
Commentationes Mathematicae Universitatis Carolinae

Saharon Shelah
Finite canonization

Commentationes Mathematicae Universitatis Carolinae, Vol. 37 (1996), No. 3, 445--456

Persistent URL: http://dml.cz/dmlcz/118851

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1996

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/118851
http://project.dml.cz


Comment.Math.Univ.Carolin. 37,3 (1996)445–456 445

Finite canonization

Saharon Shelah

Abstract. The canonization theorem says that for given m, n for some m∗ (the first one
is called ER(n;m)) we have

for every function f with domain [1, . . . , m∗]n, for some A ∈ [1, . . . , m∗]m, the
question of when the equality f(i1, . . . , in) = f(j1, . . . , jn) (where i1 < · · · < in
and j1 < · · · jn are from A) holds has the simplest answer: for some v ⊆

{1, . . . , n} the equality holds iff
ℓ̂∈v

iℓ = jℓ.

We improve the bound on ER(n, m) so that fixing n the number of exponentiation
needed to calculate ER(n, m) is best possible.

Keywords: Ramsey theory, Erdös-Rado theorem, canonization

Classification: 05, 05C55

§0. Introduction

On Ramsey theory see the book Graham Rothschild Spencer [GrRoSp]. This
paper is self-contained.
The canonical Ramsey theorem was originally proved by Erdös and Rado, so

the relevant number is called ER(n, m). See [ErRa], [Ra86] and more in the work
of Galvin. The theorem states that if m and n are given, and f is an n-place
function on a set A of size ≥ ER(n, m), then there is an A′ ∈ [A]m such that f is
canonical on A′. That is, for some v ⊆ {1, . . . , n} and for every i1 < · · · < in ∈ A′

and j1 < · · · < jn ∈ A

f(i1, . . . , in) = f(j1, . . . , jn)⇔
∧

ℓ∈v

iℓ = jℓ.

Galvin got in the early seventies by the probability method a lower bound which
appeared in [ErSp, p. 30], ER(2;m) ≥ (m+ o(1))m.
Lefmann and Rödl [LeRo93] proved

2cm
2

< ER(2;m) ≤ 22
c
m
3

1
.
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Lefmann and Rödl [LeRo94] proved:

(i) 2c2m
2
≤ ER(2;m) ≤ 2c

∗
2(m

2 logm)

(ii) in(ckm2) ≤ ER(n+ 1;m) ≤ in+1

(

c∗k
m2k−1

logm

)

.

See more on this in [LeRo94] and below for the definition of in.
We thank Nešetřil for telling us the problem; which for us was finding the right
number of exponents (i.e. the subscript for i in (ii) above) in ER(n;m) (for a
fixed n). We prove here that this number is n.
Why is the number of exponentiations best possible? Let rn

t (m) be the first r
such that: r → (m)nt , now trivially ER(n;m) ≥ rn

t (m) when m is not too small,
and rn

t (m) needs n − 1 exponentiations when t is not too small.

§1. The finitary canonization lemma

Notation.. R, N are the set of reals and natural numbers respectively. The letters
k, ℓ, m, n will be used to denote natural numbers, as well as i, j, α, β, γ, ζ, ξ. We
let ε be a real (usually positive).
If A is a set,

[A]n = {u ⊆ A : |u| = n}.

We call finite subsets u, v of N neighbors if:

|u| = |v|, |u\v| = 1

and
[k ∈ u\v, ℓ ∈ v\u, m ∈ u ∩ v ⇒ k < m ≡ ℓ < m].

For m ∈ N, we let [m] = {1, . . . , m}.
For a set A of natural numbers and i ∈ N, A < i means (∀ j ∈ A)(j < i). We
similarly define i < A.
With i, A as above

A>i denotes the set {j ∈ A : j > i}.

We use the convention that A>sup ∅ is A.

Let in(m) be defined by induction on n : i0(m) = m and in+1(m) = 2
in(m).

