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Limiting behavior of global attractors

for singularly perturbed beam equations

with strong damping

Daniel Ševčovič

Abstract. The limiting behavior of global attractors Aε for singularly perturbed beam
equations

ε2
∂2u

∂t2
+ εδ

∂u

∂t
+ A

∂u

∂t
+ αAu+ g(‖u‖2

1/4)A
1/2u = 0

is investigated. It is shown that for any neighborhood U of A0 the set Aε is included in U
for ε small.

Keywords: strongly damped beam equation, compact attractor, upper semicontinuity of
global attractors

Classification: 35B40, 35Q20

1. Introduction.

Consider the following problems

(1.1)ε











ε2 ∂2u
∂t2
+ εδ ∂u

∂t +A∂u
∂t + αAu+ g(‖u‖21/4)A

1/2u = 0

u(0) = u0
∂u
∂t (0) = v0

and

(1.1)0

{

∂u
∂t + αu+ g(‖u‖21/4)A

−1/2u = 0

u(0) = u0

where g is an increased C1 function, ε > 0 is a small parameter, α < 0 and δ is
a real unrestricted on the sign. Here A is a sectorial operator in L2(0, l) defined by
a differential operator ∂4/∂x4 and the boundary conditions corresponding either to
hinged ends, when

(1.2)H u(x) = uxx(x) = 0 at x = 0, l

or to clamped ends, when

(1.2)C u(x) = ux(x) = 0 at x = 0, l.
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Let {S(t); t ≥ 0} be a semidynamical system in a Banach space X (for definition,
see, for example, [H, Chapter 4]). A set J ⊆ X is called invariant if S(t)J = J
for all t ≥ 0. An invariant set U ⊆ X is called a global compact attractor for the
semidynamical system S(t) if it is a compact set in X and limt→∞ dist (S(t)B,U)
= 0 for any bounded set B ⊆ X , where

dist (A,B) = sup
x∈A

inf
y∈B

‖x − y‖.

It is shown (Theorem 3.1) that, for small ε, there is a compact global attractor
Aε ⊆ W 2,2(0, l) × L2(0, l) for a semidynamical system generated by (1.1)ε. For
ε = 0, the problem (1.1)0 also has a compact attractor which can be naturally
embedded into compact set A0 ⊆ W 2,2 × L2(0, l).
Let us note that under the assumptions g ≥ 0 and δ ≥ 0, the dynamics of

(1.1)ε, ε ≥ 0, is simple—every trajectory approaches a zero equilibrium state (see
Remark 3.2). On the other hand, if g(0) < 0 is sufficiently small, then the attractor
Aε, ε ≥ 0, contains 2n− 1 distinct equilibrium states (Remark 3.1) for some n ∈ N.
In this case the attractor Aε is a union of unstable manifolds for equilibrium states
(see, for example, [BV, Theorem 10.1]).
The purpose of this paper is to obtain some relationships between the attractors

Aε and A0 for small ε. It is given in terms of upper semicontinuity of A0 at ε = 0
with respect to the sets {Aε; ε > 0}.
In this paper, the following hypotheses are needed:

(H1) g ∈ C1(R+, R); g′(r) > 0 for r ≥ 0 and
∫ ∞

0
g(s) ds > −∞

(H2) α > 0, δ ∈ R.

We can now state our main result.

Theorem 1.1. Suppose that the hypotheses (H1)-(H2) are satisfied. Then the
attractor A0 is upper semicontinuous at zero with respect to the sets Aε; ε > 0, i.e.

lim
ε−→0+

dist (Aε,A0) = 0.

In other words, for any neighborhood U of A0, the set Aε is included in U for ε
small.
As an example for (1.1)ε one can consider a problem of a transverse motion, at

a small strain, in the x− y plane, of a viscoelastic beam in a viscous medium whose
resistance is proportional to the velocity. The ends of the beam are fixed at the
points x = 0 and x = l + d, where d is a load (positive or negative) of the beam
and a stress-free state of the beam occupies the interval [0, l]. Shear deformations
are neglected in this model. Then the equation of the motion in y-direction is

(1.3)
∂2u

∂t2
+ δ · ∂u

∂t
+

ξI

̺
· A∂u

∂t
+

EI

̺
Au+

(

ESd

l̺
+

ES

2l̺
·
∫ l

0
u2x dx

)

A1/2u = 0
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where E is the Young’s modulus, S the cross-sectional area, ξ the effective viscosity,
I the cross-sectional second moment of area, ̺ the mass per unit length and δ the
coefficient of external damping. For details see [F], [B1], [B2] and references therein.
Put ε = ̺

ξI > 0. Then the equation (1.1)ε follows from (1.3) by a suitably

rescaling the time. The limit ε −→ 0+ corresponds to the case in which the effective
viscosity tends to +∞.
In recent years, many authors have studied the attractors for a singularly per-

turbed hyperbolic equation

(1.4)ε ε2
∂2u

∂t2
+

∂u

∂t
−∆u = f(u).

