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Oblique derivative problem for elliptic equations

in non-divergence form with VMO coefficients

G. Di Fazio, D.K. Palagachev

Abstract. A priori estimates and strong solvability results in Sobolev space W 2,p(Ω),
1 < p < ∞ are proved for the regular oblique derivative problem8<: Pn

i,j=1 aij(x) ∂2u
∂xi∂xj

= f(x) a.e. Ω

∂u
∂ℓ
+ σ(x)u = ϕ(x) on ∂Ω

when the principal coefficients aij are VMO ∩ L∞ functions.

Keywords: oblique derivative, elliptic equation, non divergence form, VMO coefficients,

strong solution

Classification: 35J25

Introduction

The present article is devoted to the development of Lp theory for the oblique
derivative problem for linear uniformly elliptic equations with discontinuous co-
efficients.
More precisely, our aim is to derive a priori estimates and to prove existence

result for the solutions of

(0.1)






Lu ≡
n∑

i,j=1

aij(x)
∂2u

∂xi∂xj
= f(x) a.e. Ω

Bu ≡
n∑

i=1

ℓi(x)
∂u

∂xi
+ σ(x)u = ϕ(x) on ∂Ω

in the case of merely VMO ∩ L∞ principal coefficients. The boundary condition
above is prescribed in terms of directional derivative with respect to unit vector
field ℓ(x) = (ℓ1(x), . . . , ℓn(x)), and it is assumed that ℓ(x) is nowhere tangential
to the boundary ∂Ω, i.e. (0.1) is a regular oblique derivative problem.
The solutions of (0.1) we are dealing with here, are to be referred to as strong

solutions belonging to the Sobolev space W 2,p(Ω), 1 < p < ∞. In other words,
they are twice weakly differentiable functions with Lp(Ω) summable derivatives
up to order 2 that satisfy Lu = f almost everywhere in Ω and Bu = ϕ holds true
in the trace sense on ∂Ω.
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The classical oblique derivative problem with sufficiently smooth Hölder con-
tinuous data has been very well studied. We refer to [GT, Chapter 6] and refer-
ence therein for the known well-posedness results. Using explicit representations
for solutions to derive suitable Lp estimates, it was proved by Agmon, Douglis
and Nirenberg [ADN] that aij ∈ C0(Ω) is a sufficient condition ensuring W 2,p-

regularity (i.e., in order f ∈ Lp(Ω), ϕ ∈ W 1−1/p,p(∂Ω) to imply u ∈ W 2,p(Ω))
of (0.1) for all values of p in the range (1,∞). Using another approach, the same
result was proved by M. Chicco [C1], whence existence theorems were obtained
through Riesz-Fredholm theory.
If the principal coefficients aij are not uniformly continuous the oblique deriv-

ative problem is less studied. As far as we know there are a few results devoted
to (0.1) in that case and all of them are concerned with the case p = 2. For two-
dimensional domains Ω, G. Talenti [T] establishedW 2,2 solvability of (0.1) assum-
ing aij(x) to be only measurable functions. In the multi-dimensional case (n ≥ 3)
the W 2,2-regularity and invertibility properties of the operator (L,B) are proved
if aij ∈ W 1,n(Ω) (cf. C. Miranda [M], M. Chicco [C2], G. Viola [V]), or if aij -s
are measurable functions and satisfy the “Cordes condition” (cf. M. Chicco [C2],
F. Nicolosi [NF]). The techniques used in the most of the cited results allow to
extend them for p belonging to a suitable neighbourhood of p = 2.
Our main purpose here is to investigate (0.1) weakening the assumptions on

the coefficients aij(x) to the class of functions with vanishing mean oscillation
(VMO). It is worth to note that both the cases aij ∈ C0(Ω) and aij ∈ W 1,n(Ω)
imply aij ∈ VMO (see [CFL1]).
We are going to prove two kinds of results for the problem (0.1). First of

them (Theorem 1.1) is the W 2,p-regularizing property of (L,B) for all p ∈ (1,∞),
that is obtained by proving a global a priori estimate for the strong solutions
of (0.1). The approach is very similar to that used by F. Chiarenza, M. Frasca
and P. Longo in [CFL1], [CFL2] in the treatment of Dirichlet’s problem. Since
the interior estimate was proved in [CFL1], the crucial step in proving our The-
orem 1.1 is the establishment of the boundary W 2,p estimate. For, an explicit
representation of solution’s second order derivatives is used in terms of singu-
lar integrals of two types. The first one is a sum of singular integral operators
and commutators with Calderón-Zygmund kernels, and their Lp-boundedness was
carried out in [CFL2]. The second type of integrals are less singular and due to
the specific boundary condition in (0.1). Roughly speaking, we are concerned
with commutators of integral operators having positive kernels depending on the
difference |aij(x) − aij(y)|. Unfortunately, the approach of [CFL2] that is based
on the VMO-character of aij-s cannot be applied here to prove boundedness of
the commutators because of the absolute value inside the integral. We utilize a
very recent result of M. Bramanti [B] to complete the proof of Theorem 1.1.
As a by-product we prove (Theorem 1.2) the strong W 2,p-solvability of (0.1)

for all the values p in (1,∞). This is reached in a standard way having in mind
Theorem 1.1. The VMO-character of the coefficients again plays a crucial role
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through theW 2,p-regularizing properties of (L,B) and the uniqueness result (The-
orem 5.1). A variant of Aleksandrov-Pucci-Bakelman maximum principle proved
by Y. Luo and N. Trudinger (cf. [LT], [L]) is used to prove uniqueness for the
strong solutions of (0.1).
Finally, let us note that the nonlinear as well as degenerate oblique derivative

problems will be studied in forthcoming papers.

Acknowledgements. The investigations presented here were initiated while the
second author was visiting the Department of Mathematics, University of Catania
as C.N.R.—G.N.A.F.A. fellow. He wishes to thank the Italian National Research
Council for the support.
We would like to express our gratitude to Filippo Chiarenza for his interest in

our work. The first author also wishes to thank Carlos Kenig for an useful talk
about the topic of this paper.