Usually, ci denotes a constant. �

1.1 Lemma (Finitary Canonization). Assume n is given, then there is a constant
c computable from n, such that if m is large enough:

If f is an n-place function from [m⊗] = {1, . . . , m⊗} andm⊗ > in−1(cm
8(2n−1))

then for some A′ ∈ [{1, . . . , m⊗}]m, f is canonical on A′; i.e. for some v ⊆
{1, . . . , n} for every i1 < · · · < in from A′ and j1 < · · · < jn from A′, we
have

f(i1, . . . , in) = f(j1, . . . , jn)⇔
∧

ℓ∈v

iℓ = jℓ.
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The proof is broken into several claims.

Explanation of our proof.
We inductively on n∗ = n⊗, . . . , 1 decrease the set to An∗ while increasing the

amount of “partial homogeneity”, i.e. conditions close to: results of computing f
on an n-tuple from An∗ are not dependent on the last p = n⊗ − n∗ members of
the n-tuple. Having gone down from n⊗ to n∗, we want that: if u1, u2 ∈ [An∗ ]n

are neighbors differing in the ℓ-th place element only then: if ℓ < n∗, the truth
value of f(u1) = f(u2) depends on the first n∗ elements of u1 and u2 only; if
ℓ > n∗ the truth value of f(u1) = f(u2) depends on the first n∗ elements of u1
only. Lastly if ℓ = n∗, it is little more complicated to control this; but the truth
value is monotonic and we introduce certain functions, (the h’s) which express
this. Arriving to n∗ = 1 we eliminate the h’s (decreasing a little) so we get the
sufficiency of the condition for equality, but we still have the necessity only for
u1, u2 which are neighbors. Then by random choice (as in [Sh37]), we get the
necessity for all pairs of sets. The earlier steps cost essentially one exponentiation
each, the last two cost only taking a power.

1.2 Claim. Assume

(∗)0 m ≥ 2(1+ε)c1(m∗)n
∗

t > 0, n∗ > 1, k(∗) > 0 (c1 is defined in the proof from k(∗), n∗)
and m∗ is large enough (relative to 1/ε, t, k(∗), n∗)

(∗)1 A ⊆ N, |A| > m

fk a function with domain [A]
n∗

for k < k(∗),
hk is a function from [A]

n∗

to N for k < k(∗), and
g is a function with domain [A]n

∗

such that Rang(g) has cardinality ≤ t.

Then we can find A∗, j∗ such that:

(∗)2 A∗ ⊆ A, |A∗| > m∗ and j∗ ∈ A>sup(A∗) and we have:

if k < k(∗), u ∈ [A∗]n
∗−1 and v ∈ [A∗]n

∗−1, then

(α) if u, v are neighbors, then for all i ∈ A∗
>sup(u∪ν) we have

fk(u ∪ {i}) = fk(v ∪ {i})⇔ fk(u ∪ {j∗}) = fk(v ∪ {j∗})

(β) if u = v then for every i0 < i1 from A∗
>sup(u) we have

1

fk(u ∪ {i0}) = fk(u ∪ {i1})⇔ fk(u ∪ {i0}) = fk(u ∪ {j∗})

(γ) for all i ∈ A∗
>sup(u)

g(u ∪ {i}) = g(u ∪ {j∗})

1This is used later to define the hk for the “next step”.
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(δ) either for all i ∈ A∗
>sup(u) ∪ {j∗} we have

hk(u) ≥ i

or for all i ∈ A∗
>sup(u) ∪ {j∗} we have

hk(u) < i.

1.2A Remark. (1) We could have also related fk1(u), fk2(u) for various k1, k2,
this would not have influenced the bounds.