See, for example, [GT], [ChL] and other references in [HR1] and [HR2]. Hale and
Rougel have shown that the attractors of (1.4)ε converge in the Hausdorff topology
towards the one corresponding to ε = 0

(1.4)0
∂u

∂t
−∆u = f(u).

Clearly, the main difference between (1.1)ε-(1.1)0 and (1.4)ε-(1.4)0 is that (1.4)0
is the quasilinear parabolic equation with an unbounded linear operator −∆, while
the problem (1.1)0 is the quasilinear differential equation in a Hilbert space with
a bounded operator α · Id.
The paper is organized as follows. Definitions and notations are recalled in

Section 2. Following the style of Henry’s lecture notes [H, Chapter 3, 4], one can
obtain a local and global existence of solutions of (1.1)ε. Section 3 deals with the
existence and uniform boundedness of attractors Aε. Section 4 is devoted to the
singular equation (1.1)0. The proof of the existence of A0 is given. In Section 5 we
prove Theorem 1.1.

2. Preliminaries.

Let X = L2(0, l) be a real Hilbert space equipped with its usual scalar product
(·, ·) and norm ‖ · ‖. Define A : X −→ X ;Au = ∂4u/∂x4 for each u ∈ C∞

B (0, l),
where

C∞
B (0, l) = {Φ ∈ C∞(0, l); Φ satisfies b.c. B},

for B = H or B = C. Let A be the self-adjoint closure in X of its restriction
to C∞

B (0, l). It is well known that A is a sectorial operator in X (see [H, p. 19]).

Therefore the fractional powers Aβ can be defined. Let Xβ be a Hilbert space
consisting of the domain of fractional power Aβ with the graph norm, i.e. ‖u‖β =

‖Aβu‖ for all u ∈ Xβ . Let us note that Xβ →֒ W 4β,2(0, l) for β ≥ 0. We also
have ‖u‖β ≤ λβ−σ

1 ‖u‖σ for any 0 ≤ β ≤ σ and u ∈ Xσ. Recall that A has

a compact resolvent A−1. Therefore the imbedding Xσ →֒→֒ Xβ is compact,
whenever 0 ≤ β < σ.
Let Φn, j ∈ N, denote the orthonormal basis of X consisting of eigenvectors of

the operators A:

AΦn = λnΦn; 0 < λ1 < λ2 < . . . ; λn −→ +∞ as n −→ +∞.
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Denote by Pm the projector in X onto the space spanned by {Φ1, . . . ,Φm}.
Clearly,

‖Pmu‖β ≤ λβ−σ
m ‖Pmu‖σ ≤ λβ−σ

m ‖u‖σ for each u ∈ Xσ and β, σ ≥ 0.

Let S(t) be a semidynamical system in a Banach space X .
A set B dissipates a set J if there exists T = T (J) > 0 such that t ≥ T implies

S(t)J ⊆ B. A semidynamical system S(t) is called bounded dissipative if there
exists a bounded set B which dissipates all bounded sets.
The omega-limit set is defined by

Ω(B) =
⋂

t≥0

cl (
⋃

s≥t

S(s)B) (the closure is taken in X ).

In this paper, the time derivatives will be denoted by

∂

∂t
(·) = (·)′ .

In order to obtain a local and global existence we rewrite (1.1)ε as a first order

ordinary differential equation in the Hilbert space X = X1/2 ×X . This is to do by
letting v = u′. Then we can rewrite (1.1)ε as

(2.1)
d

dt
φ (t) + Lεφ (t) + Fε(φ (t)) = 0; φ (0) = φ0

where

φ (t) = [u(t), v(t)]; Lε[u, v] = [−v, ε−2A(αu + v) + ε−1δv]

and Fε([u, v]) = [0,−ε−2g(‖u‖21/4)A
1/2u].

