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Some remarks on the regularity of minimizers

of integrals with anisotropic growth

Tilak Bhattacharya, Francesco Leonetti

Abstract. We prove higher integrability for minimizers of some integrals of the calculus
of variations; such an improved integrability allows us to get existence of weak second
derivatives.
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0. Introduction.

Let Ω be a bounded open set in R
n, n ≥ 2; u be such that u : Ω→ R

N , N ≥ 1.
Consider the integral functional

(0.1) I(u) =

∫

Ω
F (Du(x)) dx,

where F satisfies an anisotropic growth condition, namely

(0.2) a

n
∑

i=1

|ξi|qi − b ≤ F (ξ) ≤ c

n
∑

i=1

|ξi|qi + d,

∀ ξ ∈ R
nN . Here a, b, c and d are positive constants and 1 ≤ qi, i = 1, . . . , n. It is

well known that the standard results of the isotropic case, i.e. qi = q, i = 1, . . . , n,
fail to hold if the qi’s are too far apart [10], [14], [15]. The main aim of this paper
is to show that under some restrictions on the qi’s, an improved integrability result
holds for minimizers u of (0.1) verifying (0.2) and some additional restrictions. The
prototype for our work is the integral

(0.3) I(u) =

∫

Ω

(

1

2

n−1
∑

i=1

|Diu(x)|2 +
1

p
(1 + |Dnu(x)|2)p/2

)

dx,

where Du = (D1u, . . . , Dnu) and 1 < p < 2, for which (0.2) holds with q1 = · · · =
qn−1 = 2 and qn = p. We have arranged our work as follows. In Section 1 we state
the main result, Section 2 contains some preliminaries while Sections 3 and 4 deal
with the proofs of the results of the paper.

This work has been supported by MURST and GNAFA-CNR.
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1. Notation and main results.

Let Ω be a bounded open set of R
n, n ≥ 2, u be a vector-valued function,

u : Ω→ R
N , N ≥ 1; we consider integrals

(1.1)

∫

Ω
F (Du(x)) dx,

based on (0.3). More precisely, we assume that F : RnN → R is in C2(RnN ) and
satisfies, for some positive constants c, m, M, p,

|F (ξ)| ≤ c(1 +

n−1
∑

i=1

|ξi|2 + |ξn|p);(1.2)

| ∂F

∂ξα
i

(ξ)| ≤ c(1 +

n−1
∑

i=1

|ξi|2 + |ξn|p)1/2 if i = 1, . . . , n − 1;(1.3)

| ∂F

∂ξα
n
(ξ)| ≤ c(1 +

n−1
∑

i=1

|ξi|2 + |ξn|p)1−1/p;(1.4)

and

(1.5) m
(

n−1
∑

i=1

|λi|2 + (1 + |ξn|2)(p−2)/2|λn|2
)

≤
n
∑

i,j=1

N
∑

α,β=1

∂2F

∂ξβ
j ∂ξα

i

(ξ)λα
i λ

β
j

≤ M
(

n−1
∑

i=1

|λi|2 + (1 + |ξn|2)(p−2)/2|λn|2
)

,

for every λ, ξ ∈ R
nN . Here, λ = {λα

i }, ξ = {ξα
i }, |λi|2 =

∑N
α=1 |λα

i |2, etc. About
p, we assume that

(1.6) 1 < p < 2.

We remark that the integrand of (0.3) satisfies (1.2), . . . ,(1.5). We say that u

minimizes the integral (1.1) if u : Ω → R
N , u ∈ W 1,p(Ω) with Diu ∈ L2(Ω),

i = 1, . . . , n − 1, and for every φ : Ω → R
N with φ ∈ W 1,p

0 (Ω) and Diφ ∈ L2(Ω),
i = 1, . . . , n − 1, we have

(1.7) I(u) ≤ I(u+ φ).

We have the following regularity results.