1. Statement of the problem and main results

Let Ω be a bounded domain in R
n, n ≥ 3. As usual, by W k,p(Ω) we denote

the Sobolev space of k-times weakly differentiable functions whose derivatives up
to order k are Lp-summable over Ω and ‖ · ‖

Wk,p(Ω)
is the norm in this space.

To describe regularity properties of functions defined on the boundary ∂Ω we
use the standard notation W s,p(∂Ω) (s > 0 — non integer) for fractional order
Sobolev spaces (see [AR] for the details). In what follows we adopt the standard
convention that repeated indices indicate summation from 1 to n, andDi = ∂/∂xi,
Dij = ∂

2/∂xi∂xj .
Our goal is to develop Lp theory for the regular oblique derivative problem for

second order linear elliptic equations:

(1.1)





Lu ≡ aij(x)Diju = f(x) a.e. Ω

Bu ≡ ∂u

∂ℓ
+ σ(x)u = ϕ(x) on ∂Ω.

To be more precise, we are interested in proving W 2,p(Ω) a priori estimate for
strong solutions of (1.1) and deriving strong solvability result for that problem in
the case when the coefficients aij(x) of the elliptic operator are merely VMO∩L∞

functions.
Throughout the paper we shall assume that L is uniformly elliptic operator

with VMO coefficients:

(1.2)

{
λ|ξ|2 ≤ aij(x)ξiξj ≤ λ−1|ξ|2 a.a. x ∈ Ω, ∀ ξ ∈ R

n, λ = const > 0,

aij(x) ∈ VMO ∩ L∞(Ω), aij(x) = aji(x).

As it concerns the boundary operator B it is prescribed by a directional deriv-
ative with respect to the unit vector field ℓ(x) = (ℓ1(x), . . . , ℓn(x)) (|ℓ(x)| = 1)



540 G.Di Fazio, D.K.Palagachev

defined on ∂Ω. We are dealing with the case of regular boundary operator, i.e. the
field ℓ(x) is never tangential to the boundary:

(1.3)

{
ℓ(x) · ν(x) = ℓi(x)νi(x) > 0 on ∂Ω, σ(x) < 0,

ℓi(x), σ(x) ∈ C0,1(∂Ω) (Lipschitz), ∂Ω ∈ C1,1,

where ν(x) = (ν1(x), . . . , νn(x)) is the unit inner normal to ∂Ω.

The main results we want to prove are the following ones.

Theorem 1.1. Suppose conditions (1.2) and (1.3) to be fulfilled and u ∈
W 2,q(Ω), 1 < q ≤ p <∞. Let Lu ∈ Lp(Ω) and Bu ∈ W 1−1/p,p(∂Ω).
Then u ∈ W 2,p(Ω) and the following estimate

(1.4) ‖u‖
W2,p(Ω)

≤ C
(
‖u‖

Lp(Ω)
+ ‖Lu‖

Lp(Ω)
+ ‖Bu‖

W1−1/p,p(∂Ω)

)

holds true where the constantC depends on n, p, λ, ∂Ω, ℓ, σ and the VMO-moduli
of the coefficients aij(x).

Theorem 1.2. Assume the conditions (1.2) and (1.3) to be satisfied.
Then the problem (1.1) admits a unique strong solution u ∈W 2,p(Ω) for each

f ∈ Lp(Ω) and ϕ ∈ W 1−1/p,p(∂Ω), 1 < p <∞.
Moreover, there is a constant C (independent of u) such that

(1.5) ‖u‖
W2,p(Ω)

≤ C
(
‖f‖

Lp(Ω)
+ ‖ϕ‖

W1−1/p,p(∂Ω)

)
.

Remark 1.1. 1. By virtue of Sobolev imbedding theorem and Morrey’s lemma

the solution of (1.1) belongs to the Hölder class C1,1−n/p(Ω) if p > n, and the
boundary condition in (1.1) is satisfied in classical sense.

2. In the case p ≥ n the estimate (1.5) follows immediately from (1.4). In fact,
the Lp-norm of u can be estimated in terms of f and ϕ through the maximum
principle of Aleksandrov type (see [LT, Theorem 3.1], [L, Theorem 1.5]).

3. The main results of this paper still hold true for the elliptic operator with
lower order terms

aij(x)Dij + b
i(x)Di + c(x),

supposing in addition to aij ∈ VMO ∩ L∞ that bi ∈ Lq, c ∈ Lr where q > n if
p ≤ n, q = p if p > n and r > n/2 if p ≤ n/2, r = p if p > n/2, and requiring
c(x) ≤ 0 a.e. Ω in the assumptions of Theorem 1.2.
4. The requirement σ(x) < 0 on ∂Ω in (1.3) is not necessary for the proof

of Theorem 1.1. Indeed, we use it in Section 3 in order to derive solution’s
representation formula, but the problem (1.1) with an arbitrary σ(x) always may

be reduced to the case considered here by setting u(x) = v(x)eF (x) where F (x) ∈
C1,1(Ω) and ∂F/∂ℓ = −1 − σ(x) on ∂Ω. As it concerns the existence result
(Theorem 1.2) σ(x) < 0 is an essential assumption ensuring uniqueness for the
oblique derivative problem.
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2. Real analysis auxiliary results

For the sake of completeness we recall here some definitions and known re-
sults. We will use the John-Nirenberg space BMO of the functions of bounded
mean oscillation and its subspace VMO introduced in [JN] and [S], respectively.
A locally integrable function f defined on R

n lies in the space BMO if

(2.1) sup
B

1

|B|

∫

B
|f(x)− fB| dx = ‖f‖∗ <∞,

where B ranges in the class of the balls in R
n and fB = |B|−1

∫
B f(x) dx. If

f ∈ BMO, set

(2.2) η(r) = sup
̺≤r

1

|B|

∫

B
|f(x)− fB| dx,

where now B is a ball of radius ̺. We say that f ∈ VMO if limr→0 η(r) = 0 and
we call η(r) the VMO-modulus of the function f . In a similar way we define the
spaces BMO and VMO of functions defined on Ω, replacing B in (2.1) and (2.2)
by the intersection of balls with a bounded open set Ω ⊂ R

n. Having a function
f defined on Ω that belongs to VMO it is possible to extend it to the all R

n

preserving the VMO-modulus by virtue of [A, Proposition 1.3] if in addition the
boundary ∂Ω is C1,1-smooth. In the following we shall use this result without
explicit reference.
Finally, it is a well known fact that for given f ∈ VMO with modulus η(r), we

can find a sequence {fh} of C∞(Rn) functions with moduli ηh(r), converging to
f in VMO and such that ηh(r) ≤ η(r) for all h ∈ N.
In the forthcoming sections we shall derive various Lp estimates for the solu-

tions of the oblique derivative problem. For this reason we recall here some real
analysis results about singular integrals and commutators. We refer to [CFL2]
and references therein for the proof of these results.