It is known [M1, Theorem 1.1] that the operator L([u, v]) = [−v, A(αu + v)] is

sectorial in X1/2 × X . Then Theorem 1.3.2 of [H] demonstrates that the operator
Lε is sectorial in X . The domain of Lε is

D(Lε) = {[u, v] ∈ X1/2 × X1/2; αu + v ∈ D(A)}.

From now on we restrict ε0 by

(H3) λ1 − 2 · ε0|δ| > 0.

Since Re σ(A) ≥ λ1, then, by looking at the spectrum σ(Lε), we see that

(2.2) Re σ(Lε) >
α

2
for each ε ∈ (0, ε0].
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Since Lε is the sectorial operator, then −Lε generates an analytic semigroup
exp (−Lε). Let ω ∈ (0, α/2). Due to the estimate (2.2), it follows that there is
M(ε) > 0 such that

(2.3) ‖ exp (−Lεt)‖X ≤ M(ε) · e−ωt for each t ≥ 0.

According to [H, Theorems 3.3.3, 3.3.4, 3.4.1 and 3.5.2], the local existence,
uniqueness, continuous dependence on initial conditions and continuation of solu-
tions od (2.1) immediately follow. More precisely, for each Φ0 ∈ X there exists
T = T (Φ0) > 0 and a unique function Φ = Φ (t,Φ0) such that

Φ ∈ C([0, t1) : X ) ∩ C1((t0, t1) : X ) for each 0 < t0 < t1 < T,

Φ (0) = Φ0,Φ (t) ∈ D(L) for each t ∈ (0, T ) and Φ (t) is the solution of (2.1) on
the interval of existence (0, T ).

If we take the scalar product in X of (1.1)ε with u′, we conclude that

(2.4)
1

2

d

dt

{

α‖u‖21/2 + ε2‖u′‖2 + G(‖u‖21/4)
}

+ ‖u′‖21/2 + εδ‖u′‖2 = 0

where G is the primitive of g, i.e.

G(r) =
∫ r

0
g(s) ds for r ≥ 0.

Thanks to (H1) we infer the existence of C0 > 0 such that

(2.5) g(r) · r ≥
∫ r

0
g(s) ds ≥ −C0 for each r ≥ 0.

From (2.4) we observe that

(2.6)

∫ r

0
‖u′(s)‖21/2 ds+ ε2‖u′(t)‖2 + α · ‖u(t)‖21/2 ≤

≤ ε2‖u′(0)‖2 + α · ‖u(0)‖21/2 + G(‖u(0)‖21/4) + C0

for each t ≥ 0.

Thus the solutions of (1.1)ε and (2.1) exist globally on R
+. Hence the initial

value problem (2.1) generates a semidynamical system {Sε(t); t ≥ 0} in X , where
Sε(t)Φ (0) = Φε(t,Φ(0)) for t ≥ 0.
Since there are many estimates in this paper, we will let C0, C1, C2, . . . be generic

positive constants always assumed to be independent of ε.
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3. The existence and uniform regularity of global attractors.

Lemma 3.1. The semidynamical system Sε is bounded dissipative in X . More
precisely, there exists a constant C1 > 0 such that for any ε ∈ (0, ε] and any
bounded set B ⊆ X1/2 × X there is T (ε, B) > 0 with the property

t ≥ T (ε, B) implies

ε2‖v‖2 + α‖u‖21/2 ≤ C1 for each (u, v) ∈ Sε(t)B.

Proof: Define a functional Vε : X −→ R by

Vε(Φ,Ψ) =
1

2

{

α‖Φ‖21/2 + ε2‖Ψ‖2 + G(‖Φ‖21/4)
}

+ bε2(Φ,Ψ)

where b is a positive real satisfying

0 < b < min

{

α,

√
αλ1
2ε0

; (λ1 − ε0|δ|)
(

λ1
α
+ ε20 +

ε20δ
2

αλ1

)−1
}

.

From (2.4) we obtain

d

dt
Vε(uε, u

′

ε) = −‖u′

ε‖21/2 − εδ‖u′

ε‖2 + bε2‖u′

ε‖2 − b · (Au
′

ε, uε)−

−bα · (Auε, uε)− bεδ · (u′

ε, uε)− b · g(‖uε‖21/4) · ‖uε‖21/4 ≤

≤ −‖u′

ε‖21/2 − (εδ − bε2) · ‖u′

ε‖2 − bα · ‖uε‖21/2 − b · (A1/2u′

ε, A
1/2uε)−

−bεδ · (u′

ε, uε) + bC0.