Theorem 1. Let u : Ω → R
N satisfy u ∈ W 1,p(Ω) ∩ L2(Ω) with Diu ∈ L2(Ω),

i = 1, . . . , n − 1, where

1 < p < 2 if n = 2, 3;(1.8)

98/97 < p < 2 if n = 4;(1.9)
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and

2− 4/n < p < 2 if n ≥ 5.(1.10)

If F satisfies (1.2), . . . , (1.5) and u minimizes the integral (1.1) in the sense of (1.7),
then

(1.11) Dnu ∈ L2
loc
(Ω).

This result of higher integrability implies the following improved differentiability.

Corollary 1. Under the assumptions of Theorem 1, we obtain the existence of the
weak second derivatives. Furthermore,

DiDu ∈ L2
loc
(Ω), i = 1, . . . , n − 1 and DnDu ∈ Lp

loc
(Ω).

Remark 1. We prove Theorem 1 by employing a technique in [6]. The idea is to
gain a fractional order derivative of Du thereby improving its integrability. Also
see [4], [7], [13].

Remark 2. It is not clear to us whether the restriction 2−4/n < p is a consequence
of the technique we have used. We are unable to prove or disprove Theorem 1
outside this range. It must be mentioned that the same restriction was arrived at
in a slightly different context in the work [7].

Remark 3. It is to be noted that local boundedness of scalar valued minimizers
has been proved without any restrictions on p from below [8], [9].

2. Preliminaries.

For a vector-valued function f(x), define the difference

τs,hf(x) = f(x+ hes)− f(x),

where h ∈ R, es is the unit vector in the xs direction, and s = 1, 2, . . . , n. For
x0 ∈ R

n, let BR(x0) be the ball centered at x0 with radius R. We will often
suppress x0 whenever there is no danger of confusion. We now state several lemmas
that are crucial to our work. In the following f : Ω → R

k, k ≥ 1; BR, B2R and
B3R are concentric balls.

Lemma 2.1. If f, Dsf ∈ Lt(B3R) with 1 ≤ t < ∞ then
∫

BR

|τs,hf(x)|t dx ≤ |h|t
∫

B2R

|Dsf(x)|t dx,

for every h with |h| < R. (See [11, p. 45], [5, p. 28].)
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Lemma 2.2. Let f ∈ Lt(B2R), 1 < t < ∞; if there exists a positive constant C
such that

∫

BR

|τs,hf(x)|t dx ≤ C|h|t,

for every h with |h| < R, then there exists Dsf ∈ Lt(BR). (See [11, p. 45], [5,
p. 26].)

Lemma 2.3. If f ∈ L2(B3R) and for some d ∈ (0, 1) and C > 0

n
∑

s=1

∫

BR

|τs,hf(x)|2 dx ≤ C|h|2d,

for every h with |h| < R, then f ∈ Lr(BR/4) for every r < 2n/(n − 2d).

Proof: The previous inequality tells us that f ∈ W b,2(BR/2) for every b < d, so

we can apply the imbedding theorem for fractional Sobolev spaces [3, Chapter VII].
�

Lemma 2.4. For every t with 1 ≤ t < ∞ there exists a positive constant C such
that

∫

BR

|τs,hf(x)|t dx ≤ C

∫

B2R

|f(x)|t dx,

for every f ∈ Lt(B2R), for every h with |h| < R, for every s = 1, 2, . . . , n.

Lemma 2.5 (Anisotropic Sobolev imbedding theorem). If qi ≥ 1, i = 1, . . . , n, we
assume that f ∈ W 1,1(Q) and f, Dif ∈ Lqi(Q), ∀ i = 1, . . . , n, where Q ⊂ R

n is

a cube with faces parallel to the coordinate planes. Define q by

1

q
=
1

n

n
∑

i=1

1

qi
and set q ∗ =

{

nq/(n − q), if q < n,

any number, if q ≥ n.