Let us start with the following definition.

Definition. Let k:Rn \ {0} → R be a measurable function. Then k is said to be
a Calderón-Zygmund kernel if

(i) k ∈ C∞(Rn \ {0}),
(ii) k(x) is homogeneous of degree −n,
(iii)

∫

Σ
k(x) dσx = 0 where Σ = {x ∈ R

n: |x| = 1}.

The useful properties of the integral operators with Calderón-Zygmund kernels
are summarized in the following result.

Theorem 2.1 ([CFL1], [CFL2]). Let Ω be an open subset of R
n and let k: Ω×

(Rn \ {0})→ R, be such that

(i) k(x, ·) is a Calderón-Zygmund kernel for almost all x ∈ Ω,
(ii) max|j|≤2n

∥∥∥ ∂j

∂yj
k(x, y)

∥∥∥
L∞(Ω×Σ)

=M <∞.
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If f ∈ Lp(Ω), 1 < p < +∞, a ∈ L∞(Rn), x ∈ Ω and ε > 0, set

Kεf(x) =

∫

|x−y|>ε
y∈Ω

k(x, x− y)f(y) dy

and

Cε[a, f ](x) =

∫

|x−y|>ε
y∈Ω

k(x, x− y)[a(x)− a(y)]f(y) dy.

Then, for any f ∈ Lp(Ω), there exist Kf and C[a, f ] ∈ Lp(Ω) such that

lim
ε→0

‖Kεf −Kf‖
Lp(Ω)

= lim
ε→0

‖Cε[a, f ]− C[a, f ]‖
Lp(Ω)

= 0.

Furthermore, there exists a constant c = c(n, p,M) such that

‖Kf‖
Lp(Ω)

≤ c‖f‖
Lp(Ω)

and ‖C[a, f ]‖
Lp(Ω)

≤ c‖a‖∗‖f‖Lp(Ω)
.

As a consequence of Theorem 2.1 and the VMO assumption on a(x) we have the
following theorem, which plays an essential role in establishing the Lp-bounded-
ness for the singular commutators appearing in the representation formula for the
second derivatives of solutions to (1.1).

Theorem 2.2 ([CFL1], [CFL2]). Let k be as in Theorem 2.1 and suppose a ∈
L∞(Ω) ∩ VMO.
Then for each ε > 0 there exists a positive constant ̺0 = ̺0(ε, η) such that

‖C[a, f ]‖
Lp(Ω∩Br)

≤ c ε‖f‖
Lp(Ω∩Br)

∀ f ∈ Lp(Ω ∩Br), 1 < p <∞

for any ball Br, r < ̺0, where c = c(n, p,M, η) and η is the VMO modulus of a.

In what follows we denote by an(x) the last row (column) of the coefficients’
matrix of the elliptic operator, i.e. an(x) = (a

1n(x), . . . , ann(x)), and define the
“generalized reflection”:

(2.3) T (x, y) = x− 2xn

ann(y)
an(y), T (x) = T (x, x).

Finally, Rn
+ = {x = (x1, . . . , xn) ∈ R

n:xn > 0} as usual.
The boundary representation formula we shall derive in Section 3 involves some

less singular integral operators and commutators. The next results will give us
the bounds for such operators.
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Theorem 2.3 ([CFL2]). Let f ∈ Lp(Rn
+), 1 < p <∞, a ∈ VMO ∩ L∞(Rn) and

set for x ∈ R
n
+

K̃f(x) =

∫

R
n
+

f(y)

|T (x)− y|n dy, C̃[a, f ](x) =

∫

R
n
+

a(x)− a(y)

|T (x)− y|n f(y) dy.

Then there exists a constant c = c(n, p) such that

‖K̃f‖Lp(Rn
+)

≤ c‖f‖Lp(Rn
+)
and ‖C̃[a, f ]‖

Lp(Rn
+
)
≤ c ‖a‖∗ ‖f‖Lp(Rn

+
)
.

Our representation formula contains a special term due to the presence of first
order differential operator on the boundary. To estimate it we need Lp-bounds of
commutators with absolute value inside the integral. The following result, that we
report here in the euclidean case, is proved in the general setting of homogeneous
spaces by M. Bramanti [B, Theorem 0.1 and Example 0.2].

Theorem 2.4 ([B]). Let a ∈ BMO(Rn
+). Define for f ∈ Lp(Rn

+), 1 < p <∞,

C̃af(x) =

∫

R
n
+

|a(x) − a(y)|
|T (x)− y|n f(y) dy.

Then we have the bound

‖C̃af‖Lp(Rn
+
)
≤ c ‖a‖∗ ‖f‖Lp(Rn

+
)

with c = c(n, p).

Remark 2.1. It is evident from the proofs of [CFL2, Theorem 2.5] and [B, The-
orem 0.1] that the last two results still hold true if the kernel |T (x) − y|−n is
replaced by an equivalent function.

