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Boundedness and pointwise differentiability

of weak solutions to quasi-linear elliptic

differential equations and variational inequalities

Jana Ježková*

Abstract. The local boundedness of weak solutions to variational inequalities (obstacle
problem) with the linear growth condition is obtained. Consequently, an analogue of
a theorem by Reshetnyak about a.e. differentiability of weak solutions to elliptic diver-
gence type differential equations is proved for variational inequalities.

Keywords: quasi-linear elliptic equations and inequalities, weak solution, local bound-
edness, pointwise differentiability, difference quotient

Classification: 35B65, 35J60, 35R45

1. Introduction

In this paper we are interested in local boundedness and a.e. differentiability
of weak solutions to the quasi-linear differential equation

div A(x, u,∇u) = B(x, u,∇u)

and to the variational inequality
∫

Ω

A(x, u,∇u)∇(u − w) +

∫

Ω

B(x, u,∇u)(u− w) ≤ 0 for all w ∈ K,

where K =
{
u ∈ W

1,2
0 (Ω) : u ≥ ψ in Ω

}
.

We will show that a theorem by Serrin about local boundedness of weak so-
lutions (and thus their a.e. differentiability, see [4]) can be proved not only for
elliptic differential equations with linear growth conditions on the coefficients but
also for variational inequalities of the same type.

We also extend the result about a.e. differentiability to equations and inequal-
ities with coefficients satisfying a quadratic growth condition.

In the following, Ω will be an open subset of Rn, n ≥ 3. Br(x) will denote
the ball with center at x and radius r, for simplicity we will write Br instead of

*The results of this article were obtained when the author was studying under the supervision
of Doc. Jana Stará at the Faculty of Mathematics and Physics, Charles University, Prague.
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Br(0) unless otherwise stated. By
∫
-N f we will denote the integral mean value

|N |−1
∫
N f , where |N | is the n-dimensional Lebesgue measure of N ⊂ Rn.

Since we will be concerned with values of Sobolev functions at a given point,
we will, for clarity, consider the representative of a Sobolev function, say u, which
satisfies

u(x) = lim sup
r→0

∫
–

Br(x)

u(y) dy .

Let us first consider the following quasi-linear equation

(1.1) div A(x, u,∇u) = B(x, u,∇u),

where u ∈ W
1,2
loc (Ω) and A : Ω ×R ×Rn → Rn and B : Ω ×R ×Rn → R are

Carathéodory functions.
We will moreover assume that the function A satisfies the following ellipticity

condition, namely that

(1.2)
|A(x, u, q)| ≤ a|q| + b(x)|u| + e(x),

q · A(x, u, q) ≥ |q|2 − d(x)|u|2 − g(x)

hold for all x ∈ Ω, u ∈ R and q ∈ Rn. Here a ≥ 1 is a constant, b, e ∈ Ln
loc(Ω)

and d, g ∈ L
n
2−ε

loc (Ω) for some 0 < ε < 1.
It was shown by Reshetnyak in [9] that if the function B satisfies the linear

growth condition

(1.3) |B(x, u, q)| ≤ c(x)|q| + d(x)|u| + f(x),

where c ∈ L
n
1−ε

loc (Ω) and d, f ∈ L
n
2−ε

loc (Ω) for some 0 < ε < 1, then the a.e. dif-
ferentiability of weak solutions to (1.1) is an easy consequence of their Hölder
continuity. In the case of the linear equation div

(
a(x)∇u

)
= 0, the a.e. differen-

tiability of weak solutions was proved independently by Bojarski, see [1]. Haj lasz
and Strzelecki showed in [4] that using Bojarski’s method one can under the con-
ditions (1.2) and (1.3) simplify Reshetnyak’s proof. The idea of the method is as
follows:

Definition 1.1. Let u ∈ W
1,2
loc (Ω) and x0 ∈ Ω. For 0 < h < 1

2 dist (x0, ∂Ω) and
X ∈ B2, we define the difference quotient vh of u at the point x0 by

vh(X) =
u(x0 + hX) − u(x0)

h
.

Theorem 1.2 (Reshetnyak, see Theorem 1 in [8]). Let u ∈ W k,p(Ω). Then for
a.a. x ∈ Ω

lim
h→0

∥∥∥∥
1

hk

[
u(x+ hX) −

∑

0≤|α|≤k

Dαu(x)

α!
h|α|Xα

]∥∥∥∥
W k,p(B2)

= 0.
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Remark. It is also possible to use a standard result concerning the Lp-derivatives
of Sobolev functions, see e.g. Theorem 3.4.2 in [12], instead.

Theorem 1.3 (Stepanov, see [11] or Theorem 3.1.9 in [2]). For u : Ω → Rm put

A =

{
a ∈ Ω : lim sup

x→a

|u(x) − u(a)|

|x− a|
<∞

}
.

Then A is Lebesgue measurable and u is differentiable a.e. in A.