If qi < q ∗, ∀ i = 1, . . . , n, then f ∈ Lq ∗

(Q). (See [16], [1].)

Now we state some basic inequalities.

Lemma 2.6. For every γ ∈ (−1/2, 0) we have

1 ≤
∫ 1
0 (1 + |b+ t(a − b)|2)γ dt

(1 + |a|2 + |b|2)γ ≤ 8

2γ + 1
,

for all a, b ∈ R
k. (See [2].)

Lemma 2.7. For every γ ∈ (−1/2, 0) we have

(2γ + 1)|a − b| ≤ |(1 + |a|2)γa − (1 + |b|2)γb|
(1 + |a|2 + |b|2)γ ≤ c(k)

2γ + 1
|a − b|,

for all a, b ∈ R
k. (See [2].)



Some remarks on the regularity of minimizers of integrals . . . 601

3. Proof of Theorem 1.

Since u minimizes the integral (1.1) with growth conditions as in (1.2), . . . ,(1.4),
u solves the Euler equation,

(3.1)

∫

Ω

n
∑

i=1

N
∑

α=1

∂F

∂ξα
i

(Du(x))Diφ
α(x) dx = 0,

for all functions φ : Ω→ R
N , with φ ∈ W 1,p

0 (Ω) and D1φ, . . . , Dn−1φ ∈ L2(Ω). Let

R > 0 be such that B3R ⊂ Ω and let B̺ and BR be concentric balls, 0 < ̺ < R ≤ 1.
Fix s, take 0 < |h| < R and let η : Rn → R be a “cut off” function in C10 (BR) with

η ≡ 1 on B̺, 0 ≤ η ≤ 1 and |Dη| ≤ c/(R − ̺).

Using φ = τs,−h(η
2τs,hu) in (3.1), via a standard reduction, we get the following

Caccioppoli estimate, i.e. for some positive constants C0 = C0(n, N, p, m, M),

(3.2)

∫

B̺

n−1
∑

i=1

|τs,hDiu(x)|2 dx

+

∫

B̺

(1+|Dnu(x)|2+|Dnu(x+hes)|2)(p−2)/2|τs,hDnu(x)|2 dx

≤ C0
(R−̺)2

∫

BR

{1+(1+|Dnu(x)|2+|Dnu(x+hes)|2)(p−2)/2}|τs,hu(x)|2 dx

≤ 2C0
(R−̺)2

∫

BR

|τs,hu(x)|2 dx,

where we have used the fact that p < 2. Set

(3.3) V̂ (ξ) = |V (ξn)|+
n−1
∑

i=1

|ξi|, V (ξn) = (1 + |ξn|2)(p−2)/4ξn, ∀ ξ ∈ R
nN .

Clearly,

(3.4) |τs,hV̂ (Du)| ≤ |τs,hV (Dnu)|+
n−1
∑

i=1

|τs,hDiu|

and

(3.5) V̂ (Du) ∈ Lr if and only if

{

Diu ∈ Lr, i = 1, . . . , n − 1,
Dnu ∈ Lrp/2.

Using Lemma 2.7 we find

(3.6)
C1|τs,hDnu(x)| ≤ |τs,hV (Dnu(x))|

(1 + |Dnu(x)|2 + |Dnu(x+ hes)|2)(p−2)/4
≤ C2|τs,hDnu(x)|,
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where C1, C2 depend only on N and p. From (3.4), (3.6) and (3.2) we get

(3.7)

∫

B̺

|τs,hV̂ (Du)|2 dx ≤ C3

∫

B̺

n−1
∑

i=1

|τs,hDiu|2 dx+ C3

∫

B̺

|τs,hV (Dnu)|2 dx

≤ C4
(R − ̺)2

∫

BR

|τs,hu|2 dx,

for some positive constants C3 = C3(n) and C4 = C4(n, N, p, m, M). Recalling that
Dsu ∈ L2 for s = 1, . . . , n − 1, we may use Lemma 2.1 in order to get