3. Boundary representation formula

Now we will derive a representation formula for the solution of the oblique
derivative problem with constant coefficients operators.
Let B̺ = {x ∈ R

n: |x| < ̺}, B+̺ = B̺ ∩{xn > 0}, C̺ = B̺ ∩{xn = 0}, n ≥ 3,
and consider the uniformly elliptic operator

L0 ≡ aijDij

with constant coefficients aij . Let

B0 ≡
∂

∂ℓ
+ σ = ℓiDi + σ
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be the boundary operator prescribed by directional derivative with respect to a
constant vector field ℓ = (ℓ1, . . . , ℓn), |ℓ| = 1, and assume that σ = const < 0 and
B0 is a regular operator on {xn = 0}, i.e. ℓn > 0.
Before stating our result we introduce some more notations. The matrix

{aij}n
i,j=1 of the coefficients of L0 will be denoted by a and A = {Aij} will

be the inverse matrix a−1. The symbol Γ(ξ), ξ = (ξ1, . . . , ξn), stands for the
normalized fundamental solution of the operator L0, i.e.,

(3.1) Γ(ξ) =
1

n(2− n)ωn(det a)1/2

(
Aijξiξj

) 2−n
2
,

where ωn is the measure of the unit ball in R
n.

Finally, for an arbitrary ξ ∈ R
n we set

T (ξ) = ξ − 2ξn
ann an

as in (2.3), where the vector an is the last row (column) of the matrix a.

Lemma 3.1. Suppose that u(x) ∈ C∞(B2̺) satisfies

(3.2)

{ L0u = f in B+2̺
B0u = 0 on C2̺

and let supp u ⊂ B̺. Then

(3.3) u(x) =

∫

B+2̺

G(x, y)f(y) dy,

where

(3.4) G(x, y) = Γ(x− y)− Γ(T (x)− y) + θ(T (x)− y)

and

(3.5) θ(ξ) =
2

nωn(det a)1/2
ℓn
ann

∫ ∞

0

eσs (ξ + sT (ℓ))n
(
Aij(ξ + sT (ℓ))i(ξ + sT (ℓ))j

)n/2
ds.

Proof: Without loss of generality we may suppose ̺ = 1 above. Let P = {P ij}
be a non-singular n × n matrix such that PaP t = AId (P t is the transposed
of P ). After the linear change x̃ = xP t, problem (3.2) becomes

(3.6)





∆ũ = f̃ in B̃+2 = P (B+2 )

∂ũ

∂ℓ̃
+ σũ = 0 on C̃2 = P (C2),
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where u(x)→ ũ(x̃), f(x)→ f̃(x̃) under the transformation and ℓ̃ = ℓP t. Further,

we may take Pnj = 0 for 1 ≤ j ≤ n− 1 and Pnn = 1/
√
ann.

It is clear that the change x → x̃ = xP t maps the half-space {xn > 0} onto
{x̃n > 0} (x̃n = xn/

√
ann) and therefore C̃2 = P (C2) = B̃2∩{x̃n = 0}. Moreover,

ℓ̃n = ℓn/
√
ann > 0, i.e. the new oblique derivative problem (3.6) is regular too.

Let Γ̃(η), η ∈ R
n, be the fundamental solution of Laplace’s equation

Γ̃(η) =
1

n(2− n)ωn
|η|2−n.

It is well known [GT, Section 6.7] that the solution ũ(x̃) of (3.6) can be represented
as

(3.7) ũ(x̃) =

∫

B̃+2

G̃(x̃, ỹ)f̃(ỹ) dỹ,

where

(3.8) G̃(x̃, ỹ) = Γ̃(x̃ − ỹ)− Γ̃(x̃− ỹ∗)− 2ℓ̃n
∫ ∞

0
eσsDx̃nΓ̃(x̃− ỹ∗ + sℓ̃) ds

and ỹ∗ is the reflected point (ỹ1, . . . , ỹn−1,−ỹn).
In order to derive the representation (3.3) for the solution of the original prob-

lem we set ξ = x− y, η = x̃− ỹ = ξP t. Then

|η|2 = η · η = (η(P−1)tAP
−1) · η = η(P t)−1A · η(P t)−1 = ξA · ξ = Aijξiξj .

Thus
Γ̃(x̃− ỹ) = Γ̃((x− y)P t) = (det a)1/2Γ(x− y).

To evaluate Γ̃(x̃−ỹ∗) in (3.8) we denote ỹ∗ = ỹR̃ where R̃ is a symmetric n×n-
matrix with entries R̃ij = δij (Kronecker’s delta) for i, j < n, R̃in = R̃ni = 0

for i < n, and R̃nn = −1. Direct calculations based on the representation of
the matrix P show that R̃P = APR where R = {Rij} is a matrix with entries
Rij = δij for j < n, Rin = −2ain/ann, Rnn = −1. We have

x̃− ỹ∗ = xP t − yP t
R̃ = (x− yRt)P t

and it follows as above

Γ̃(x̃ − ỹ∗) = Γ̃((x− yRt)P t) = (det a)1/2Γ(x− T (y))

(recall T (y) = yRt = y − 2(yn/ann)an).
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In order to calculate the third term in (3.8) we have

Dx̃nΓ̃(x̃− ỹ∗ + sℓ̃) =
1

nωn

(x̃− ỹ∗ + sℓ̃)n

|x̃− ỹ∗ + sℓ̃|n
=
1

nωn

(
(x − T (y) + sℓ)P t

)

n

|(x − T (y) + sℓ)P t|n

=
1

nωn
√
ann

(x− T (y) + sℓ)n
(
Aij(x− T (y) + sℓ)i(x− T (y) + sℓ)j

)n/2

as a consequence of the choice of P .

So, changing the variables ỹ = yP t in (3.7) and using det P = (det a)−1/2 we
obtain

u(x) =

∫

B+2

G1(x, y)f(y) dy

where

G1(x, y) = Γ(x− y)− Γ(x− T (y))

− 2

nωn(det a)1/2
ℓn
ann

∫ ∞

0

eσs (x− T (y) + sℓ)n
(
Aij(x− T (y) + sℓ)i(x− T (y) + sℓ)j

)n/2
ds

and Γ is given by (3.1).
In order to show (3.3), (3.4) it remains to note that T 2(ξ) = T (T (ξ)) = ξ and

R
t
AR = A whence

Aij(T (ξ))i(T (ξ))j = T (ξ)A · T (ξ) = ξRt
A · ξRt = ξA · ξ = Aijξiξj

and

Γ(x − T (y)) = Γ(T 2(x)− T (y)) = Γ(T (T (x)− y)) = Γ(T (x)− y),

(x − T (y) + sℓ)n = −(T (x)− y + sT (ℓ))n,

Aij(x− T (y) + sℓ)i(x− T (y) + sℓ)j =

= Aij(T (x)− y + sT (ℓ))i(T (x)− y + sT (ℓ))j .