Proof: Standard ramification. For B ⊆ A we define an equivalence relation EB
on A>sup(B) as follows. We let:

i0EB i1 iff i0, i1 ∈ A>sup(B) and for every u, v ∈ [B]n
∗−1, d ∈ Rang(g), w ∈ [B]n

∗

and k < k(∗) the truth value of the following is the same for ℓ ∈ {0, 1}:

(α) fk(u ∪ {iℓ}) = fk(v ∪ {iℓ}) if u, v are neighbors
(β) fk(u ∪ {iℓ}) = fk(w) if u = w\{max(w)}
(γ) g(u ∪ {iℓ}) = d
(δ) hk(u) ≥ iℓ.

Clearly EB is an equivalence relation and E∅ is the equality (as n∗ > 1).
For i ∈ A>sup(B) we let i/EB denote the equivalence class of i via EB .

Note that if B ⊆ B∗, then i/EB∗ ⊆ i/EB.
We now define a tree T by defining by induction on ℓ ∈ N objects t≤ℓ, ≤ℓ and
〈Ai : i ∈ t≤ℓ〉 such that:

(a) (t≤ℓ
,≤ℓ) is a tree, t≤ℓ

a subset of A,≤ℓ a partial order on tℓ such that for
every x ∈ t≤ℓ

, {y : y ≤ℓ x} is linearly ordered
(b) t≤ℓ

⊆ t≤ℓ+1
and ≤ℓ+1↾ t≤ℓ

=≤ℓ

(c) t≤0 = {min(A)}, Amin(A) = A>min(A)

(d) t≤(ℓ+1)\t≤ℓ is the (ℓ+ 1)-th level of (t≤(ℓ+1),≤ℓ+1)

(e) if i0 <ℓ i1 <ℓ · · · <ℓ iℓ ∈ t≤ℓ
(so {i0, . . . , iℓ} is a branch) then

(α) Aiℓ = iℓ/E{i0,...,iℓ−1}

(β) the set of immediate successors of iℓ in (t≤(ℓ+1),≤ℓ+1) is

Yiℓ =: {min(j/E{i0,i1,...,iℓ}
) : j ∈ Aiℓ but j 6= iℓ}.

This is straight. Let tℓ = t≤ℓ\
⋃

m<ℓ

t≤m and T =
⋃

ℓ

t≤ℓ.

Note also that i ≤ℓ j ⇒ i ≤ j and that
⊗

if we consider the definition of E{i:i≤ℓj} restricted just to Aj\{j} we may

restrict ourselves: for clause (α) only to the u, v ∈ [{i : i ≤ℓ j}]n
∗−1 with

max(u ∪ v) = j, and for clause (β) only to those

u ∈ [{i : i ≤ℓ j}]n
∗−1, w ∈ [{i : i ≤ℓ j}]n

∗

with max(w) = j.
For (γ) and (δ) we may assume max(u) = iℓ.
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Now it is easy to see that

(∗)3 A =
⋃

ℓ

tℓ

(∗)4 if j ∈ tℓ then the number of immediate successors of j in (t≤ℓ+1,≤ℓ+1)
(necessarily they are all in tℓ+1) is at most

(

2(
ℓ

n∗−1)(n
∗−1)

)k(∗)

×

(

2(
ℓ

n∗−1)
)k(∗)

× t(
ℓ

n∗−2) ×
(

( ℓ
n∗−2

)

· k(∗) + 1
)

.

[Why this inequality? The four terms in the product correspond to the four clauses
(α), (β), (γ), (δ) in the definition of EB for the branch B = {i0, . . . , iℓ = j} of
(t≤ℓ,≤). The power k(∗) in the first two terms comes from dealing with fk for
each k < k(∗) and “2 to the power x” as we have x choices of yes/no. Now
the first term comes from counting the possible u ∪ v (from clause (α)). At the

first glance their number is |[{i0, . . . , iℓ}]
n∗

| as being neighbors each with n∗ − 1
elements they have together n∗ elements, but by