(3.8)

∫

BR

|τs,hu|2 dx ≤ C5|h|2 ∀ s = 1, . . . , n − 1, ∀h : |h| < R,

with C5 independent of h. Since we do not know apriori that Dnu ∈ L2, the integral
corresponding to s = n in (3.8) is dealt with as follows. We write

(3.9)

∫

BR

|τn,hu|2 dx =

∫

BR

|τn,hu|a|τn,hu|2−a dx,

where 0 < a < 2 is to be chosen later. Let us first assume that

(3.10) u, Diu ∈ Lr
loc

, 2 ≤ r, ∀ i = 1, . . . , n − 1, and Dnu ∈ Lt
loc

, p ≤ t < 2.

In order to apply the anisotropic Sobolev imbedding theorem contained in
Lemma 2.5, let r be the harmonic mean of the numbers qi = r, i = 1, . . . , n− 1 and
qn = t, i.e.

(3.11) r =
nrt

(n − 1)t+ r
.

Note that r < n if and only if r < t(n − 1)/(t − 1); define r ∗ as

r ∗ =

{

nr/(n − r), if r < n,

any number > r, if r ≥ n.

In either case, r ∗ > r and Lemma 2.5 yields

(3.12) u ∈ Lr ∗

loc
.

Thus applying Hölder’s inequality on (3.9), with exponents t/a, t/(t− a), provided
0 < a < t, it follows that

(3.13)

∫

BR

|τn,hu|2 dx ≤
(

∫

BR

|τn,hu|t dx
)a/t(

∫

BR

|τn,hu|(2−a)t/(t−a) dx
)(t−a)/t

.
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Because of (3.10) we may use Lemma 2.2 in order to get

(3.14)
(

∫

BR

|τn,hu|t dx
)a/t

≤ C6|h|a ∀h : |h| < R,

with C6 independent of h. If

(3.15) (2 − a)t/(t − a) ≤ r ∗,

then we may use Lemma 2.4 in order to get

(3.16)
(

∫

BR

|τn,hu|(2−a)t/(t−a) dx
)(t−a)/t

≤ C7 ∀h : |h| < R,

with C7 independent of h. The inequalities (3.14), (3.16) and (3.13) yield

(3.17)

∫

BR

|τn,hu|2 dx ≤ C8|h|a ∀h : |h| < R,

with C8 independent of h. Thus, noting that a < 2 and R ≤ 1, (3.8), (3.17) and
(3.7) yield

(3.18)
n
∑

s=1

∫

B̺

|τs,hV̂ (Du)|2 dx ≤ C9|h|a ∀h : |h| < R,

with C9 independent of h. Straightforward computations in (3.15) yield that

(3.19)

{

0 < a ≤ r(tn+2(t−1))−2(n−1)t
r(n+t−1)−(n−1)t

, if r < n,

a any number in (0, t), if r ≥ n.

Let us remark that, when r < n,

(3.20) 0 <
r(tn+ 2(t − 1))− 2(n − 1)t

r(n+ t − 1)− (n − 1)t < t.

Now via Lemma 2.3 we improve on integrability:

V̂ (Du) ∈ Lr̂
loc ∀ r̂ < 2n/(n− a).

This implies via (3.5) that Diu ∈ Lr̂
loc
, i = 1, . . . , n − 1 and Dnu ∈ L

r̂p/2
loc
. Elemen-

tary computations from (3.12) yield

(3.21) 2n/(n− a) ≤ r ∗,

implying that u ∈ Lr̂
loc
. Let us summarize as follows. If

u, Diu ∈ Lr
loc, 2 ≤ r, ∀ i = 1, . . . , n − 1 and Dnu ∈ Lt

loc, p ≤ t < 2,
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then

(3.22) u, Diu ∈ Lr̂
loc

, ∀ i = 1, . . . , n − 1 and Dnu ∈ L
r̂p/2
loc

, ∀ r̂ < 2n/(n − a).