�

Remark 3.1. Defining χ =
T (x)−y
|T (x)−y|

we have

θ(T (x)− y) = |T (x)− y|2−nψ(χ, |T (x)− y|),

where

ψ(χ, |T (x)− y|) = 2

nωn(det a)1/2
ℓn
ann

∫ ∞

0

eσ|T (x)−y|t (χ+ tT (ℓ))n
(
Aij(χ+ tT (ℓ))i(χ+ tT (ℓ))j

)n/2
dt
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is a regular function. In fact, by virtue of the positiveness of the matrix A we get
for some constant λ > 0

Aij(χ+ tT (ℓ))i(χ+ tT (ℓ))j ≥ λ|χ+ tT (ℓ)|2 ≥ λ(1 − δ20) > 0

since

|χ+ tT (ℓ)|2 = 1+ 2tχ · T (ℓ) + t2|T (ℓ)|2 ≥ 1− 2t|T (ℓ)|δ0 + t2|T (ℓ)|2 ≥ 1− δ20 > 0

as consequence of the obliqueness of the field ℓ: χ · T (ℓ) ≥ −|T (ℓ)|δ0, δ0 < 1 (the
angle between χ and T (ℓ) is less than π).

Moreover, since Dα
ξ ψ(χ, |ξ|) = O(|ξ|−|α|) as |ξ| → 0 the following estimate

holds true
|Dα

ξ θ(ξ)| ≤ C(n, |α|, ℓ,a)|ξ|2−n−|α|.

4. Lp a priori estimates

In this section we prove W 2,p a priori estimate for the solutions of (1.1) as
stated in Theorem 1.1.
Hereafter we shall denote by Γ(x, ξ) and θ(x, ξ) the functions defined by (3.1)

and (3.5) respectively, in the case when the coefficients aij (and therefore Aij)
depend on x. Further

Γi(x, ξ) =
∂Γ(x, ξ)

∂ξi
, Γij(x, ξ) =

∂2Γ(x, ξ)

∂ξi∂ξj
,

θi(x, ξ) =
∂θ(x, ξ)

∂ξi
, θij(x, ξ) =

∂2θ(x, ξ)

∂ξi∂ξj

and let

M = max
i,j=1,... ,n

max
|α|≤2n

∥∥∥∥
∂α

∂ξα
Γij(x, ξ)

∥∥∥∥
L∞(Ω×{|ξ|=1})

.

If T (x, y) is the reflection defined by (2.3) we define the vector A(y) = (A1(y), . . . ,
An(y)) by

A(y) =
∂

∂xn
T (x, y), i.e. A(y) =

(
−2 a

1n(y)

ann(y)
, . . . ,−2a

n−1, n(y)

ann(y)
,−1

)
.

Finally, the VMO-moduli of the coefficients aij(x) of the operator L will be
denoted by ηij(r) and η(r) = (η

2
ij(r))

1/2.

We start by recalling the following interior estimate proved by Chiarenza,
Frasca and Longo in [CFL1].
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Theorem 4.1. Suppose that the operator L satisfies assumption (1.2). Then
for all p, q: 1 < q ≤ p < ∞ and u ∈ W 2,qloc (Ω) such that Lu ∈ Lp

loc(Ω) we

have u ∈ W 2,ploc (Ω). Moreover, given Ω
′ ⊂⊂ Ω′′ ⊂⊂ Ω there exists a constant

c = c(n, p, λ,M, dist(Ω′, ∂Ω′′), η) such that

‖u‖
W2,p(Ω′)

≤ c
(
‖u‖

Lp(Ω′′)
+ ‖Lu‖

Lp(Ω′′)

)
.

The boundary estimate we need will be derived in several steps. First of all,
we consider the simplest case of homogeneous boundary condition with constant
coefficients boundary operator. The strategy is to use Lemma 3.1 in order to
represent the second derivatives of the solution. As in Section 3 the symbols L0
and B0 stand for the elliptic and boundary operator, respectively, with constant
coefficients. Moreover, without loss of generality we may assume that the solutions
u of (1.1) we are dealing with are supported in the ball B̺.

Lemma 4.2. Let u ∈ W 2,p(B+̺ ) be a solution of the equation Lu = f in B+̺
such that B0u = 0 on B̺ ∩ {xn = 0}. Then

(4.1)

Diju(x) =

= P.V.

∫

B+̺

Γij(x, x − y)
{(
ahk(x)− ahk(y)

)
Dhku(y) + f(y)

}
dy

+ cij(x)f(x) − Iij(x, x) + Jij(x, x) ∀x ∈ B+̺ ,

where

cij(x) =

∫

|ξ|=1
Γi(x, ξ)ξj dσξ ,

Iij(x, z) =

∫

B+̺

Γij(z, T (x, z)− y)
{(
ahk(z)− ahk(y)

)
Dhku(y) + f(y)

}
dy

i, j < n,

Iin(x, z) =

∫

B+̺

Γij(z, T (x, z)− y)
{(
ahk(z)− ahk(y)

)
Dhku(y) + f(y)

}
Aj(z) dy

i < n,

Inn(x, z) =

=

∫

B+̺

Γij(z, T (x, z)− y)
{(
ahk(z)− ahk(y)

)
Dhku(y) + f(y)

}
Ai(z)Aj(z) dy,
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and

Jij(x, z) =

∫

B+̺

θij(z, T (x, z)− y)
{(
ahk(z)− ahk(y)

)
Dhku(y) + f(y)

}
dy

i, j < n,

Jin(x, z) =

∫

B+̺

θij(z, T (x, z)− y)
{(
ahk(z)− ahk(y)

)
Dhku(y) + f(y)

}
Aj(z) dy

i < n,

Jnn(x, z) =

=

∫

B+̺

θij(z, T (x, z)− y)
{(
ahk(z)− ahk(y)

)
Dhku(y) + f(y)

}
Ai(z)Aj(z) dy.