It is shown that vh solves an equation similar to (1.1) and this together with
a theorem by Serrin about local boundedness of weak solutions to such equations
(see Theorem 1 in [10]) is used to obtain the estimate

(1.4) ess supX∈B1 |vh| ≤ Qh,

where the constant Qh depends only on the parameters of the equation (1.1) and
on ‖vh‖L2(B2). Reshetnyak’s theorem (for k = 1) implies that

‖vh‖L2(B2) →

∥∥∥∥
n∑

i=1

uxi(x0)Xi

∥∥∥∥
L2(B2)

, as h→ 0

and thus ‖vh‖L2(B2) ≤ 2|∇u(x0)| + 1 for small h. It follows that there exists

a constant Q <∞ such that Qh ≤ Q for sufficiently small h. Hence

lim sup
h→0

|u(x0 + hX) − u(x0)|

h
<∞

for a.a. x0 ∈ Ω and by Stepanov’s theorem, the weak solution u is totally differ-
entiable a.e. in Ω.

2. Quadratic growth condition

We will show that with some modifications the above method can be used to
prove the almost everywhere differentiability of weak solutions of the equation
(1.1) even in the case when the function B satisfies a (more natural) limited
quadratic growth condition

(2.1) |B(x, u, q)| ≤ c(x)|q|2 + d(x)|u|2 + f(x),

where d, f ∈ L
n
2−ε

loc (Ω) for some 0 < ε < 1, c ∈ L∞
loc(Ω) and for a.a. x0 ∈ Ω there

exist 0 < ρ < 1
2 dist (x0, ∂Ω) and ξ > 0 such that

(2.2) 2M ess supx∈B2ρ(x0) |c(x)| < 1 − ξ,

where M = ess supx∈B2ρ(x0) |u(x)|.

A function u ∈ W
1,2
loc (Ω)∩L∞(Ω) is called a weak solution of the equation (1.1),

if ∫

Ω

A(x, u,∇u)∇ϕdx +

∫

Ω

B(x, u,∇u)ϕdx = 0

is satisfied for all ϕ ∈W
1,2
0 (Ω) ∩ L∞(Ω).

We will need the following simple lemma (for the proof see Lemma 2 in [10]).
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Lemma 2.1. Let α be a positive exponent and let ai and βi, i = 1, 2, . . . , N be
two sets of real numbers such that 0 < ai < ∞ and 0 ≤ βi < α. Suppose that z
is a positive number satisfying

zα ≤

N∑

i=1

aiz
βi .

Then

z ≤ C
N∑

i=1

aγi
i ,

where γi = (α− βi)
−1 and the constant C depends only on N , α and βi.

The following theorem generalizes Serrin’s theorem in such a way that it com-
bines Serrin’s method with that of Haj lasz and Strzelecki and applies it directly to
the difference quotient vh. This makes it possible to handle the quadratic growth
in the calculations and obtain the required estimate (1.4).

Theorem 2.2. Let u ∈ W 1,2
loc (Ω)∩L∞(Ω) be a weak solution to the equation (1.1)

and suppose that the conditions (1.2), (2.1) and (2.2) are satisfied.
Then for a.a. x0 ∈ Ω there exists 0 < δ < ρ and a constant C depending only

on n, ε, ξ, a, M , δ, u(x0), b(x0), d(x0), e(x0), f(x0) and g(x0), such that for
0 < h < δ, the difference quotient vh of the solution u at the point x0 satisfies

the a priori estimate

‖vh‖L∞(B1) ≤ C
(
‖vh‖L2(B2) + 1

)
.

Proof: Step 1: Let x0 ∈ Ω be an Lp-Lebesgue point of the functions b, d, e, f and
g (p is taken for each function according to (1.2) and (2.1)), which also satisfies
(2.2). It is clear that a.a. x0 ∈ Ω have the above properties. Put u0 = u(x0).

Using the change of variables x = x0 +hX and the definition of a weak solution
to the equation (1.1) it is easy to show that for 0 < h < δ < ρ, the difference
quotient vh of u is a weak solution to the equation

div Ah(X, vh,∇vh) = Bh(X, vh,∇vh),

where

(2.3)
Ah(X, v, q) = A(x0 + hX, u0 + hv, q),

Bh(X, v, q) = hB(x0 + hX, u0 + hv, q)
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for X ∈ B2, v ∈ R and q ∈ Rn. Since u ∈ L∞(Ω), we may assume that b = 0
and d = 0, for if we define

ē(x) = Mb(x)χB2ρ(x0)(x) + e(x),

f̄(x) = M2d(x)χB2ρ(x0)(x) + f(x),

ḡ(x) = M2d(x)χB2ρ(x0)(x) + g(x),

then ē ∈ Ln(Ω), f̄ , ḡ ∈ L
n
2−ε and for x ∈ B2ρ(x0), u ∈ R, |u| ≤ M and q ∈ Rn,

the following simplified conditions hold:

|A(x, u, q)| ≤ a|q| + ē(x),

|B(x, u, q)| ≤ c(x)|q|2 + f̄(x),

q · A(x, u, q) ≥ |q|2 − ḡ(x).

It is now straightforward that the functions Ah and Bh satisfy

(2.4)

|Ah(X, v, q)| ≤ ah|q| + eh(X),

|Bh(X, v, q)| ≤ ch(X)|q|2 + fh(X),

q · Ah(X, v, q) ≥ |q|2 − gh(X),

where

ah = a,

ch(X) = hc(x0 + hX),

eh(X) = ē(x0 + hX),

fh(X) = hf̄(x0 + hX),

gh(X) = ḡ(x0 + hX).