Then we deduce from the Young’s inequality

|(Φ,Ψ)| ≤ (r2‖Φ‖2 + r−2‖Ψ‖2)/2

that

d

dt
Vε(uε, u

′

ε) ≤ −‖u′

ε‖21/2 − (εδ − bε2) · ‖u′

ε‖2 − bα · ‖uε‖21/2 + bC0+

+b · (r2‖u′

ε‖21/2 + r−2‖uε‖21/2)/2 + bε|δ| · (s2‖u′

ε‖2 + s−2‖uε‖2)/2.

Put r2 = 2/α and s2 =
2ε|δ|
α·λ1
. Then

d

dt
Vε(uε, u

′

ε) ≤ −(1− b

α
) · ‖u′

ε‖21/2 − (εδ − bε2 − b
ε2δ2

α · λ1
) · ‖u′

ε‖2−

−b(α − α/4− α/4) · ‖uε‖21/2 + bC0 ≤

≤ −
(

λ1(1 −
b

α
) + εδ − bε2 − b

ε2δ2

α · λ1

)

· ‖u′

ε‖2 − b · α

2
· ‖uε‖21/2 + bC0.
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Since b ·
(

λ1
α + ε20 +

ε2
0
δ2

αλ1

)

< λ1 − ε0|δ| and b < α, one can easily show that there

are constants C2, C3 > 0 such that

(3.1)
d

dt
Vε(uε, u

′

ε) ≤ −C2(‖u
′

ε‖2 + ‖uε‖21/2) + C3 .

Let us introduce a function

yε(t) = Vε(uε(t), u
′

ε(t)) + C3 .

Thanks to the inequality

bε2(u
′

ε, uε) ≤
ε2

2
· ‖u′

ε‖2 +
ε2b2

2 · λ1
· ‖uε‖21/2

we have

0 ≤ yε(t) ≤ α · ‖uε(t)‖21/2 + ε2‖u′

ε(t)‖2 +
1

2
G(‖uε(t)‖21/4) + C3 .

Since g increases on R
+, there exists an increasing function ϑ ∈ C1(R+, R+) such

that
0 ≤ yε(t) ≤ ϑ(‖uε(t)‖21/2 + ‖u′

ε(t)‖2)

and ϑ
′

(r) ≥ σ > 0 for each r ≥ 0.
Then we can rewrite (3.1) as an ordinary differential inequality

d

dt
yε ≤ −C2ϑ

−1(yε) + C3 .

An obvious contradiction argument gives us either 0 ≤ yε(t) ≤ ϑ(C3/C2) for each
t ≥ 0 or there is T (ε, yε(0)) > 0 such that 0 ≤ yε(t) ≤ ϑ(C3/C2) + 1 for each
t ≥ T (ε, yε(0)). Due to the assumption on b, it follows that

yε(t) ≥
1

4
(α‖uε(t)‖21/2 + ε2‖u′

ε(t)‖2) + C3 − C0/2 .

Thus Lemma 3.1 is proved. �

Consider a solution wε of the following linear strongly damped evolution equation

ε2w
′′

ε +Aw
′

ε + α · Awε + εδ · w′

ε + hε = 0

where

(3.2) hε ∈ Lp(R
+;X) for p = 2 or p =∞ .
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Lemma 3.2. Assume p = 2 or p = ∞. Then there are constants C4, C5, a > 0
such that

ε2‖Pmw
′

ε(t)‖21/2 + α · ‖Pmwε(t)‖21 ≤

≤ C4(ε
2‖Pmw

′

ε(0)‖21/2 + α · ‖Pmwε(0)‖21) · e−2at + C5‖hε‖2Lp(R+;X)

for each t ≥ 0; ε ∈ (0, ε0] and m ∈ N .

Proof: Put y(t) = Pmwε(t). Clearly, y(t), y′(t) ∈ D(A) for each t ≥ 0. Let us
introduce a substitution

z = y′ + a · y
where a is a positive real satisfying

0 < a < min

{

α

2
;
λ1 − 2|δ|ε0
4ε20

;
αλ1
4ε0

(ε0α

2
+ |δ|

)−1
}

.