Moreover there exist constants ̺0 > 0 and c such that

(4.2) ‖Diju‖
Lp(B+̺ )

≤ c‖Lu‖
Lp(B+̺ )

∀ ̺ ∈ (0, ̺0).

Proof: Let x0 ∈ B+̺ and suppose u ∈ C∞(B̺). Rewriting the equation Lu = f
as

L0u ≡ aij(x0)Diju(x) =
(
aij(x0)− aij(x)

)
Diju(x) + f(x)

we have

(4.3) u(x) =

∫

B+̺

G(x0, x, y)
{(
ahk(x0)− ahk(y)

)
Dhku(y) + f(y)

}
dy

where

G(x0, x, y) = Γ(x0, x− y)− Γ(x0, T (x, x0)− y) + θ(x0, T (x, x0)− y)

by virtue of Lemma 3.1.
The difference above represents the half space Green function for L0 and there-

fore the first two integrals in (4.3) can be differentiated as in the proof of [CFL2,
Theorem 3.2]. As it concerns the last term in (4.3) that includes θ(x0, T (x, x0)−y)
it is possible to differentiate it inside the integral. Hence

Diju(x) = P.V.

∫

B+̺

Γij(x0, x− y)
{(
ahk(x0)− ahk(y)

)
Dhku(y) + f(y)

}
dy

+ cij(x0)f(x)− Iij(x, x0) + Jij(x, x0) ∀x ∈ B+̺ .

Taking x = x0 above we obtain (4.1) if u ∈ C∞(B̺).
To proceed further, let us note that each Γij(x, x− y) is a Calderón-Zygmund

kernel with respect to x − y as the first derivative of a function that is homoge-
neous of degree 1 − n. Therefore the principal value integral in (4.1) is bounded
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from Lp(B+̺ ) into itself by virtue of Theorems 2.1, 2.2. Further, it follows from
Theorems 2.3, 2.4, and Remarks 2.1 and 3.1 that the integral operators Iij and
Jij are bounded too. Thus taking L

p norms of the both sides in (4.1) we have

‖Diju‖
Lp(B+̺ )

≤ c

(
‖a‖∗‖Diju‖

Lp(B+̺ )
+ ‖f‖

Lp(B+̺ )

)

where ‖a‖∗ ≡ ∑
ij ηij . Since ‖a‖∗ → 0 as ̺ → 0 (aij ∈ VMO), if we choose ̺

small enough we obtain (4.2).
Finally, a density argument based on Theorem 2.1 gives the statement of

Lemma 4.2 in the case u ∈ W 2,p(B+̺ ). �

For later purposes we need the following regularity result that is in fact a
refinement of the a priori estimate (4.2).

Theorem 4.3. Suppose 1 < q ≤ p < +∞ and let u ∈ W 2,q(B+̺ ) be such that

Lu ∈ Lp(B+̺ ) and B0u = 0 on B̺ ∩ {xn = 0}.
Then u ∈ W 2,p(B+̺ ) and there exists a constant c such that

(4.4) ‖Diju‖
Lp(B+̺ )

≤ c‖Lu‖
Lp(B+̺ )

.

Proof: Let us set for i, j, h, k = 1, . . . , n

Sijhk(f)(x) = P.V.

∫

B+̺

Γij(x, x − y)
{(
ahk(x)− ahk(y)

)
f(y)

}
dy,

S̃ijhk(f)(x) =





∫
B+̺
Γij(x, T (x) − y)

{(
ahk(x)− ahk(y)

)
f(y)

}
dy

i, j < n,∫

B+̺

Γij(x, T (x) − y)
{(
ahk(x)− ahk(y)

)
f(y)

}
Aj(x) dy

i < n,∫

B+̺

Γij(x, T (x) − y)
{(
ahk(x)− ahk(y)

)
f(y)

}
Ai(x)Aj(x) dy

i = j = n,

˜̃Sijhk(f)(x) =





∫
B+̺

θij(x, T (x)− y)
{(
ahk(x)− ahk(y)

)
f(y)

}
dy

i, j < n,∫

B+̺

θij(x, T (x)− y)
{(
ahk(x)− ahk(y)

)
f(y)

}
Aj(x) dy

i < n,
∫
B+̺

θij(x, T (x)− y)
{(
ahk(x)− ahk(y)

)
f(y)

}
Ai(x)Aj(x) dy

i = j = n
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(recall T (x) = T (x, x)). By means of Theorems 2.2, 2.3 and 2.4 all these operators
are bounded from Lp(B+̺ ) into itself. Moreover, condition a

ij ∈ VMO ensures
that we can choose ̺0 > 0 so small that

n∑

i,j,h,k=1

‖Sijhk + S̃ijhk +
˜̃
Sijhk‖ < 1,

where the operator norm is in the space of linear operators from Lr(B+̺ ) into

itself, r ∈ [q, p], ̺ ∈ (0, ̺0).
Let us consider the mapping F :

[
Lr(B+̺ )

]n2 →
[
Lr(B+̺ )

]n2
, r ∈ [q, p], 0 < ̺ <

̺0, defined by
Fw = ((Fw)ij)i,j=1,...,n

where
(Fw)ij =

∑

hk

(
Sijhk + S̃ijhk +

˜̃
Sijhk

)
wij + hij

and

hij = P.V.

∫

B+̺

Γij(x, x− y)Lu(y) dy + cij(x)Lu(x) + Ĩij(x) + J̃ij(x),

Ĩij(x) =

∫

B+̺

Γij(x, T (x)− y)Lu(y) dy i, j < n,

Ĩin(x) =

∫

B+̺

Γij(x, T (x)− y)Aj(x)Lu(y) dy i < n,

Ĩnn(x) =

∫

B+̺

Γij(x, T (x)− y)Ai(x)Aj(x)Lu(y) dy,

J̃ij(x) =

∫

B+̺

θij(x, T (x) − y)Lu(y) dy i, j < n,

J̃in(x) = ds

∫

B+̺

θij(x, T (x)− y)Aj(x)Lu(y) dy i < n,

J̃nn(x) =

∫

B+̺

θij(x, T (x) − y)Ai(x)Aj(x)Lu(y) dy.