An easy calculation (using the fact that x0 is an Lp-Lebesgue point) shows that
by making δ sufficiently small, one can ensure that for 0 < h < δ,

‖eh‖Ln(B2) < 2α(n)1/n
∣∣e(x0) + Mb(x0)

∣∣ + 1

‖fh‖L
n
2−ε (B2)

< 1,

‖gh‖L
n
2−ε (B2)

< 22−εα(n)
2−ε

n
∣∣g(x0) + M2d(x0)

∣∣ + 1,

where α(n) is the volume of the unit ball in Rn. For example

(2.5)

‖fh‖L
n
2−ε (B2)

= h

( ∫

B2

∣∣f̄(x0 + hX)
∣∣ n
2−ε dX

) 2−ε
n

= h

(
2nα(n)

∫
–

B2h(x0)

∣∣f(x) +Md(x)
∣∣ n
2−ε dx

) 2−ε
n

→ 0, as h→ 0.
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Step 2: We continue by Moser’s iteration method (see also [6] and [7]). The
calculations are similar to those in the proof of Serrin’s theorem, see [10]. Put
v̄ = |vh| + 1, then clearly

(2.6) 1 ≤ v̄ ≤
2M

h
+ 1.

Define for fixed k ≥ 1

F (v̄) = v̄k,

G(vh) = F (v̄)F ′(v̄) sgn vh,

φ(X) = η(X)2G(vh),

where η is a nonnegative C∞ function with compact support in B2. It then follows
from (2.4) that

Ah(X, vh,∇vh)∇φ(X) + Bh(X, vh,∇vh)φ(X)

≥
(

(ηF ′)2 − η2ch(X)|G|
)
|∇vh|

2 − 2aη|∇η| |G| |∇vh|

− 2eh(X)η|∇η| |G| − fh(X)η2|G| − 2gh(X)(ηF ′)2.

Using |G| = v̄(F ′)2/k and |F ′| ≤ k|F | together with 1 ≤ v̄, the last inequality
can be simplified by setting w = w(X) = F (v̄)

Ah(X, vh,∇vh)∇φ(X) + Bh(X, vh,∇vh)φ(X)

≥
(
1 − ch(X)v̄

)
|η∇w|2 − 2a|η∇w| |w∇η|

− 2keh(X)|ηw| |w∇η| − k2f̂(X)|ηw|2,

where f̂ = 2gh + fh.
Using the estimates (2.2) and (2.6) together with the definition of ch it follows

that for 0 < h < δ < 2Mξ and ξ̂ = ξ2,

(2.7) ch(X)v̄ < c(x0 + hX)(2M + h) <
1 − ξ

2M
(2M + 2Mξ) = 1 − ξ̂.

Thus the integration over B2 together with the definition of a weak solution leads
to

(2.8)

ξ̂‖η∇w‖2
L2(B2)

≤ 2a

∫

B2

|η∇w| |w∇η| dX + 2k

∫

B2

eh(X)|ηw| |w∇η| dX

+ k2
∫

B2

f̂(X)|ηw|2 dX .
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The terms on the right-hand side can be estimated by means of the Hölder, Sobo-
lev and Minkowski inequalities as follows (see also pages 257 and 258 in [10])

∫

B2

|η∇w| |w∇η| dX ≤ ‖η∇w‖L2(B2)‖w∇η‖L2(B2),

∫

B2

eh(X)|ηw| |w∇η| dX ≤ ‖eh‖Ln(B2)‖w∇η‖L2(B2)‖ηw‖L2∗ (B2)

≤ c1(n)‖eh‖Ln(B2)‖w∇η‖L2(B2)

·
(
‖w∇η‖L2(B2) + ‖η∇w‖L2(B2)

)
,

∫

B2

f̂(X)|ηw|2 dX =

∫

B2

f̂(X)|ηw|ε|ηw|2−ε dX

≤ c1(n)‖f̂‖
L

n
2−ε (B2)

‖ηw‖ε
L2(B2)

·
(
‖w∇η‖2−ε

L2(B2)
+ ‖η∇w‖2−ε

L2(B2)

)
,

where 2∗ = 2n/(n−2) is the Sobolev exponent and c1(n) is the absolute constant
from the Sobolev inequality. Putting z = ‖η∇w‖/‖w∇η‖, s = ‖ηw‖/‖w∇η‖ and
inserting the above estimates in (2.8) yields

z2 ≤ ξ̂−1
(

2az + 2c1(n)k‖eh‖(1 + z) + c1(n)k2‖f̂‖(sε + sεz2−ε)
)
.

It now follows from Lemma 2.1 that z ≤ C1k
2/ε(1 + s), or rather

‖η∇w‖L2(B2) ≤ C1k
2/ε

(
‖ηw‖L2(B2) + ‖w∇η‖L2(B2)

)
,

where the constant C1 depends only on n, ε, a, ξ and on the norms of eh and f̂ .
Another use of the Sobolev inequality gives

‖ηw‖L2∗(B2)
≤ C2k

2/ε
(
‖ηw‖L2(B2) + ‖w∇η‖L2(B2)

)
,

where C2 = c1(n)(C1 + 1).
Let r and r′ be real numbers satisfying 1 ≤ r′ < r ≤ 2 and let the function

η ∈ C∞
0 (B2) be chosen so that 0 ≤ η ≤ 1, η = 1 in Br′ , η = 0 outside Br and

|∇η| ≤ 2(r − r′)−1. Inserting η to the last estimate yields immediately

‖v̄k‖L2∗(Br′ )
≤ 3C2k

2/ε(r − r′)−1‖v̄k‖L2(Br)
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and by putting p = 2k and κ = n/(n− 2) it becomes

‖v̄‖Lpκ(Br′)
≤

[
3C2(p/2)2/ε(r − r′)−1

]2/p
‖v̄‖Lp(Br).