⊗

we can restrict ourselves to

the case iℓ ∈ u ∪ v, so we have to consider |[{i0, . . . , iℓ−1}]
n∗−1| =

( ℓ
n∗−1

)

sets

u ∪ v; then we have to choose u ∪ v\(u ∩ v) (as we do not need to distinguish
between (u, v) and (v, u)). As u, v are neighbors we have n∗ − 1 possible choices
(as the two members of (u∪ v)\(u∩ v) are successive members of u∪ v under the
natural order).
For the second term, we should consider u, w as in clause (β), and so as

u = w\{max(w)} we know w gives all the information, and by
⊗

above

max(w) = iℓ, so the number of possibilities is
( ℓ
n∗−1

)

.

For the third term we have a choice of one from ≤ t(= |Rang(g)|) for each
u ∈ [{i0, . . . , iℓ}]

n∗−1, but again by
⊗

, with max(u) = iℓ, so the number is
( ℓ
n∗−2

)

.

Lastly, in the fourth term the number of questions “hk(u) ≥ i” is again
( ℓ
n∗−2

)

· k(∗), but by the properties of linear orders there are
( ℓ
n∗−2

)

· k(∗) + 1
possible answers. So (∗)4 really holds.]
Clearly (with c0 = k(∗)/(n∗ − 2)! + k(∗)/(n∗ − 1)!)

(∗)5

(

2(
ℓ

n∗−1)×n∗−1
)k(∗)

×

(

2(
ℓ

n∗−1)
)k(∗)

× t(
ℓ

n∗−2) ×
(

( ℓ
n∗−2

)

· k(∗) + 1
)

≤ 2k(∗)ℓ
n
∗
−1/(n∗−2)! × 2k(∗)·ℓ

n
∗
−1/(n∗−1)! × 2log(t)ℓ

n
∗
−2/(n∗−2)!

×ℓn∗−2 · k(∗)/(n∗ − 2)! ≤ 2c0ℓ
n
∗
−1(1+ε).

(any positive ε, for ℓ large enough; actually we can replace ε by e.g. 1/ℓ1−ε, ε > 0).
So (for some constant c20)
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(∗)6 |tℓ+1| ≤ c20

ℓ
∏

p=1

2(1+ε)c0pn
∗
−1
= c20 · 2

(1+ε)c0

ℓ
∑

p=1

pn∗−1

≤ c20 · 2
(1+ε)c0(ℓ+1)n

∗
/n∗

= c20 · 2
(1+ε)c01(ℓ+1)

n
∗

.

But
⊕

if ap ≥ 0, ap ≤ ap+1 and p ≥ ℓ∗ ⇒ 2ap ≤ ap+1 then
ℓ

∑

p=0

ap ≤ 2aℓ +
∑

p≤ℓ∗

ap

hence (possibly increasing ε, which means for (∗)5 using large ℓ)

(∗)7 |t≤(ℓ+1)| ≤ c30 +

ℓ+1
∑

p=0

c20 · 2
(1+ε)c01(p+1)

n
∗

≤ c40 · 2
(1+ε)c01(ℓ+1)

n
∗
+1 ≤

2(1+ε)c1(ℓ+1)n
∗

.

So (increasing ε slightly)

(∗)8 |t≤m∗ | ≤ m < |A|

so there is a j∗ ∈ tm∗+1. Let A∗ = {i : i <m∗+1 j∗} (so |A∗| = m∗ + 1), then
A∗, j∗ are as required (actually we could have retained c0 instead c1). �1.2

1.3 Claim. Assume

(∗)9 (a) n⊗ ≥ n∗ ≥ 1, k(∗) > 0

(b) we have the function m(−) satisfying m(n+ 1) ≥ 2(1+ε)c1m(n)n+1 for
n ∈ [n∗, n⊗), c1 from 1.2

(c) t > 0 and m(n∗) is large enough relative to k(∗), n∗, c1, 1/ε.