Then

(3.3) ε2z′ + (A − aε2 + δε)z + ((α − a)A+ a2ε2 − aδε)y + Pmhε = 0

Take the scalar product in X of (3.3) with Az to obtain

1

2

d

dt

{

ε2‖z‖21/2 + (α − a)‖y‖21 + (a2ε2 − aδε)‖y‖21/2
}

+

+‖z‖21 + (δε − aε2)‖z‖21/2 + a ·
{

(α − a)‖y‖21 + (a2ε2 − aδε)‖y‖21/2
}

=

= −(Pmhε, Az) ≤ 1
2
· ‖Pmhε‖2 +

1

2
· ‖z‖21 .

From the assumption a <
λ1−2|δ|ε0
4ε2
0

we have

θ′(t) + 2aθ(t) ≤ ‖hε(t)‖2 for t ≥ 0

where
θ(t) = ε2‖z‖21/2 + (α − a)‖y‖21 + (a2ε2 − aδε)‖y‖21/2 .

Therefore

θ(t) ≤ θ(0) · e−2at +

∫ t

0
e−2a(t−s)‖hε(s)‖2 ds ≤

≤ θ(0) · e−2at + C
′

5‖hε‖2Lp(R+;X)
.

Since a < α
2 and

aε0
λ1

( ε0α
2 + |δ|

)

< α
4 , then

(α − a)‖y‖21 + (a2ε2 − aδε)‖y‖21/2 ≥

≥ α

2
· ‖y‖21 − aε0

(ε0α

2
+ |δ|

)

· ‖y‖21/2 ≥
α

4
· ‖y‖21 .
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Then one can easily show that there are C4, C5 > 0 such that

ε2‖y′(t)‖21/2 + α · ‖y(t)‖21 ≤

≤ C4(ε
2‖y′(0)‖21/2 + α · ‖y(0)‖21) · e−2at + C5‖hε‖2Lp(R+;X)

as claimed. �

The solution of (2.1) is given by the variation of constants by the formula

Sε(t)Φ0 = exp (−Lεt)Φ0 + Uε(t)Φ0

where Uε(t)Φ0 =

∫ t

0
exp (−Lε(t − s))

[

0,−ε−2g(‖uε(s)‖21/4)A
1/2uε(s)

]

ds .

Put
[

wε(t), w
′

ε(t)
]

= Uε(t) [u0, v0]. Clearly, wε is a solution of the linear strongly

damped evolution equation

ε2w
′′

ε (t) +Aw
′

ε(t) + αAwε(t) + εδw
′

ε(t) + hε(t) = 0

w
′

ε(0) = wε(0) = 0

where hε(t) = g(‖uε(t)‖21/4)A
1/2uε(t) and uε is a solution of (1.1)ε satisfying the

initial conditions
uε(0) = u0, u

′

ε(0) = v0 .

Lemma 3.3. Let ε ∈ (0, ε0] be fixed. Then the set Kε =
⋃

t≥0 Uε(t)B is bounded

in X1 × X1/2 for any bounded set B ⊆ X1/2 × X .

Proof: Let B be a bounded set in X1/2 × X , i.e. there is M1 > 0 such that

ε2‖v‖2 + α‖u‖21/2 + G(‖u‖21/4) ≤ M1 for each (u, v) ∈ B .

Let (u0, v0) ∈ B and uε be a solution of (1.1)ε which satisfies the initial data

uε(0) = u0, u
′

ε(0) = v0. From (2.6) we have

ε2‖u′

ε(t)‖2 + α‖u(t)‖21/2 ≤ M1 + C0 =M
′

1 for each t ≥ 0.

Therefore there exists M2 > 0 such that

‖hε‖2L∞(R+;X)
≤ M2 .

Thanks to Lemma 3.2 (with p =∞) we have

ε2‖Pmw
′

ε(t)‖21/2 + α · ‖Pmwε(t)‖21 ≤ C5M2 for each t ≥ 0 and m ∈ N .

Letting m −→ ∞, we conclude that

ε2‖w′

ε(t)‖21/2 + α · ‖wε(t)‖21 ≤ C5M2 =M3 for each t ≥ 0.

Then the arbitrariness of (u0, v0) ∈ B implies the assertion of Lemma 3.3. �
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Theorem 3.1. Let ε ∈ (0, ε0] be fixed. Then there exists a compact global attrac-
tor Aε for Sε. Moreover, Aε is bounded in X1 × X1/2.

Proof: In order to exploit the general results of [GT], we have to show that Sε is

bounded dissipative and for any bounded set B ⊆ X1/2 ×X there is a compact set
KB

ε which attracts B, i.e.

lim
t→∞

dist (Sε(t)B, KB
ε ) = 0.

