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Note on bi-Lipschitz embeddings into normed spaces

Jiř́ı Matoušek

Abstract. Let (X, d), (Y, ρ) be metric spaces and f : X → Y an injective mapping. We put
‖f‖Lip = sup{ρ(f(x), f(y))/d(x, y); x, y ∈ X, x 6= y}, and dist(f) = ‖f‖Lip.‖f

−1‖Lip (the
distortion of the mapping f). We investigate the minimum dimension N such that every
n-point metric space can be embedded into the space ℓN

∞
with a prescribed distortion D.

We obtain that this is possible for N ≥ C(logn)2n3/D, where C is a suitable absolute
constant. This improves a result of Johnson, Lindenstrauss and Schechtman [JLS87] (with
a simpler proof). Related results for embeddability into ℓN

p are obtained by a similar
method.

Keywords: finite metric space, embedding of metric spaces, distortion, Lipschitz mapping,
spaces ℓp

Classification: 46B99, 54C25

Let us begin with some notation. The symbol ℓn
p denotes the n-dimensional real

vector space equipped with the Lp-norm, given by ‖(x1, . . . , xn)‖p = (
∑n

i=1 |xi|
p)1/p

(for 1 ≤ p < ∞; for p =∞ it is ‖(x1, . . . , xn)‖∞ = max{|xi|; i = 1, . . . , n}). Simi-
larly ℓp denotes the space of countable sequences of real numbers with the Lp-norm.
If P is a finite set equipped by a measure, we will sometimes use the notation Lp(P ),
meaning the space of |P |-tuples of real numbers indexed by members of P , equipped
by the Lp-norm (thus ℓn

p is just Lp({1, . . . , n}), where the set {1, . . . , n} is consi-

dered with the counting measure).
Every n-point metric space can be isometrically embedded into ℓn

∞ (this is an
old observation due to Fréchet): If X = {x1, . . . , xn}, the embedding f : X → ℓn

∞
is defined by f(xi)j = ρ(xi, xj).
For other ℓp spaces, there exist finite metric spaces which cannot be embed-

ded isometrically (a classical work on isometric embeddability into Hilbert space is
[Scho38]). One can quantitatively measure the degree of “metric non-embeddability”
using so-called Lipschitz distance of metric spaces.
Let (X, d), (Y, ρ) be metric spaces. We let

dist(X,⊆ Y ) = inf{dist(f); f : X → Y an injective mapping}

(the distortion of a mapping was defined in the abstract). When |X | = |Y | and the
infimum is taken over all bijective mappings, this quantity is called the Lipschitz
distance of X and Y in the literature.

This research was performed while the author was at Department of Computer Science, Charles
University
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A problem studied in the recent literature is the minimum distortion necessary
for embedding of general finite metric spaces into normed spaces (in particular,
into ℓn

p ) and also the minimum dimension, needed for an embedding with a pre-
scribed distortion.
For embedding into Hilbert space, the situation has been essentially cleared out

by the works [JL84] and [Bou85]. J. Bourgain proved the following:

Theorem 1 [Bou85].

(i) For every n-point metric space X , dist(X,⊆ ℓ2) = O(log n).
(ii) For every n, there exists a metric space X with dist(X,⊆ ℓ2) ≥

c logn/ log logn, where c > 0 is an absolute constant.

This gives nearly tight bounds for the embeddability (without a limit on the
dimension of the image space). Since every finite subspace of ℓ2 is isometrically
embeddable into any other ℓp, the upper bound (i) holds for all p. The lower bound
proof in (ii) can be re-formulated using graphs without short cycles, and the same
lower bound can be extended to all p ∈ [1, 2] ([Ma89]). A good lower bound for
p > 2 remains an open problem; the best known bound follows from [BMW86] and

it is (c logn)1/p for an absolute constant c > 0.
Another interesting question is what happens when we limit the dimension of the

normed space into which we want to embed. For Euclidean spaces, the following
“flattening lemma” was established by Johnson and Lindenstrauss:

Theorem 2 [JL84]. For every ε > 0 there exists a constant C = C(ε), such that if

X is an n-point subset of ℓn
2 for some n ≥ 2, then dist(X,⊆ ℓ

C logn
2 ) ≤ 1 + ε.