Iterating this inequality (with pj = 2κj , rj = 1 + 2−j and r′j = rj+1, see also

page 259 in [10]) we finally get

‖v̄‖Lpj+1(Brj+1 ) ≤ CΣ1
3 KΣ2‖v̄‖L2(B2),

where K = 2κ2/ε, C3 = 6C2 and

Σ1 =

∞∑

j=0

κ−j =
κ

κ− 1
, Σ2 =

∞∑

j=0

jκ−j =
κ

(κ− 1)2
.

By taking a limit for j → ∞, it follows from the definition of v̄ that

‖vh‖L∞(B1) ≤ C
(
‖vh‖L2(B2) + 1

)
.

It is clear that the constant C depends only on n, δ, a, ξ, M , u(x0) and on the
values of the functions b, d, e, f and g at the point x0. �

3. Variational inequalities

In this section, we will deal with variational inequalities and will show that
a method similar to that described above can be applied to prove that their weak
solutions satisfy the a priori estimate (1.4) (and are thus differentiable a.e.).

Let u ∈ K =
{
u ∈ W

1,2
0 (Ω) : u ≥ ψ in Ω

}
, ψ ≤ 0 on ∂Ω, be a weak solution

to the variational inequality

(3.1)

∫

Ω

A(x, u,∇u)∇(u−w) dx +

∫

Ω

B(x, u,∇u)(u−w) dx ≤ 0 for all w ∈ K,

where A : Ω × R × Rn → Rn and B : Ω × R × Rn → R are Carathéodory
functions.

To prove the main results of this section, namely Theorems 3.4, 3.5 and 3.6,
we will need the following three lemmas.

Lemma 3.1. Let x0 ∈ Ω and δ > 0 be such that B2δ(x0) ⊂ Ω. Let u be a weak
solution to the inequality (3.1) and put u0 = u(x0). Then the difference quotient
vh (see Definition 1.1) satisfies, for 0 < h < 2δ and for all wh ∈ Kh, the variational

inequality

(3.2)∫

Ωh,x0

Ah(X, vh,∇vh)∇(vh − wh) dX +

∫

Ωh,x0

Bh(X, vh,∇vh)(vh − wh) dX ≤ 0,

where the functions Ah and Bh are defined as in (2.3) and

Ωh,x0 = {X ∈ Rn : x0 + hX ∈ Ω},

ψh(X) = (ψ(x0 + hX) − u0)/h,

Kh =
{
u = v − u0/h : v ∈ W 1,2

0 (Ωh,x0), u ≥ ψh in Ωh,x0

}
.
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Proof: Clearly vh ∈ Kh. Let wh ∈ Kh and put, for 0 < h < 2δ and X ∈ Ωh,x0 ,

w(x0 + hX) = u0 + hwh(X).

Then w ∈ K and inserting w into (3.1) and using the definition of the difference
quotient vh we obtain the required result. �

Lemma 3.2 (Lemma 3.1 in Chapter V in [3]). Let f(t) be a nonnegative function
defined on [r1, r2], where r1 ≥ 0. Suppose that for all r1 ≤ t < s ≤ r2

f(t) ≤ θf(s) + [(s− t)−αA+B],

where A, B, α and θ are nonnegative constants and θ < 1. Then for all r1 ≤ r <
R ≤ r2

f(r) ≤ C[(R − r)−αA+B],

where C is a constant depending only on α and θ.

Lemma 3.3 (Theorem 5.3 in Chapter II in [5]). Let u ∈ W 1,2(Ω) and x0 ∈ Ω.
Suppose that for all k ≥ k0 > 0 and T/2 ≤ t < s ≤ T < dist (x0, ∂Ω)

∫

Ak,t

|∇u|2 dx ≤ γ

[
1

(s− t)2

∫

Ak,s

ω2
k dx + k2|Ak,s|

1− 2−ε
n

]
,

where 0 < ε ≤ 1, ωk = max(u− k, 0) and Ak,s = {x ∈ Bs(x0) : u(x) > k}.

Then there exists k′ ≥ k0 depending only on γ, ε, k0, T and on
∫
Ak0,T

ω2
k0
dx ,

such that

ess supBT/2(x0)
u(x) ≤ 2k′.

In the following, we will show that the local boundedness of weak solutions can
be proved also for variational inequalities, cf. Theorem 1 in [10].

Theorem 3.4. Let u ∈ K be a weak solution to the variational inequality (3.1)

with K =
{
u = v − S : v ∈ W

1,2
0 (Ω), u ≥ ψ in Ω

}
, where ψ ≤ −S on ∂Ω and

S ∈ R. Let x0 ∈ Ω, 0 < T < dist (x0, ∂Ω) and suppose that

ess supBT (x0) ψ(x) <∞.