It is useful to remark that (3.22) continues to hold if (3.10) is replaced by a weaker
condition, namely

(3.23) u, Diu ∈ Lr̃
loc, ∀ r̃ < r, ∀ i = 1, . . . , n − 1 and Dnu ∈ Lt̃

loc, ∀ t̃ < t,

provided 2 < r and p < t < 2. Assuming that r̂ > r and r̂p/2 > t, we may improve
upon r ∗ by using Lemma 2.5 and hence in turn improve on a. Thus the whole
analysis behind higher integrability depends upon whether the above process leads
to an augmented value of a at each stage of iteration. In what follows we show that
this can actually be realized. Although some improvement in t is always possible
we can show that t can be boosted to 2, i.e. Dnu ∈ L2

loc
, for only a limited range

of p. We now describe the iterative process that will be used to boost integrability.
At each stage we will compare r to the initial values of r = 2 and t = p. In the
following we have broken down the analysis into two steps. Also, we will firstly
assume n ≥ 5 and although the most of the analysis is valid for n = 2, 3 and 4, we
treat these separately for better presentation.

Step 1. Since u, Diu ∈ L2, i = 1, . . . , n−1, and Dnu ∈ Lp, (3.10) holds with r = 2
and t = p; we insert the values r = 2 and t = p into (3.11). Call r(0) the resulting
expression, i.e.

(3.24) r(0) =
2pn

(n − 1)p+ 2 .

We remark that r(0) < n so that, by the first line of (3.19) with r = 2 and t = p,
we choose a(0) to be the maximum value allowed for a, that is

(3.25) a(0) =
2(3p− 2)

n(2− p) + (3p − 2) .

We set

(3.26) ε(0) =
2n

n − a(0)
− 2 = 4(3p− 2)

n2(2− p) + (n − 2)(3p − 2) .

From (3.22) we find

(3.27) u, Diu ∈ Lr̂
loc, ∀ r̂ < 2 + ε(0) ∀ i = 1, . . . , n − 1

and Dnu ∈ Lt̂
loc

, ∀ t̂ < p(1 + ε(0)/2).

We now describe an intermediate stage in the iterative process.
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Step 2. Let ε > 0, take r(ε) = 2 + ε, t(ε) = p(1 + ε/2); assume that

(3.28) u, Diu ∈ Lr̃
loc, ∀ r̃ < r(ε), ∀ i = 1, . . . , n − 1 and Dnu ∈ Lt̃

loc, ∀ t̃ < t(ε).

We now split the discussion into three cases, namely (i) 0 < ε < 2(2 − p)/p,
(ii) ε = 2(2− p)/p and (iii) ε > 2(2− p)/p.

Case (i). We assume that

(3.29) 0 < ε < 2(2− p)/p.

Then 2 < r(ε) and p < t(ε) < 2. Clearly, (3.23) holds with r = r(ε) and t = t(ε).
The improvements as in (3.22) are as follows. We insert r = r(ε) = 2 + ε and
t = t(ε) = p(1 + ε/2) into (3.11); setting r(ε) as the resulting expression, we have

(3.30) r(ε) =
2pn

(n − 1)p+ 2(1 + ε/2).

Note that, for n ≥ 3, the condition (3.29) implies r(ε) < n, so that we use the first
line in (3.19) with r = r(ε) and t = t(ε). We choose a(ε) to be the maximum value
allowed for a, that is

(3.31) a(ε) =
2(3p− 2) + (n+ 2)εp

n(2− p) + (3p − 2) + εp
.