By virtue of Lemma 4.2 we have hij ∈ Lp(B+̺ ). Moreover, F is a contraction
mapping from

[
Lr(B+̺ )

]n2
into itself as a consequence of the choice of ̺0. There-

fore F has a unique fixed point w ∈
[
Lr(B+̺ )

]n2
and this fixed point must be the

same for all r ∈ [q, p]. On the other hand (Diju)i,j=1,... ,n ∈
[
Lq(B+̺ )

]n2
is also a
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fixed point of F as it follows from (4.1). Therefore Diju(x) = wij(x) ∈ Lp(B+̺ )
for all i, j = 1, . . . , n.
The estimate (4.4) is a consequence of (4.2). �

Proof of Theorem 1.1: It will be done in three steps.
Step 1. Let u ∈ W 2,q(B+̺ ), 1 < q ≤ p < ∞, solves the nonhomogeneous

oblique derivative problem with constant coefficients boundary operator, i.e. Lu =
f ∈ Lp(B+̺ ) and B0u ≡ ∂u/∂ℓ(x0) + σ(x0)u = ϕ(x) ∈ W 1−1/p,p(B̺ ∩ {xn = 0})
where x0 ∈ B+̺ . We want to prove that u ∈W 2,p(B+̺ ) and

(4.5) ‖Diju‖
Lp(B+̺ )

≤ c

(
‖f‖

Lp(B+̺ )
+ ‖ϕ‖

W1−1/p,p(B̺∩{xn=0})

)
.

In fact, let v ∈W 2,p(B+̺ ) be such that ∂v/∂ℓ(x0)+σ(x0)v = ϕ(x) on B̺∩{xn =

0}. For example, we may take the function v in such a way that v|{xn=0} = 0,

∂v/∂xn|{xn=0} = ϕ(x)/ℓn(x0) (see [AR] for the details). Then L(u−v) = f−Lv ∈
Lp(B+̺ ) and B0(u− v) = 0 on B̺ ∩ {xn = 0}. Applying Theorem 4.3 and using

‖v‖
W2,p(B+̺ )

≤ c‖ϕ‖
W1−1/p,p(B̺∩{xn=0})

we obtain (4.5).

Step 2. Suppose that u ∈ W 2,q(B+̺ ), 1 < q ≤ p < ∞, is such that Lu = f ∈
Lp(B+̺ ) and Bu = ϕ(x) ∈ W 1−1/p,p(B̺ ∩ {xn = 0}). Then u ∈ W 2,p(B+̺ ) and
there exist constants c, ̺0 > 0 such that

(4.6) ‖u‖
W2,p(B+̺ )

≤ c

(
‖u‖

Lp(B+̺ )
+ ‖f‖

Lp(B+̺ )
+ ‖ϕ‖

W1−1/p,p(B̺∩{xn=0})

)

for all ̺ ∈ (0, ̺0).
Let the ball B̺ to be centered at x0 ∈ {xn = 0}. Then rewriting Bu = ϕ as

B0u ≡ ∂u(x)

∂ℓ(x0)
+ σ(x0)u(x) = ϕ(x) +

(
ℓi(x0)− ℓi(x)

)
Diu(x)

+
(
σ(x0)− σ(x)

)
u(x) = ϕ̃(x)

we have ϕ̃ ∈ W 1−1/p,p(B̺ ∩ {xn = 0}) and therefore u ∈ W 2,p(B+̺ ) as it was
proved above. Moreover,

‖ϕ̃‖
W1−1/p,p(B̺∩{xn=0})

≤ c

(
‖ϕ‖

W1−1/p,p(B̺∩{xn=0})
+ ‖u‖

W1,p(B+̺ )
+ ̺‖Diju‖

Lp(B+̺ )

)
.
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Here we used the fact that the coefficients of B are Lipschitz functions and the
Rademacher theorem asserts that they admit L∞ first derivative almost every-
where. Thus (4.5) implies

‖u‖
W2,p(B+̺ )

≤ c

(
‖f‖

Lp(B+̺ )
+ ‖u‖

W1,p(B+̺ )
+ ‖ϕ‖

W1−1/p,p(B̺∩{xn=0})
+ ̺‖Diju‖

Lp(B+̺ )

)

≤ c

(
‖f‖

Lp(B+̺ )
+ ‖u‖

Lp(B+̺ )
+ ‖ϕ‖

W1−1/p,p(B̺∩{xn=0})
+ ̺‖Diju‖

Lp(B+̺ )

)

after applying the Gagliardo-Nirenberg interpolation inequality (see [NL, p. 125]).
Since the constant c above is independent of ̺, if we choose ̺0 to be sufficiently
small the term ‖Diju‖

Lp(B
+
̺ )
may be moved on the left and the estimate (4.6)

follows.

Step 3. Standard arguments based on suitable partition of unity, covering
and local flattening of ∂Ω, as well as the application of the interior and boundary
estimates (Theorem 4.1 and (4.6)) complete the proof of Theorem 1.1. The last
thing we have to point out is that the local C1,1-diffeomorphisms that straighten
the boundary preserve the VMO character of the coefficients aij(x).

5. The oblique derivative problem

First of all we deduce uniqueness result for the strong solutions of (1.1).

Theorem 5.1. Suppose (1.2) and (1.3) to be fulfilled and let u, v ∈ W 2,p(Ω),
1 < p <∞, be strong solutions of the oblique derivative problem (1.1).
Then u = v in Ω.