(∗)10 A ⊆ N, |A| ≥ m(n⊗) + 1, g is a function with domain [A]n
⊗

and range

with ≤ t members; fk is a function with domain [A]
n⊗

(for k < k(∗)), and
for simplicity P({0, 1, . . . , n⊗ − 1}) ∩ Rang(fk) = ∅.

Then we can find A′ ∈ [A]m(n
∗)+1 and j∗ℓ ∈ A for ℓ ∈ [n∗, n⊗) satisfying

A′ < j∗n∗ < j∗n∗+1 < . . . , and functions g′, gk, hk (k < k(∗)) with domain [A′]n
∗

such that (letting w∗ = {j∗ℓ : ℓ ∈ [n
∗, n⊗)}):

(∗)11 for all u ∈ [A′]n
∗

(a) for w ∈ [A′
>sup(u)]

n⊗−n∗

we have

g(u ∪ w) = g′(u) = g(u ∪ w∗)
(b) for k < k(∗) we have hk(u) ∈ N and gk(u) ∈ {v : v ⊆ (n∗, n⊗)}
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(c) if w1, w2 ∈ [A
′
>sup(u)]

n⊗−n∗

and k < k(∗) and: (note: |u| = n∗)

{i ∈ w1 : |u|+ |i ∩ w1| ∈ gk(u)} = {i ∈ w2 : |u|+ |i ∩ w2| ∈ gk(u)}
and [min(w1 ∪ w2) < hk(u)⇒ min(w1) = min(w2)] then
fk(u ∪ w1) = fk(u ∪ w2).

(d) Assume k < k(∗), w1 ∪ w2 ∪ {i, j} ⊆ A′, u < w1 < i < j < w2 and
|w1 ∪ w2| = n⊗ − n∗ − 1:

(i) if w1 6= ∅ then

fk(u ∪ w1 ∪ {i} ∪ w2) = fk(u ∪ w1 ∪ {j} ∪ w2)⇔ |u ∪ w1| /∈ gk(u)

(ii) if w1 = ∅ then

fk(u ∪ {i} ∪ w2) = fk(u ∪ {j} ∪ w2)⇔ hk(u) ≤ i.

(e) for k < k(∗) and neighbors u0, u1 ∈ [A
′]n

∗

and

w ∈ [A′
>max(u0∪u1)

]n
⊗−n∗

we have:

fk(u0 ∪ w) = fk(u1 ∪ w) iff fk(u0 ∪ w∗) = fk(u1 ∪ w∗).

Remark.. (1) Note particularly clause (d). So gk(u) is intended to be like the v
in 1.1, only fixing an initial segment of both {iℓ : ℓ < n⊗} and {jℓ : ℓ < n⊗} as u.
But whereas the equality demand in clause (d) is as expected, the non-equality
demand is weaker: only for neighbors.

(2) Note that we can in some clauses above replace A′ by A′ ∪ w∗.

Proof: We prove this by induction on n⊗ − n∗. If it is zero, the conclusion is
trivial.
Use the induction hypothesis with n⊗, n∗ +1, fk, (k < k(∗)), g now standing for

n⊗, n∗, fk, (k < k(∗)), g in the induction hypothesis. We get A′ ∈ [A]m(n
∗+1)+1

and functions g′, gk, hk (for k < k(∗)) and j∗ℓ for ℓ ∈ [n∗ + 1, n⊗) satisfying (∗)11
of Claim 1.3. Now we apply 1.2 to n∗ + 1 and m = m(n∗ + 1), A′, g⊗, f⊗

k , h⊗k
(k < k(∗)) where we define the function g⊗ with domain [A′]n

∗+1 by g⊗(u) =

〈g′(u), gk(u) : k < k(∗)〉, h⊗k = hk and the function f⊗
k with domain [A

′]n
∗+1 is

defined by
f⊗
k (u) = fk(u ∪ {j∗ℓ : ℓ ∈ [n

∗ + 1, n⊗)}).