Set

(3.32) I(ε) =
2n

n − a(ε)
=

4(3p− 2) + 2(n+ 2)εp
n2(2− p) + (n − 2)(3p − 2)− 2εp

and thus in (3.22) we get

(3.33) u, Diu ∈ Lr̂
loc

, ∀ r̂ < 2 + I(ε) ∀ i = 1, . . . , n − 1

and Dnu ∈ Lt̂
loc

, ∀ t̂ < p(1 + I(ε)/2).

Case (ii). We now assume

(3.34) ε = 2(2− p)/p ;

then the assumption (3.28) implies that, for every ε′ < ε = 2(2− p)/p we have

(3.35) u, Diu ∈ Lr̃
loc, ∀ r̃ < r(ε′) ∀ i = 1, . . . , n − 1

and Dnu ∈ Lt̃
loc

, ∀ t̃ < t(ε′).

Now ε′ < 2(2− p)/p so that we can apply the method in Case (i) with ε′ instead of
ε and we get (3.33), in particular,

(3.36) Dnu ∈ Lt̂
loc, ∀ t̂ < p(1 + I(ε′)/2), ∀ ε′ < 2(2− p)/p.

As ε′ approaches 2(2− p)/p, p(1 + I(ε′)/2) goes to p(1 + 2/(n− 2)) which is bigger
than 2, provided n ≥ 3 and 2− 4/n < p ; then (3.36) implies

(3.37) Dnu ∈ L2
loc

and Theorem 1 follows.
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Case (iii). We assume that

(3.38) ε > 2(2− p)/p.

Now t(ε) = p(1 + ε/2) > 2, so that (3.28) implies (3.37) and the statement of
Theorem 1 follows.
The preceding discussion indicates that (3.28) implies the result in Theorem 1,

whenever ε ≥ 2(2− p)/p. However, for 0 < ε < 2(2− p)/p, we get only (3.33). This
necessitates an iterative process where the new ε is given by I(ε) as in (3.32). We
now describe more precisely this process of bootstrapping ε. In (3.26), set

(3.26) ε0 = ε(0) =
4(3p− 2)

n2(2− p) + (n − 2)(3p − 2) ,

(3.39) εm+1 = I(εm) if m ≥ 0 and 0 < εm < 2(2− p)/p.

We recall that the proof is achieved whenever, for some m, εm ≥ 2(2 − p)/p. We
now prove that m → εm is strictly increasing. Set a = 4(3p − 2), b = 2(n + 2)p,
c = n2(2− p) + (n − 2)(3p − 2) and d = 2p ; then

(3.40) 0 < εm < 2(2− p)/p =⇒ c − dεm > 0

and

(3.41) εm+1 =
a+ bεm

c − dεm
.

Direct computations show that ε0 > 0; moreover, if ε0 < 2(2− p)/p, then

(3.42) ε1 − ε0 =
(b + dε0)ε0

c − dε0
> 0.

We are going to prove that

(3.43) 0 < εi < 2(2− p)/p, ∀ i = 0, . . . , m =⇒ εj < εj+1, ∀ j = 0, . . . , m.

Let us set

(3.44(j)) εj < εj+1 ;

we prove (3.44(j)) recursively on j: if j = 0 then (3.44(j)) reduces to (3.42); let us
assume that (3.44(j)) holds true and 0 ≤ j ≤ j + 1 ≤ m, then

εj+2 − εj+1 =
(ad+ bc)(εj+1 − εj)

(c − dεj+1)(c − dεj)
.
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Since εj and εj+1 are between 0 and 2(2− p)/p, by (3.40) we have (c− dεj+1)(c −
dεj) > 0, so, using the recursive assumption (3.44(j)) we get (εj+1 − εj) > 0 and
(3.44(j+1)) holds true. (3.43) is completely proved.
Let us summarize as follows; if n ≥ 3 and max{1, 2 − 4/n} < p < 2 we have

shown that either (a) for some m, εm ≥ 2(2 − p)/p and Theorem 1 follows, or (b)
for every m, 0 < εm < 2(2 − p)/p, also implying that εm is increasing. We now
confine ourselves to the latter case. Set

L = lim
m→∞

εm.