We further assume that for all x ∈ BT (x0) and all u ∈ R, q ∈ Rn, the following

conditions are satisfied:

(3.3)

|A(x, u, q)| ≤ a|q| + b(x)|u| + e(x),

|B(x, u, q)| ≤ c(x)|q| + d(x)|u| + f(x),

q · A(x, u, q) ≥ |q|2 − d(x)|u|2 − g(x),
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where a ≥ 1 is a real constant, b, c, e ∈ L
n
1−ε (BT (x0)) and d, f, g ∈ L

n
2−ε (BT (x0))

for some 0 < ε < 1.
Then there exists T ′ ≤ T (T ′ depending on a, ε, n and on the Lp-norms of

b, c, d, e, f and g) and Q ∈ R (depending only on a, ε, n, x0, ‖u‖L2(BT ′ (x0)),

ess supBT (x0) ψ(x) and on the Lp-norms of b, c, d, e, f and g) such that

ess supBT ′/2(x0)
u(x) ≤ Q.

Proof: Step 1: Let us, for simplicity, write BT = BT (x0) and BT ′ = BT ′(x0).
First we will show that without loss of generality it can be assumed that e = 0,
f = 0 and g = 0. Put

m = ‖e‖
L

n
1−ε (BT )

+ ‖f‖
L

n
2−ε (BT )

+ ‖g‖
1/2

L
n
2−ε (BT )

and ū = |u| +m. Then the functions A and B obviously satisfy

(3.4)

|A(x, u, q)| ≤ a|q| + b̄(x)|ū|,

|B(x, u, q)| ≤ c(x)|q| + d̄(x)|ū|,

q · A(x, u, q) ≥ |q|2 − d̄(x)|ū|2,

where b̄(x) = b(x) + e(x)/m and d̄(x) = d(x) + f(x)/m+ g(x)/m2.

Step 2: For 0 < s ≤ T and k ≥ max(ess supBT
ψ(x),m) put

ω(x) = max(u(x) − k, 0)

and define Ak,s as in Lemma 3.3. Choose, for 0 < t < s, a function η ∈ C∞(Ω)
such that 0 ≤ η ≤ 1, η = 1 on Bt(x0), η = 0 outside Bs(x0) and |∇η| ≤ 2/(s− t).

Put w = u− ηω. It is easy to check that w ∈ K and w is admissible as a test
function in (3.1). Since w = u outside Ak,s, we can integrate over Ak,s in (3.1)
and the inequality will still remain true. Hence

∫

Ak,s

A(x, u,∇u)∇(ηω) dx +

∫

Ak,s

B(x, u,∇u)ηω dx ≤ 0

and using ∇u = ∇ω on Ak,s together with (3.4) it follows that

0 ≥

∫

Ak,s

|∇u|2 dx −

∫

Ak,s

(1 − η)|∇u|2 dx −

∫

Ak,s

d̄(x)|ū|2 dx

−

∫

Ak,s

(
a|∇ω| + b̄(x)|ū|

)
ω|∇η| dx −

∫

Ak,s

(
c(x)|∇u| + d̄(x)|ū|

)
ω dx .
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Since 0 < ω ≤ u ≤ ū in Ak,s, we obtain

(3.5)

∫

Ak,s

|∇u|2 dx ≤

∫

Ak,s

(1 − η)|∇u|2 dx

+ 2

∫

Ak,s

d̄(x)|ū|2 dx +

∫

Ak,s

aω|∇η||∇ω| dx

+

∫

Ak,s

b̄(x)ω|∇η| |ū| dx +

∫

Ak,s

c(x)ω|∇u| dx .

The terms on the right-hand side are estimated by means of the Hölder and
Poincaré inequalities. Assuming |Bs(x0)| ≤ 1, | spt ω| ≤ 1

2 |Bs(x0)| and using
|ū| ≤ 2k + w in Ak,s we get

∫

Ak,s

aω|∇η||∇ω| dx ≤
a2

2

∫

Ak,s

|∇η|2ω2 dx +
1

2

∫

Ak,s

|∇ω|2 dx ,

(3.6)

∫

Ak,s

b̄(x)ω|∇η||ū| dx ≤
1

2

∫

Ak,s

|∇η|2ω2 dx + 4k2
∫

Ak,s

b̄(x)2 dx +

∫

Ak,s

b̄(x)2ω2 dx

(3.7)

≤
1

2

∫

Ak,s

|∇η|2ω2 dx + 4k2‖b̄‖2

L
n
1−ε (BT )

|Ak,s|
1−

2(1−ε)
n

+ ‖b̄‖2

L
n
1−ε (BT )

( ∫

Ak,s

ω2∗ dx

)2/2∗

|Ak,s|
2ε/n

≤
1

2

∫

Ak,s

|∇η|2ω2 dx + 4k2‖b̄‖2

L
n
1−ε (BT )

|Ak,s|
1− 2−ε

n

+ c1(n)‖b̄‖2

L
n
1−ε (BT )

|Ak,s|
ε/n

∫

Ak,s

|∇ω|2 dx ,

∫

Ak,s

c(x)ω|∇ω| dx ≤ ‖c‖
L

n
1−ε (B)

( ∫

Ak,s

|∇ω|2 dx

)1/2

(3.8)