We get there A∗ ∈ [A′]m(n
∗)+1 and j∗ ∈ (A′)>supA∗ . Let jn∗ =: j∗. Now we

have to define hk with domain [A
∗]n

∗

(for k < k(∗)). For u ∈ [A∗]n
∗

let

Bk
u =: {i ∈ A∗

>sup(u) : f
⊗
k (u ∪ {i}) 6= f⊗

k (u ∪ {j∗})}.
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By clause (β) of Claim 1.2, Bk
i is an initial segment of A∗

>sup(u). Let hk(u) =

max(Bk
u) + 1.

Lastly, for u ∈ [A∗]n
∗

we have to define gk(u). By 1.2 (δ), the answer to

“h⊗k (u ∪ {j}) < jn∗” does not depend on j ∈ A∗
>supu. Let g⊗k be the “old” gk

(with domain [A′]n
∗+1) and let

gk(u) =

{

g⊗k (u ∪ {jn∗}) if h⊗k (u ∪ {j}) < jn∗

g⊗k (n ∪ {jn∗}) ∪ {jn∗} otherwise.

Now A∗, gk, hk, j
∗
n, j

∗
n∗+1, . . . are as required. �1.3

1.4 Claim. (1) Assume m(1) ≥ (k(∗) ·m(0))k(∗)+1 and A′ ⊆ N, |A′| ≥ m(1) and
for k < k(∗), hk is a function from A′ into N, hk(i) ≥ i.
Then we can find A′′ ⊆ A′, |A′′| ≥ m(0) such that

(∗)12 for each k < k(∗) we have:

either (∀ i, j ∈ A′′)[i < j ⇒ hk(i) ≥ j]

or (∀ i, j ∈ A′′)[i < j ⇒ hk(i) < j].

(2) If m(1) > dkm(0)2
k(∗)
, A ⊆ N, |A| > m(1), gk is a function from A to

{1, . . . , d}, and fk is a function from A to N for k < k(∗) then we can find
A′ ⊆ A, |A′| > m(0) such that:

⊗

for each k, fk ↾ A′ is constant or one to one and gk ↾ A′ is constant.

Proof: (1) We can find A1 ⊆ A′, |A1| ≥ m(1)/k(∗)k(∗) such that for all i, j ∈ A1,

ℓ, k < k(∗)⇒ [hℓ(i) ≤ hk(i) ≡ hℓ(j) ≤ hk(j)].

So without loss of generality

(∗) ℓ < k < k(∗) & i ∈ A1 ⇒ hℓ(i) ≤ hk(i).

By renaming we can assume A1 = {1, 2, . . . , m(0)k(∗)+1}.

Now if for some ℓ, 0 < ℓ ≤ m(0)k(∗)+1 − m(0), and

(∀α)

(

α ∈ [ℓ, ℓ+m(0))⇒ h0(α) ≥ ℓ+m(0)

)

then A′′ = [ℓ, ℓ+m(0)) is as required

for all hℓ by (∗).

If not, then we can find αℓ ∈ [1, m(0)k(∗)+1) for ℓ = 1, . . . , m(0)k(∗), strictly
increasing with ℓ such that h0(αℓ) < αℓ+1. We repeat the argument for h1, etc.

(2) Also easy. �1.4

Remark.. We can use m(1) > k(∗)! · m(0)k(∗)+1 instead. The only point is the
choice of A.
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1.5 Claim. Assume we have the assumptions of 1.3. If we first apply 1.3 getting
A′ and then apply 1.4 to get A′′ ⊆ A′ such that for each k and u ∈ [A′′]n

∗

either
hk(u) ≤ min{ℓ ∈ A′′ : u < ℓ} or hk(u) > max(A′′) (we assume now n∗ = 1 so
u = {j}), and in addition

(∗)13 m2n
⊗−n∗

· (2n⊗ − n∗)
(2(n⊗−n∗)−1

n⊗−n∗

)

· k(∗) ≤ |A′′|

then there is A∗ ∈ [A′′]m such that (in addition to (∗)11(a)–(e) +(∗)12) we have

(∗)14 for all u ∈ [A∗]n
∗

(f) if w1, w2 ∈ [A
∗
>sup(u)]

n⊗−n∗

, k < k(∗) then

fk(u ∪ w1) = fk(u ∪ w2)⇔ {i ∈ w1 : |i ∩ w1|+ |u| ∈ gk(u)} =

{i ∈ w2 : |i ∩ w2|+ |u| ∈ gk(u)}.