Clearly, by Lemma 3.1, Sε is bounded dissipative, i.e. there exists a bounded set

Bε which dissipates all bounded sets of X
1/2 × X .

Let B be any bounded set in X1/2 × X . From Lemma 3.3 we have that

KB
ε =

⋃

t≥0

Uε(t)B is bounded in X1 × X1/2 .

Therefore KB
ε is compact in X1/2 × X . Since

dist (Sε(t)B, KB
ε ) ≤ sup

Φ∈B
‖ exp (−Lεt)Φ‖X ≤ M(ε) exp (−ωt) · sup

Φ∈B
‖Φ‖X

where ω ∈ (0, α

2
),

then
lim

t→∞
dist (Sε(t)B, KB

ε ) = 0.

According to [GT, Proposition 3.1] Aε = Ω(Bε) is a compact global attractor
for Sε. Furthermore, since Ω(Bε) is the bounded and invariant set then we see that

dist (Ω(Bε), K
Ω(Bε)
ε ) = 0.

Thus Aε = Ω(Bε) ⊆ K
Ω(Bε)
ε . Hence Aε is bounded in X1 × X1/2. �

Remark 3.1. In the general case (under the hypotheses H1-H3) the attractor
Aε, ε > 0, does not reduce to a single point. Indeed, one can consider the case in
which

−α
√

λn+1 < g(0) ≤ −α
√

λn

where 0 < λ1 < λ2 < . . . are eigenvalues of A and Φk, k ≥ 1, are corresponding
orthonormal eigenvectors. Since we assume

∫ ∞

0
g(s) ds > −∞ and g is an increasing function,

the domain of g−1 (the inverse function of g) contains a subinterval [g(0), 0). Hence

w±
k =

[

±
(

g−1(−α · (λk)
1/2)/λ

1/2
k

)1/2
· Φk, 0

]

k = 1, 2, . . . , n

are non-zero equilibrium states for (2.1), ε > 0, which are contained in Aε.



Limiting behavior of global attractors for singularly perturbed beam equations . . . 55

Remark 3.2. If we restrict g, δ by δ > −λ1 and g(s) = β + k · s, where k > 0 and
β > −α

√
λ1 then it is known ([B2, Theorem 6]) that every solution of (1.1)ε, ε > 0,

and its time derivative decay to zero, as t −→ +∞. Due to (4.1) it follows that
every solution of (1.1)0 also decays to zero. Hence, under the above assumption on
δ and g, the dynamics of (2.1), ε > 0 is very simple—each trajectory approaches
a zero equilibrium state.
From the invariance property of Aε and Lemma 3.1, we infer the following

Corollary 3.1.

ε2‖v‖2 + α · ‖u‖21/2 ≤ C1 for each ε ∈ (0, ε0] and (u, v) ∈ Aε .

The following lemma gives us the uniform estimate of X1 × X1/2—norm of Aε,
for ε ∈ (0, ε0].
Lemma 3.4. There is C6 > 0 such that

ε2‖u′′

ε (t)‖21/2 + ‖u′

ε(t)‖21 + ‖uε(t)‖21 ≤ C6

for each ε ∈ (0, ε0], t ∈ R and any orbit

{(uε(t), u
′

ε(t)); t ∈ R} ⊆ Aε .

Proof: Let m ∈ N be an arbitrary integer. We take the projection Pm of (1.1)ε to
obtain

ε2Pmu
′′

ε + εδPmu
′

ε +APmu
′

ε + αAPmuε + g(‖uε‖21/4)A
1/2

Pmuε = 0.

Put wε(t) = Pmu
′

ε(t). Then wε satisfies the linear strongly damped equation

ε2w
′′

ε + εδw
′

ε +Aw
′

ε + αAwε + hε = 0

where

hε(t) = 2g
′(‖uε(t)‖21/4) · (A

1/2u
′

ε(t)), uε(t))A
1/2

Pmuε(t)+

+g(‖uε(t)‖21/4)A
1/2

Pmu
′

ε(t).

From Corollary 3.1 and (2.6) we infer the existence of C7 > 0 such that

‖hε‖2L2(R+;X) ≤ C7 for each ε ∈ (0, ε0] .