Recall

(3.45) 0 < εm < 2(2− p)/p, ∀m = 0, 1, . . .

From (3.32)

I(n, p, ε) =
4(3p − 2) + 2(n+ 2)εp

n2(2 − p) + (n − 2)(3p − 2)− 2εp .

Moreover, for 1 ≤ p < 2

(3.46)
∂I

∂p
(n, p, ε) > 0,

∂I

∂ε
(n, p, ε) > 0 for 0 < ε ≤ 2(2− p)/p

and

(3.47) ε −→ I(n, p, ε) is continuous in (0, 2(2− p)/p].

By (3.39) we can see that εm depends on n, p ; it is easy to prove that

p −→ ε0(n, p) is increasing in [1, 2).

By (3.46) and (3.47) we get

p −→ εm(n, p) increasing =⇒ p −→ εm+1(n, p) increasing,

so that

(3.48) p −→ εm(n, p) is increasing in [1, 2) ∀m ≥ 0.
Let us point out that L depends on n, p too:

(3.49) L(n, p) = lim
m→∞

εm(n, p).

Because of (3.45) and (3.46) we have

(3.50) 0 < L(n, p) ≤ 2(2− p)/p ;

since I is continuous with respect to ε, passing to the limit in (3.39) we get

(3.51) L(n, p) = I(n, p, L(n, p)).

Now (3.48) implies

(3.52) p −→ L(n, p) is increasing in [1, 2).

We now treat the cases n = 2, n = 3, n = 4 and n ≥ 5 separately.
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Case A. Take n ≥ 5.
From (1.10) and (3.52), we have

(3.53) L(n, 2− 4/n) ≤ L(n, p).

Set p̂ = 2− 4/n; then we have 2(2− p̂)/p̂ = 4/(n− 2); because of (1.10), (3.50) and
(3.53) we get

(3.54) 0 < L(n, 2− 4/n) ≤ 4/(n− 2).
Moreover

(3.55) L(n, 2− 4/n) = I(n, 2− 4/n, L(n, 2− 4/n)).

Solving the equation y = I(n, 2 − 4/n, y), we find y1 = 4/(n − 2) < n − 3 = y2, so
that L(n, 2− 4/n) = 4/(n − 2). Going back to (3.53),
(3.56) 4/(n − 2) = L(n, 2− 4/n) ≤ L(n, p) ≤ 2(2− p)/p < 4/(n− 2),
where the last inequality holds as y → 2(2−y)/y is strictly decreasing and 2−4/n <
p. The inequalities in (3.56) imply that (3.45) does not hold and the Theorem follows
when n ≥ 5 (also see the discussion following (3.38)).
Case B. Let n = 4.
Solving the equation in (3.51),

(3.57) pL2 − (14− 11p)L+ (6p − 4) = 0,
it turns out that

(3.58) L =
(14− 11p)±

√
∆

2p
, ∆ = (14− 11p)2 − 4p(6p − 4).

We have

(3.59) ∆ < 0 if and only if 98/97 < p < 2.

We claim that, for p ∈ (98/97, 2), εm ≥ 2(2 − p)/p for some m. We argue by
contradiction. If not, then εm < 2(2 − p)/p for every m, then L = limm→∞ εm ∈
(0, 2(2 − p)/p]. Clearly, L solves (3.57), but by (3.58) L cannot be real. Hence
Theorem 1 follows.

Case C. Now consider n = 3.
Again by (3.51),

(3.60) pL2 − 8(1− p)L+ (6p − 4) = 0;
it turns out that

(3.61) L =
4(1− p)±

√
∆1

p
, ∆1 = 16− 28p+ 10p2.