·

( ∫

Ak,s

ω2∗ dx

)1/2∗

|Ak,s|
ε/n
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≤ c1(n)‖c‖
L

n
1−ε (BT )

|Ak,s|
ε/n

∫

Ak,s

|∇ω|2 dx ,

∫

Ak,s

d̄(x)|ū|2 dx ≤ 2

∫

Ak,s

d̄(x)ω2 dx + 8k2
∫

Ak,s

d̄(x) dx

(3.9)

≤ 2c1(n)‖d̄‖
L

n
2−ε (BT )

|Ak,s|
ε/n

∫

Ak,s

|∇ω|2 dx

+ 8k2‖d̄‖
L

n
2−ε (BT )

|Ak,s|
1− 2−ε

n ,

where c1(n) is the constant from the Poincaré inequality. We find T ′ ≤ T small
enough to ensure |BT ′ | ≤ 1 and

c1(n)
(
‖b̄‖2

L
n
1−ε (BT )

+ ‖c‖
L

n
1−ε (BT )

+ 4‖d̄‖
L

n
2−ε (BT )

)
|BT ′ |ε/n ≤

1

4
.

By putting C = 4‖b̄‖2

L
n
1−ε (BT )

+ 16‖d̄‖
L

n
2−ε (BT )

, the inequality (3.5) can be for

s ≤ T ′ rewritten as

(3.10)
1

4

∫

Ak,s

|∇u|2 dx ≤

∫

Ak,s

(1 − η)|∇u|2 dx

+
1 + a2

2

∫

Ak,s

ω2|∇η|2 dx + Ck2|Ak,s|
1− 2−ε

n .

Notice that T ′ and the constant C depend only on a, ε, n and on the norms of b̄,
c and d̄. To ensure the assumption | spt ω| ≤ 1

2 |Bs(x0)|, we first notice that for

all s ≤ T ′

k2|Ak,s| ≤

∫

BT ′

|u|2 dx

and thus there exists k0 ≥ max(ess supBT
ψ,m) such that for all k ≥ k0, it is

|Ak,s| ≤ k−2‖u‖2
L2(BT ′ )

≤
1

2
|BT ′/2(x0)|.

For such k and for T ′/2 ≤ s ≤ T ′, then | spt ω| ≤ 1
2 |BT ′/2(x0)| ≤ 1

2 |Bs(x0)| and

the estimates (3.6) to (3.9) hold.
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Again, k0 can be chosen in such a way so that its value depends only on
T ′, ‖u‖L2(BT ′ ), x0, m and ess supBT

ψ(x). Using η = 1 in Bt(x0), it follows

from (3.10) that
∫

Ak,t

|∇u|2 dx ≤ γ

[ ∫

Ak,s\Ak,t

|∇u|2 dx +

∫

Ak,s

ω2|∇η|2 dx + k2|Ak,s|
1− 2−ε

n

]
,

where γ = 4 max(C, (1 + a2)/2).
We will continue by “hole-filling”—add γ-times the left-hand side to both sides

of the inequality and using |∇η| ≤ 2/(s − t) conclude that for all k ≥ k0 and
T ′/2 ≤ t < s ≤ s1 (s1 is an arbitrary number not exceeding T ′),

∫

Ak,t

|∇u|2 dx ≤
γ

γ + 1

[ ∫

Ak,s

|∇u|2 dx +
4

(s− t)2

∫

Ak,s1

ω2 dx + k2|Ak,s1 |
1− 2−ε

n

]
.

Lemma 3.2 implies
∫

Ak,t

|∇u|2 dx ≤ γ̃

[
1

(s1 − t)2

∫

Ak,s1

ω2 dx + k2|Ak,s1|
1− 2−ε

n

]
,

where γ̃ depends only on γ and thus on C and a. By Lemma 3.3, we conclude
that

ess supBT ′/2(x0)
u(x) ≤ Q,

where Q depends only on γ̃, ε, k0, T ′ and on
∫
Ak0,T ′

w2
k0
dx ≤

∫
BT ′

|u|2 dx . The

special choice of the constants γ̃ and k0 above completes the proof. �

Remark. If we put

Ã(x, u, q) = −A(x,−u,−q),

B̃(x, u, q) = −B(x,−u,−q),

K̃ = −K =
{
u = v + S : v ∈W 1,2

0 (Ω), u ≤ −ψ in Ω
}
,

then the functions Ã and B̃ satisfy the conditions (3.3) and ũ = −u is a weak
solution to the inequality

∫

Ω

Ã(x, ũ,∇ũ)∇(ũ− w̃) +

∫

Ω

B̃(x, ũ,∇ũ)(ũ− w̃) ≤ 0 for all w̃ ∈ K̃.

Assume that the constant Q from Theorem 3.4 satisfies

Q < − ess supBT (x0) ψ.
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Using the notation Ãk,s = {x ∈ Bs(x0) : ũ(x) > k}, ω̃(x) = max(ũ(x) − k, 0) and

w̃ = ũ− ηω̃, for s ≤ T , m ≤ k ≤ Q one easily verifies that w̃ ∈ K̃ and in the same
way as in the proof of Theorem 3.4 (with u, w, ω, A and B replaced by ũ, w̃, ω̃,

Ã and B̃) it can be shown that

ess supBT ′/2(x0)
(−u(x)) = ess supBT ′/2(x0)

ũ(x) ≤ Q

holds for all 0 < h < δ.
The following theorem provides us with the required estimate (1.4).