Proof: The difference u− v ∈W 2,p(Ω) solves the homogeneous boundary value
problem (1.1) (f = 0 and ϕ = 0). The regularity assertion of Theorem 1.1 implies
that u − v ∈ W 2,q(Ω) for all q ∈ (1,∞). Then the statement of the theorem
follows from a variant of the Aleksandrov-Pucci-Bakelman maximum principle for
the oblique derivative problem proved by Luo and Trudinger [LT, Theorem 3.1]
(see [L, Theorem 1.5] also). �

Proof of Theorem 1.2: There exists a function v ∈ W 2,p(Ω) (see [AR]) such
that Bv = ϕ in the sense of trace on ∂Ω. Thus, subtracting v of u we may consider
the problem

(5.1)





Lu ≡ aij(x)Diju = f(x) a.e. Ω

Bu ≡ ∂u

∂ℓ
+ σ(x)u = 0 on ∂Ω

instead of (1.1). In this setting, the estimate (1.5) has the form

(5.2) ‖u‖
W2,p(Ω)

≤ c‖f‖
Lp(Ω)
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with a constant c that does not depend on u.
To prove (5.2) we suppose the opposite. It means that for fixed values of the

parameters n, p, M , ∂Ω, λ, η and for every h ∈ N there exists a sequence of

operators Lh ≡ a
ij
h (x)Dij satisfying (1.2), and a sequence of functions {uh(x)},

uh ∈W 2,p(Ω) such that Buh = 0 on ∂Ω and

‖uh‖W2,p(Ω)
= 1, lim

h→∞
‖Lhuh‖Lp(Ω)

= 0.

By means of the VMO results already stated in Section 2, we may choose aij
h in

such a way that their VMO moduli ηh and L
∞ norms are uniformly bounded by

η(r) and ‖aij‖
L∞(Ω)

, respectively.

Let B ⊂ R
n be a ball of radius r and set Ωr = B ∩ Ω. The sequence {aij

h −
(aij

h )Ωr
} is compact in L1(Ωr). In fact,

‖aij
h − (aij

h )Ωr
‖

L∞(Ωr)
≤ 2λ−1 ∀h ∈ N

and moreover

1

|Ωr|
∥∥∥
(
aij
h (x− y)− (aij

h )Ωr

)
−

(
aij
h (x) − (a

ij
h )Ωr

)∥∥∥
L1(Ωr)

≤ ‖aij
h − (aij

h )Ωr
‖∗ ≤ c ηh(r) ≤ c η(r)

as consequence of the choice of aij
h . Thus

‖aij
h − (aij

h )Ωr
‖

L1(Ωr)
≤ c|Ωr|η(r)→ 0 as r → 0,

and therefore the set {aij
h − (aij

h )Ωr
} is uniformly bounded and equicontinuous in

L1(Ωr).

It follows that a subsequence of {aij
h } converges almost everywhere in Ωr to

a function αij(x). Standard arguments based on a suitable covering of Ω with

balls and taking subsequences lead to the conclusion that {aij
h } converges almost

everywhere on Ω to αij(x), and αij(x) satisfy (1.2).
Denote Lα ≡ αij(x)Dij .

By virtue of Theorem 1.1 the set {uh} is bounded in W 2,p(Ω) and therefore a
subsequence (still denoted {uh}) is weakly convergent to a function uα ∈W 2,p(Ω).
Furthermore, Rellich theorem implies limh→∞ ‖uh − uα‖W1,p(Ω)

= 0 whence

0 = Buh =
∂uh

∂ℓ
+ σuh → ∂uα

∂ℓ
+ σuα = Buα on ∂Ω as h→ ∞.
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On the other hand, for each w ∈ Lp/(p−1)(Ω) we have∫

Ω
|Lhuh − Lαuα||w| dx ≤

∫

Ω
|Lhuh − Lhuα||w| dx +

∫

Ω
|Lhuα − Lαuα||w| dx

≤ λ−1
∫

Ω
|w||Dijuh −Dijuα| dx+

∫

Ω
|w||aij

h − αij | |Dijuα| dx→ 0

as result of the weak convergence of uh to uα and almost everywhere convergence

of aij
h to α

ij . Hence

‖Lαuα‖Lp(Ω)
= lim

h→∞
‖Lhuh‖Lp(Ω)

= 0, Buα = 0 on ∂Ω

and the uniqueness result (Theorem 5.1) implies uα = 0 in Ω that contradicts
1 = ‖uα‖Lp(Ω)

= limh→∞ ‖uh‖Lp(Ω)
. Thus the estimate (5.2) is proved.

We are now in position to prove the existence part of Theorem 1.2. For this
goal the method of continuity [GT, Theorem 5.2] will be used.
Assume first that p > n and for τ ∈ [0, 1] consider the family of oblique

derivative problems:

(5.3)





Lτu ≡ τLu + (1− τ)∆u = f a.e. Ω

Bτu ≡ τBu+ (1− τ)

(
∂u

∂ν
− u

)
= 0 on ∂Ω.

Obviously Lτ and Bτ satisfy conditions (1.2) and (1.3) respectively, and the prob-
lem (5.3) coincides with (5.1) in the case τ = 1.
Defining the operator

Pτ = (Lτ ,Bτ ):W
2,p(Ω) −→ Lp(Ω)× {0}

by Pτ = (Lτu,Bτu) = (Lτu, 0), it is clear that the solvability of (5.3) is equivalent
to the fact that Pτ is an invertible mapping. To show this, let uτ be a solution
of (5.3) for fixed f ∈ Lp(Ω). It follows from Theorem 5.1 and (5.2) that

‖uτ‖W2,p(Ω)
≤ c‖f‖

Lp(Ω)
= c‖Pτuτ‖Lp(Ω)×{0}

and c does not depend on τ . Thus Pτ is one-to-one mapping for each τ ∈ [0, 1].
Now the invertibility of Pτ for τ = 1 (i.e. the solvability of (5.1)) is a consequence
of continuity’s method and the fact that P0 maps W 2,p(Ω) onto Lp(Ω)×{0}, i.e.
the operator P0 is invertible. Indeed, the last claim is equivalent to the solvability
in W 2,p(Ω) of the third boundary value problem

(5.4)





∆u = f(x) a.e. Ω

∂u

∂ν
− u = 0 on ∂Ω

for each f ∈ Lp(Ω) that follows immediately from [C1, Theorem 2] since p > n.
The only fact we have to point out is that the cited result of M. Chicco remains
true in the case ∂Ω ∈ C1,1 by means of Rademacher theorem.
To prove solvability of (5.1) for 1 < p ≤ n we take a sequence {fh} of Lq-

functions, q > n, that approximates f(x) in Lp(Ω). Denoting by {uh(x)} the
sequence of solutions of the corresponding oblique derivative problems, similar
arguments to those used in proving (5.2) complete the proof of Theorem 1.2. �
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