Obviously, we can choose C7 to be independent of ε and m ∈ N.
Recall that Pmwε = wε. Then by Lemma 3.2, we have

ε2‖w′

ε(t)‖21/2 + α · ‖wε(t)‖21 ≤

≤ C4(ε
2‖w′

ε(0)‖21/2 + α · ‖wε(0)‖21) · e−2at + C5 · C7 .
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Clearly,
‖wε(0)‖21 = ‖Pmu

′

ε(0)‖21 ≤ λ2m · ‖u′

ε(0)‖2

and

‖w′

ε(0)‖1/2 = ‖Pmu
′′

ε (0)‖1/2 =

= ε−2‖Pm(εδu
′

ε(0) +Au
′

ε(0) + αAuε(0) + g(‖uε(0)‖21/4)A
1/2uε(0))‖1/2 ≤

≤ ε−2{λ3/2m ‖u′

ε(0)‖+ α · λm‖uε(0)‖1/2 + ε|δ|λ1/2m ‖u′

ε(0)‖+

+λ
1/2
m |g(‖uε(0)‖21/4)| · ‖uε(0)‖1/2} .

Therefore there exists M(m) > 0 and an increasing function ρ : R+ −→ R
+, which

is independent of ε, such that

(3.4)
ε2‖w′

ε(t)‖21/2 + α · ‖wε(t)‖21 ≤

≤ ε−4 · M(m) · ρ(ε2‖u′

ε(0)‖2 + α · ‖uε(0)‖21/2) · e
−2at + C5 · C7 .

Let T ≥ 0. We set (ūε(t), ū
′

ε(t)) = (uε(t − T ), u
′

ε(t − T )) for each t ∈ R. Using
the invariance property of Aε, we have

((ūε(t), ū
′

ε(t)); t ∈ R) ⊆ Aε .

Then, from (3.4), we obtain

ε2‖Pmu
′′

ε (t)‖21/2 + α · ‖Pmu
′

ε(t)‖21 =

= ε2‖Pmū
′′

ε (t+ T )‖21/2 + α · ‖Pmū
′

ε(t+ T )‖21 ≤

≤ ε−4M(m)ρ(ε2‖ū′

ε(0)‖2 + α · ‖ūε(0)‖21/2) · e
−2a(t+T ) + C5 · C7 ≤

≤ ε−4 · M(m) · ρ(C1) · e−2a(t+T ) + C5 · C7 .

Then, by letting T −→ ∞, we obtain

ε2‖Pmu
′′

ε (t)‖21/2 + α · ‖Pmu
′

ε(t)‖21 ≤ 1 + C5 · C7 .

Since m ∈ N was an arbitrary integer then

ε2‖u′′

ε (t)‖21/2 + α · ‖u′

ε(t)‖21 ≤ 1 + C5 · C7 for each t ∈ R .

According to the equation (1.1)ε we have

α · ‖uε(t)‖1 ≤ ‖u′

ε(t)‖1 + ε2‖u′′

ε (t)‖+ ε|δ| · ‖u′

ε(t)‖+
+|g(‖uε(t)‖21/4)| · ‖uε(t)‖1/2 .

Then, with regard to Corollary 3.1, one can easily find the constant C6 > 0, as
claimed. �
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4. Existence of a global attractor for the equation (1.1)0.

We now turn our attention to the limiting equation (1.1)0.

Au′ + αAu + g(‖u‖21/4)A
1/2u = 0

which is equivalent (0 ∈ ρ(A)) to the differential equation in X1/2

u′ + αu + g(‖u‖21/4)A
−1/2u = 0.

According to the assumption on g, a local existence uniqueness and continuation
of solutions of (1.1)0 immediately follow from the theory of semilinear abstract
evolution equations. See, for example, [H, Theorem 3.3.3, 3.3.4, 3.4.1 and 3.5.2].
We first give some a priori estimates of solutions of (1.1)0. Take the scalar

product in X1/2 with u to obtain

(4.1)
1

2

d

dt
‖u(t)‖21/2 + α · ‖u(t)‖21/2 + g(‖u(t)‖21/4) · ‖u(t)‖

2
1/4 = 0.

Thanks to (2.5) we have

(4.2) ‖u(t)‖21/2 ≤ e−2αt‖u(0)‖21/2 +
C0
α

· (1 − e−2αt) .

Hence the solution u(t) exists on R
+. We set S0(t)u0 = u(t), where u(t) is a solution

of (1.1)0 with u(0) = u0. Then, from (4.2), we have that S0 is the bounded

dissipative semidynamical system in X1/2. Recall that the variation of constants
formula gives

S0(t)u0 = e−αtu0 + U0(t)u0
where

U0(t)u0 =
∫ t

0
e−α(t−s)g(‖u(s)‖21/4)A

−1/2u(s) ds.