If some analogue of this lemma holds for other values of p is another interesting
open problem.
Johnson, Lindenstrauss and Schechtman proved the following result:

Theorem 3 [JLS87]. For every n point metric space X and a number D, there
exists a k-dimensional normed space Z with dist(X,⊆ Z) ≤ D, where

k = O((log n)3D2nK/D), for some absolute constant K.

They combine the technique of [Bou85] with some other methods from normed
space theory. We will show a strengthening of their result (namely the embedding

will always be into ℓk
∞), using a much simpler method. A similar method yields

also some estimates for embedding into ℓk
p.

Theorem 4. Let X be an n-point metric space.

(i) IfN ≥ C(log n)2n3/D, where C is a suitable absolute constant, then dist(X,⊆

ℓN
∞) ≤ D.

(ii) For every p, 1 ≤ p < lnn/3, dist(X,⊆ ℓN
p ) = O((log n)1+1/p/p), provided

that N ≥ Cp(log n)2, where C is a suitable absolute constant.
(iii) Let p ∈ [1,∞] and N ≥ C(log n)2, where C is a suitable absolute constant.

Then dist(X,⊆ ℓN
p ) = O(log n) (the constant of proportionality can be

chosen independently of p).
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Let us remark that (iii) without a bound on the dimension follows immediately
from [Bou85]. The part (ii) shows that the necessary distortion really decreases
with growing p, and for p of the order logn we get an embedding with distortion
bounded by a constant.
The technique we will use for embedding of finite metric spaces into normed

spaces is due to J. Bourgain ([Bou85]). Let (X, ρ) be an n-point metric space,

m = ⌈log2 n⌉ + 1 and let Mk denote the set of all subsets of X of size 2k, k =
0, 1, . . . , m − 1. Let us put M = M0 ∪ . . . ∪ Mm−1. On every Mk, we introduce
a probabilistic measure µk, which assigns the same probability to every element of
the setMk, and a probabilistic measure µ onM is defined by µ({A}) = µk({A})/m
for every A ∈ Mk.
Let x, y ∈ X be two points and let A ∈ M ; we denote dA(x, y) = |ρ(A, x) −

ρ(A, y)|. Obviously dA(x, y) ≤ ρ(x, y). The following lemma contains two versions
of the same idea and its proof is not too difficult:

Lemma 5. Let x, y be two points of a metric space X .

(i) [JLS87] For every α ∈ (0, 1/3) there exists k, such that

µk({A ∈ Mk; dA(x, y) ≥ αρ(x, y)}) ≥ cn−3α,

where c is a positive constant.
(ii) [Bou85] There exist nonnegative numbers ρ0, . . . , ρm−1 and pairwise dis-
tinct indices k0, . . . , km−1, such that ρ0 + ρ1 + · · ·+ ρm−1 ≥ ρ(x, y)/3 and

µki
({A ∈ Mki

; dA(x, y) ≥ ρi}) ≥ c ,

where c is a positive constant.

Proof of Theorem 4: (i) Let a set Pk (k = 0, 1, ..., m−1) arise by r independent
random draws from the set Mk, where r = N/m. Let us put P = P0 ∪ . . . ∪ Pm−1

(so |P | ≤ N). An embedding f : X → L∞(P ) is defined by f(x)A = ρ(x, A) for
A ∈ P . Clearly ‖f‖Lip ≤ 1.
Let x, y be a pair of distinct points of X , and let α = 1/D. Let k be an index as

in Lemma 5 (i). Then

Prob(∀A ∈ Pk; dA(x, y) < αρ(x, y)) = µk({A ∈ Mk; dA(x, y) < αρ(x, y)})r ≤

≤ (1− cn−3/D)N/m ≤ exp(−cn−3/DN/m) < exp(−c.C. log n) < n−2 ,

hence

Prob(‖f−1‖Lip > D) ≤ Prob(∃x, y ∈ X ; ∀A ∈ P ; dA(x, y) < αρ(x, y)) ≤

≤

(

n

2

)

Prob(∀A ∈ Pk; dA(x, y) < αρ(x, y)) < 1 .