Theorem 3.5. Let u ∈ K be a weak solution to the inequality (3.1) with

K =
{
u ∈W 1,2

0 (Ω) : u ≥ ψ in Ω
}

and let ψ : Rn → R be a continuous function differentiable almost everywhere,
ψ ≤ 0 on ∂Ω. Assume that the functions A and B satisfy, for all x ∈ Ω and all
u ∈ R, q ∈ Rn, the ellipticity condition

(3.11)
|A(x, u, q)| ≤ a|q| + b(x)|u| + e(x),

q · A(x, u, q) ≥ |q|2 − d(x)|u|2 − g(x),

where a ≥ 1 is a real constant, b, e ∈ L
n
1−ε

loc (Ω) and d, g ∈ L
n
2−ε

loc (Ω) for some
0 < ε < 1, and the linear growth condition (1.3).
Then for a.a. x0 ∈ Ω there exists δ > 0 such that the difference quotient vh of

u at x0 (see Definition 1.1) satisfies for 0 < h < δ the a priori estimate

ess supX∈B1 |vh(X)| ≤ Qh.

Here the constant Qh depends only on δ, u, x0, on the parameters of the varia-

tional inequality and on ‖vh‖L2(B2).

Proof: Step 1: Let x0 ∈ Ω be an Lp-Lebesgue point of b, c, d, e, f and g
(p taken for each function in accordance with (1.3) and (3.11)) and let ψ be
totally differentiable at x0. Clearly a.a. x0 ∈ Ω have the above property. Put
u0 = u(x0).

By Lemma 3.1 there exists 0 < δ < 1
2 dist (x0, ∂Ω) such that the difference

quotient vh of u at x0 satisfies, for 0 < h < δ and for all wh ∈ Kh, the inequality
∫

Ωh,x0

Ah(X, vh,∇vh)∇(vh − wh) dX +

∫

Ωh,x0

Bh(X, vh,∇vh)(vh − wh) dX ≤ 0,

with Kh defined as in Lemma 3.1. An easy calculation yields that the functions
Ah and Bh satisfy

|Ah(X, v, q)| ≤ ah|q| + bh(X)|v| + eh(X),

|Bh(X, v, q)| ≤ ch(X)|q| + dh(X)|v| + fh(X),

q · Ah(X, v, q) ≥ |q|2 − dh(X)|v|2 − gh(X),
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where

ah = a,

bh(X) = hb(x0 + hX),

ch(X) = hc(x0 + hX),

dh(X) = 2h2d(x0 + hX),

eh(X) = e(x0 + hX) + |u0| b(x0 + hX),

fh(X) = hf(x0 + hX) + h|u0| d(x0 + hX),

gh(X) = g(x0 + hX) + 2|u0|
2d(x0 + hX).

Another calculation similar to that of (2.5) shows that by making δ small enough
one obtains for 0 < h < δ

‖bh‖L
n
1−ε (B2)

< 1,

‖ch‖L
n
1−ε (B2)

< 1,

‖dh‖L
n
2−ε (B2)

< 1,

‖fh‖L
n
2−ε (B2)

< 1,

‖eh‖L
n
1−ε (B2)

< 21−εα(n)
1−ε

n
∣∣e(x0) + |u0|b(x0)

∣∣ + 1,

‖gh‖L
n
2−ε (B2)

< 22−εα(n)
2−ε

n
∣∣g(x0) + 2|u0|

2d(x0)
∣∣ + 1.

Step 2: We will distinguish between two cases:

(i) u0 = ψ(x0): Then lim
h→0

ψh(X) = ∂Xψ(x0) = ∇ψ(x0)X , since ψ is differ-

entiable at x0. Further diminishing of δ gives

ess supB2 |ψh(X)| ≤ 2|∇ψ(x0)| + 1.

(ii) u0 > ψ(x0): Then since ψ is continuous, there exist ζ > 0 and δ > 0
such that u0 > ψ(x0 + hX) + ζ for 0 < h < δ and X ∈ B2, and thus
ψh(X) < −ζ/δ < 0.

In both cases ess supB2 ψh(X) < ∞ and thus the assumptions of Theorem 3.4
with T = 2 and x0 = 0 are satisfied. Hence there exists 0 < T ≤ 2 such that for
all 0 < h < δ

(3.12) ess supBT/2
vh(X) ≤ Qh.

Here Qh depends only on n, ε, a, u, δ, ‖vh‖L2(BT ) and on the values of b,

c, d, e, f and g at the point x0. To finish the proof we need to estimate
ess supBT/2

(−vh(X)).
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For (i), it is straightforward that for small enough h

ess supBT/2
(−vh(X)) ≤ ess supB2(−ψh(X)) ≤ 2|∇ψ(x0)| + 1.

For (ii), it first follows from Reshetnyak’s theorem that δ can be made smaller so
that

‖vh‖L2(BT ) ≤ L <∞

and thus Qh < Q holds for 0 < h < δ and some Q <∞. Further diminishing of δ
(so that Q < ζ/δ) yields (for 0 < h < δ and X ∈ BT ) Qh < ζ/h < −ψh(X), and
using the remark after Theorem 3.4 we conclude that

ess supBT/2
(−vh(X)) ≤ Qh.