From (4.2) one can show that

⋃

t≥0

U0(t)B is bounded in X1,

whenever B is bounded in X1/2 .

Again, by [GT, Proposition 3.1], there exists a compact global attractor Ã0 for
S0 which is bounded in X1.
Finally, the attractor Ã0 can be naturally embedded into a compact set A0 in

X1/2 × X . The set A0 is defined by

A0 =
{

(Φ,Ψ) ∈ X1/2 × X ; Φ ∈ Ã0 and Ψ = −αΦ− g(‖Φ‖21/4)A
−1/2Φ

}

.

Obviously, A0 is bounded in X1 × X1/2.
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5. Upper semicontinuity of attractors Aε at ε = 0.

Recall that we are going to prove the property

lim
ε−→0+

dist (Aε,A0) = 0.

In Lemma 3.4, we have shown that there exists C6 > 0 such that

(5.1)

ε2‖u′′

ε (t)‖21/2 + ‖u′

ε(t)‖21 + ‖uε(t)‖21 ≤ C6

for each ε ∈ (0, ε0], t ∈ R and any orbit

{(uε(t), u
′

ε(t)); t ∈ R} ⊆ Aε .

Concerning the attractor A0, we have shown that there is C7 > 0 with the property

‖u′

0(t)‖21/2 + ‖u0(t)‖21 ≤ C7

for any orbit

{(u0(t), u
′

0(t)); t ∈ R} ⊆ A0 .

The idea of the proof is essentially the same as of [HR1]. Let us consider a se-
quence εn −→ 0+ and an orbit

{(un(t), u
′

n(t)); t ∈ R} ⊆ Aεn .

Since the set
⋃

t∈R

⋃

n∈N
un(t) is bounded in X1 and

‖u′

n(t)‖ ≤ C6 for each n ∈ N and t ∈ R.

By the Ascoli–Arzelào’s theorem we may thus extract a subsequence {un1} of {un}
which converges to ū in the space C(〈−1, 1〉;X1/2). Again, there is a subsequence
{un2} which converges to ū in C(〈−2, 2〉;X1/2). Thanks to the Cantor’s diago-
nalization process, there is a subsequence {unk} of {un} such that unk −→ ū in

C(J ;X1/2) for any compact interval J ⊆ R. Since

sup
n∈N

sup
t∈R

‖un(t)‖21/2 < +∞ ,

then
sup
t∈R

‖ū(t)‖21/2 < +∞ .

On the one hand
∂unk

∂t −→ ∂ū
∂t in D′(I;X1/2)

(in the sense of distributions) for any bounded open interval I ⊆ R.
On the other hand

u
′

nk
(t) = −A−1

{

ε2nk
· u′′

nk
(t) + εnkδ · u′

nk
(t)
}

− α · unk(t)−

−g(‖unk(t)‖21/4)A
−1/2unk(t) .
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From (5.1) we observe that

ε2nk
‖u′′

nk
(t)‖1/2 −→ 0 and εnk |δ| · ‖u

′

nk
(t)‖ −→ 0,

as εnk −→ 0+ .

Therefore
∂ū

∂t
= −αū − g(‖ū‖21/4)A

−1/2ū .

Hence ū(t) is the solution of (1.1)0 which exists and is bounded on R. Therefore

{(ū(t), ū′

(t)); t ∈ R} ⊆ A0 .

Since (unk(·), u
′

nk
(·)) −→ (ū(·), ū′

(·)) in C(J ;X1/2) for any compact interval J ∈ R

then we have

(unk(0), u
′

nk
(0)) −→ (ū(0), ū′

(0)) ∈ A0 in X1/2 × X.

It means that
lim

ε−→0+
dist (Aε,A0) = 0.

Indeed, suppose to the contrary that there exists εn −→ 0+, σ > 0 and a sequence

(un0, u
′

n0) ∈ Aεn such that

dist ((un0, u
′

n0),A0) ≥ σ .

Obviously, there are orbits {(uεn(t), u
′

εn
(t)); t ∈ R} ⊆ Aεn , for n ∈ N, such that

uεn(0) = un0 and u
′

εn
(0) = u

′

n0. Then there exists a subsequence εnk with the
property

(unk(0), u
′

nk
(0)) −→ (ū(0), ū′

(0)) ∈ A0 ,

a contradiction. Hence Theorem 1.1 is proved. �
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