Remark.. Here we are rectifying the gap between the equality ((∗)11(d)) and the
inequality ((∗)11(e)) demand.

Proof: First note that

(∗)15 for all u ∈ [A′′]n
∗

the implication ⇐ holds.
[why? just use clause (c) of (∗)11 of Claim 1.3].

So we are left with proving ⇒.

Choose randomly m members of A′′. We shall prove that the probability that
the set they form has exactly m members and satisfies clause (f), is positive. This
suffices. Let us explain. We fix n∗ among these elements and call the set they
form u.
In clause (∗)12 for ℓ = 1, 2 we let vℓ =: {i ∈ wℓ : |u|+ |i ∩ wℓ| ∈ gk(u)}.

By (∗)15 the problem is that ⇒ may fail.

Let x1, . . . , xm be random variables on A′′. The probability that
∨

i6=j

xi = xj

is ≤
(m
2

)

· 1
|A′′|
.

Now for k < k(∗)1, u ∈ [{1, . . . , m}]n
∗

, w1, w2 ∈ [{1, . . . , m}\u]n
⊗−n∗

,
v1 ⊆ w1, v2 ⊆ w2 defined as above, and a possible linear order <∗ on u∗ =
u ∪ w1 ∪ w2, we shall give an upper bound for the probability that

∧

ℓ1,ℓ2∈u∗

(ℓ1 <∗ ℓ2 ⇔ xℓ1 < xℓ2)

and they form a counterexample to clause (f) (of Claim 1.5). So in particular
u < w1, u < w2.
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Choose ℓ ∈ v1\v2 (as v1 6= v2 and |v1| = |gk(u)| = |v2| it exists). We can first
draw xj for j 6= ℓ. Now we know fk(u ∪ w2); note: we may not know w2 as
possibly ℓ ∈ w2, but as ℓ /∈ v2, by the choice of A

′ it is not necessary to know w2.
Now there is at most one bad choice of xℓ (the others are good (inequality) or

irrelevant (<∗ is not right) by (d) + (e)) so the probability of this is ≤ 1
|A′|
. So

if we fix the set u∗ = u ∪ w1 ∪ w2 and concentrate on the case |u
∗| = 2n⊗ − n∗,

we have 2n⊗ − n∗ possibilities to choose ℓ ∈ u∗ and then having to choose xi for

i 6= ℓ, we know u and have ≤
(2(n⊗−n∗)−1

n⊗−n∗

)

ways to choose w2, so the probability

of failure is ≤ (2n⊗ − n)
(2(n⊗−n∗)−1

n⊗−n∗

)

· 1
|A′′|
.

So the probability that some failure occurs is at most (the cases |u∗| < 2n⊗ − n∗

and x1 = x2 are swallowed when m is not too small)

m2n
⊗−n∗

· k(∗)(2n⊗ − n)

(

2(n⊗ − n∗)− 1

n⊗ − n∗

)

·
1

|A′′|
.

Now by assumption (∗)13 this probability is < 1 so the conclusion is clear. �1.5

Before we state and prove the last fact, which finishes the proof of the theorem,
we remind the reader of the following observation. The proof is easily obtained
by induction on ℓ.

1.6 Observation. (1) iℓ(kx) ≥ kiℓ(x) when x, k ≥ 2 and ℓ ≥ 1.

(2) iℓ(kx) ≥ (iℓ(x))
k when x ≥ 2, k ≥ 2 and ℓ ≥ 1.