We have

(3.62) ∆1 < 0 if and only if 4/5 < p < 2,

so that, if 1 < p < 2, then, as in the case n = 4, for some m ≥ 0 we must have
εm ≥ 2(2− p)/p.
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Case D. Lastly, we treat n=2.
Computing ε(0) from (3.26)

(3.63) ε(0) = (3p − 2)/(2− p).

We have

−3 +
√
17 < p < 2 =⇒ ε(0) > 2(2− p)/p,

1 < p ≤ −3 +
√
17 =⇒ 0 < ε(0) ≤ 2(2− p)/p.

In the case −3 +
√
17 < p < 2 the proof is finished. Let us consider the case

1 < p ≤ −3+
√
17. The inequality (3.27) allows us to start from (3.28) (see Step 2)

with any ε satisfying 0 < ε < ε(0). Since (2 − p)/p < ε(0) ≤ 2(2 − p)/p, we may
select ε such that (2 − p)/p < ε < 2(2 − p)/p. Clearly, (3.29) holds and we have
r(ε) ≥ 2 = n. By (3.19), a(ε) can be chosen to be in (0, p(ε)) and we get as in (3.33),

(3.33) Dnu ∈ Lt̂
loc ∀ t̂ < 2p/(2− a(ε)).

Since

lim
a(ε)→p(ε)

2p

2− a(ε)
=

2p

2− p(ε)
> 2,

we can select a(ε) so that 2 < 2p/(2 − a(ε)), then (3.33) implies that Dnu ∈ L2
loc

and the proof is finished in the case 1 < p ≤ −3 +
√
17, too.

The theorem is completely proved. �

4. Proof of Corollary 1.

As in the proof of Theorem 1, we start from the Euler equation and we arrive
at (3.7): for some positive constant C10 = C10(n, N, p, m, M) we have

(3.7)

∫

B̺

n−1
∑

i=1

|τs,hDiu|2 dx+

∫

B̺

|τs,hV (Dnu)|2 dx ≤ C10
(R − ̺)2

∫

BR

|τs,hu|2 dx.

In Theorem 1 we have proved higher integrability of Dnu so that

(4.1) D1u, . . . , Dn−1u, Dnu ∈ L2loc

and we can apply Lemma 2.1 with t = 2 for s = n too, compare with (3.8),

(4.2)

∫

BR

|τs,hu|2 dx ≤ |h|2
∫

B2R

|Dsu|2 dx ∀ s = 1, . . . , n− 1, n, ∀h : |h| < R.

We put together (3.7) and (4.2): for some positive constant C11 independent of h
we have

(4.3)

∫

B̺

n−1
∑

i=1

|τs,hDiu|2 dx+

∫

B̺

|τs,hV (Dnu)|2 dx ≤ C11|h|2

∀ s = 1, . . . , n − 1, n, ∀h : |h| < R.
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We apply Lemma 2.2 in order to get

(4.4) ∃DsDiu ∈ L2
loc

∃Ds(V (Dnu)) ∈ L2
loc

∀ s = 1, . . . , n − 1, n, ∀ i = 1, . . . , n − 1.

In order to prove existence of DnDnu, we use (3.6), Hölder’s inequality, Lemma 2.4
and (4.3); thus, for some constants C12 and C13, independent of h, we have

(4.5)

∫

B̺

|τs,hDnu|p dx

≤ C12

∫

B̺

(

1 + |Dnu(x)|2 + |Dnu(x+ hes)|2
)(2−p)p/4

|τs,hV (Dnu(x))|p dx

≤ C12

(

∫

B̺

(

1 + |Dnu(x)|2 + |Dnu(x+ hes)|2
)p/2

dx

)(2−p)/2

(

∫

B̺

|τs,hV (Dnu(x))|2 dx

)p/2

≤ C13|h|p ∀ s = 1, . . . , n, ∀h : |h| < R.

Inequality (4.5) with s = n allows us to apply Lemma 2.2:

(4.6) ∃DnDnu ∈ L
p
loc
(Ω).

This ends the proof. �
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