Putting δ̂ = δT/2 finishes the proof. �

Combining the methods used in the proofs of Theorems 2.2, 3.4 and 3.5, it is
possible to prove the a priori estimate (1.4) also for variational inequalities with
the limited quadratic growth condition. We will just sketch the main idea of the
proof.

Theorem 3.6. Let u ∈ K be a weak solution to the variational inequality (3.1)

with K =
{
u ∈W

1,2
0 ∩ L∞(Ω) : u ≥ ψ in Ω

}
, where ψ : Rn → R is a continuous

function differentiable almost everywhere and ψ ≤ 0 on ∂Ω. Assume that the
conditions (2.1), (2.2) and (3.11) hold.
Then for a.a. x0 ∈ Ω there exists δ > 0 and constants Qh ∈ R, which depend

only on δ, u, x0, on the parameters of the inequality and on ‖vh‖L2(B2), such

that for 0 < h < δ
ess supX∈B1 |vh(X)| ≤ Qh.

Proof: Step 1: As in Theorem 3.5, the difference quotient vh is a solution to the
inequality (3.2) with

Kh =
{
u = v − u0/h : v ∈W

1,2
0 (Ωh,x0) ∩ L

∞(Ωh,x0), u ≥ ψh in Ωh,x0

}
.

As in the proof of Theorem 2.2, it can be assumed that b = 0 and d = 0 and the
same calculation yields that for small enough δ and 0 < h < δ

‖eh‖L
n
1−ε (B2)

< 21−εα(n)
1−ε

n

∣∣∣∣e(x0) +Mb(x0)

∣∣∣∣ + 1,

‖fh‖L
n
2−ε (B2)

< 1,

‖gh‖L
n
2−ε (B2)

< 22−εα(n)
2−ε

n

∣∣∣∣g(x0) + M2d(x0)

∣∣∣∣ + 1.
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Step 2: The method used in Step 2 of the proof of Theorem 3.4 is applied to
obtain the estimate (3.12). It goes as follows:
We assume that ψh is bounded from above on B2 and put for s ≤ 2 and k ≥
max(ess supB2 ψh(X), 1)

Ak,s = {x ∈ Bs : vh(x) > k},

ω = max(vh − k, 0), wh = vh − ηω,

where the function η is chosen as in the proof of Theorem 3.4. Then wh ∈ Kh
and inserting wh in (3.2) we get using (2.7)

(3.13)

ξ̂

∫

Ak,s

|∇vh|
2 dX ≤

∫

Ak,s

(1 − η)|∇vh|
2 dX +

∫

Ak,s

ahω|∇η||∇ω| dX

+

∫

Ak,s

eh(X)ω|∇η| dX +

∫

Ak,s

fh(X)ω dX

+

∫

Ak,s

gh(X) dX .

The terms on the right-hand side are estimated as in the proof of Theorem 3.4.

We choose 0 < T ≤ 2 such that 1
2c1(n) ‖fh‖L

n
2−ε (B2)

|BT |
ε/n ≤ ξ̂/4 and |BT | ≤ 1

hold and find k0 ≥ max(ess supBT
ψh(X), 1) such that for k ≥ k0, the assumption

| spt ω| ≤ 1
2 |BT/2| holds. The Hölder and Poincaré inequalities then yield

∫

Ak,s

ahω|∇η| |∇ω| dX ≤
a2
h

2ξ̂

∫

Ak,s

|∇η|2ω2 dX +
ξ̂

2

∫

Ak,s

|∇ω|2 dX ,

∫

Ak,s

eh(X)ω|∇η| dX ≤
1

2

∫

Ak,s

|∇η|2ω2 dX +
1

2
‖eh‖

2

L
n
1−ε (B2)

|Ak,s|
1− 2−ε

n ,

∫

Ak,s

fh(X)ω dX ≤
1

2
c1(n)‖fh‖L

n
2−ε (B2)

∫

Ak,s

|∇ω|2 dX |Ak,s|
ε/n

+
1

2
‖fh‖L

n
2−ε (B2)

|Ak,s|
1− 2−ε

n ,
∫

Ak,s

gh(X) dX ≤ ‖gh‖L
n
2−ε (B2)

|Ak,s|
1− 2−ε

n
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and (3.13) can be rewritten as

ξ̂

4

∫

Ak,s

|∇vh|
2 dX ≤

∫

Ak,s

(1 − η)|∇vh|
2 dX

+
ξ̂ + a2

h

2ξ̂

∫

Ak,s

ω2|∇η|2 dX + Ck2|Ak,s|
1− 2−ε

n ,

where C = 1
2‖eh‖L

n
1−ε (B2)

+ 1
2‖fh‖L

n
2−ε (B2)

+ ‖gh‖L
n
2−ε (B2)

. The rest of Step 2

goes as in the proof of Theorem 3.4.

Step 3: It is first shown that the function ψh is bounded from above on B2. This
is done in the same way as in Step 2 of Theorem 3.5. The estimate (3.12) follows.
Finally the trick of the remark after Theorem 3.4 is used on the inequality (3.2)
and this gives the required estimate for ṽh = −vh. �
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