with some results of this last section.1
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