1.7 Fact. Assume that n⊗, n∗, m(n∗), k(∗), ε, t and c1 are as in (∗)9 (a) and (c).

Let us define

c2 = Max{(1 + ε)c1, 2}

c3 = n⊗ × (c2)
2 (in fact n⊗ × c2 suffices)

and the function m(−) as follows: for n ∈ (n∗, n⊗] by

m(n) = in−n∗(mn∗+1cn−n∗

3 )

where
m(n∗) = m.

Then (∗)9 (b) holds.

Proof: We need to check that for n ∈ [n∗, n⊗)

m(n+ 1) ≥ 2(1+ε)c1m(n)n+1
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or equivalently
log2(m(n+ 1)) ≥ (1 + ε)c1m(n)n+1

so it is enough that
log2(m(n+ 1)) ≥ c2m(n)n+1

i.e.
log2(in+1−n∗(mn∗+1cn+1−n∗

3 )) ≥ c2m(n)n+1

i.e., when n > n∗

in−n∗(c3(c
n−n∗

3 )mn∗+1) ≥ c2(in−n∗(cn−n∗

3 mn∗+1))n+1.

It suffices by the above observation that

in−n∗(c3 · c
n−n∗

3 mn∗+1) ≥ in−n∗(c2(n+ 1)c
n−n∗

3 mn∗+1),

which is true by the definition of c3 when n > n∗.

For n = n∗ we need that

m(n∗ + 1) ≥ 2(1+ε)c1mn
∗+1

i.e.

2m
n
∗+1c3 ≥ 2(1+ε)c1mn

∗+1
,

which is true as c3 ≥ c2 ≥ (1 + ε)c1. �1.7

1.8 Proof of Lemma 1.1. So m, n, ε are given. Let

(a) n∗ = 1, n⊗ = n, k(∗) = 1, t = 1, c1 as in 1.2, and c2, c3 as in 1.7
(b) m0 = m

m1 = k(∗) · (2n⊗ − n∗) ·

(

2(n⊗ − n∗)− 1

n⊗ − n∗

)

(m0)
2n⊗−n∗

= (2n − 1)

(

2n− 3

n − 1

)

m2n−1

m2 = (k(∗)m1)
k(∗)+1 = (m1)

2

m3 = (m1)
2 · 2k(∗) = 2(m1)

2

(c) we define function m(−) with domain [n∗, n⊗]:
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for ℓ = 1 we let m(1) = m3

for ℓ > 1 we let m(ℓ) = iℓ−1(c
ℓ−1
3 · (m3)

2).

So we are given m⊗ > m(n). In Claim 1.3 from the assumption (∗)9, clauses
(a), (c) hold and clause (b) holds by Fact 1.7. Also assumption (∗)10 of 1.3
holds (with {1, . . . , m⊗} standing for A, f0 the given function f (in 1.1), and g
constantly zero).

So there are A ∈ [{1, . . . , m⊗}]m(1)+1, g′, g0, h0 satisfying the conclusion of 1.3
i.e. (∗)11. A here stands for A′ in 1.3. Note |A| = m3+1. Now apply 1.4 (2) with
A, m3, m2, f0, g0, 1 here standing for A, m(1), m(0), f0, g0, k(∗) there and get
A′ ∈ [A]m2+1. Next we apply Claim 1.4 (1) with A′, m2, m1, h0, 1 here standing
for A′, m(1), m(0), h0, k(∗) there and get A

′′ ∈ [A′]m1 satisfying the conclusion of
1.4 (1) i.e. (∗)12. Lastly apply Claim 1.5 and get A∗ ∈ [A′′]m0 = [A′′]m satisfying
the conclusion of 1.5; i.e. (∗)14. Now A∗ is as required.

1.9 Remark. We could have applied 1.5 in each stage, or just for n = 3, this saves,
somewhat.
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