This means that there exists some embedding f : X → ℓN
∞ with distortion at

most D.
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(ii) Similarly as in (i), we select Pk fromMk using r = N/m independent random
draws. We define f : X → Lp(P ) (where we take the uniform probability measure on
P = P0 ∪ . . .∪Pm−1) by f(x)A = ρ(x, A). Similarly as in the previous, ‖f‖Lip ≤ 1.
This time we will bound the probability that the difference |f(x)A − f(y)A| (for

given x, y) is large only for a small fraction of A’s from Pk. Let us put α = p/ logn.
Let x, y ∈ X and k be index as in Lemma 5 (i). Let τ denote the probability that

for a random A ∈ Mk it is dA(x, y) ≥ αρ(x, y); we have τ ≥ cn−3α ≥ C
−p
1 for some

absolute constant C1.
We bound the probability θ = Prob(|{A ∈ Pk; dA(x, y) ≥ αρ(x, y)}| < τr/2).

This probability is bounded by the probability that we achieve less than τr/2 suc-
cesses in a series of r independent (Bernoulli) trials with success probability τ . By
Chernoff inequality (see e.g. [Spe]) we get

θ ≤ exp(−
τr

8
) = exp(−(C/C1)

p logn/8) < n−2,

provided that C is large enough compared to C1.
Hence for a certain choice of the set P we may assume that for every pair x, y ∈ X

there exists k such that |{A ∈ Pk; dA(x, y) ≥ αρ(x, y)}| ≥ τr/2. Let f be a mapping
defined as above for such a set P . Then for every x, y we have

‖f(x)− f(y)‖p =

(

∑

A∈P

dA(x, y)p

|P |

)1/p

≥

(

∑

A∈Pk

dA(x, y)p

N

)1/p

≥

≥

(

∑

A∈Pk; dA(x,y)≥αρ(x,y)

αpρ(x, y)p

N

)1/p

≥

(

τrαpρ(x, y)p

2N

)1/p

≥

≥ (τ/2m)1/pαρ(x, y) ≥

(

C−p
1

2 logn

)1/p p

logn
ρ(x, y) ≥

ρ(x, y)

O((log n)1+1/p/p)
.

(iii) The proof is quite analogous to (ii), only we use Lemma 5 (ii) instead of (i).
Again we put r = N/m, and the sets P0, . . . , Pm−1 will be as in the previous. Let
for a given pair x, y the numbers ρ0, . . . , ρm−1 and indices k0, . . . , km−1 be as in
Lemma 5 (ii). One proves that for every i = 0, 1, . . . , m − 1 it is (c > 0 is the
constant from Lemma 5 (ii))

Prob(|{A ∈ Pki
; dA(x, y) ≥ ρi}| < cr/2) < n−2m−1,

so there exists a set P such that for the corresponding mapping f : X → ℓp(P ) we
have (for every x, y ∈ X)

‖f(x)− f(y)‖1 ≥
1

N

m−1
∑

i=0

crρi

2
≥
1

m
·
c

2
·
ρ(x, y)

3
=

ρ(x, y)

O(log n)
,

and finally it is ‖f(x)−f(y)‖1 ≤ ‖f(x)−f(y)‖p ≤ ‖f(x)−f(y)‖∞ ≤ ρ(x, y), hence
‖f‖Lip = O(log n) — we even use the same mapping for each p.
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[Ma89] Matoušek J., Lipschitz distance of metric spaces (in Czech), CSc. degree thesis, Charles
University, 1990.

[Scho38] Schoenberg I.J.,Metric spaces and positive definite functions, Trans. Amer. Math. Soc.
44 (1938), 522–536.

[Spe87] Spencer J., Ten Lectures on the Probabilistic Method, CBMS-NSF, SIAM 1987.

Department of Applied Mathematics, Charles University, Malostranské nám. 25,
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