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CONYEX DIRECTED SUBGROUPS OF RIGHT 
ORDERED TREE GROUPS 

JiŘí RACHŮNEK, Olomouc 

(Received February 16, 1990) 

A partially ordered set (Г, ^ ) is called a tree if 
1. Va, beT3ceT; a,b й c; 
2. 3a, beT; a \\ b; 
3. Va, x, у є T; a ^ x, y => x S У or y g x. 

By а right partially ordered group we mean such a system G = (G, •, g ) , where 
(G, •) is a group, (G, ^ ) is a partially ordered set, and a S b implies ac ^ bc for 
all a, b, c є G. As usual, P(G) = {x є G; e g x} will denote the set of all positive 
elements of G. 

If G is a right partially ordered group such that (G, ^ ) is a tree, then G is called 
a tr-group. A strong tr-group (str-group) is any tr-group G such that a ^ b implies 
ca S cb for all a, b e G and c є P(G). A right partially ordered group G is called 
a ngfoi o-group (ro-group), if (G, ^ ) is a linearly ordered set. 

Remark . It is evident that a right partially ud-ordered group G is a tr-group if and 
only ifthere exist two non-comparable elements in G, and P(G) is a chain. 

Right o-group are studied e.g. in Kopytov's book [3], where one can find all 
necessary results from the theory of partially ordered groups. 

In 1903, Frege (in the book [2]) asked a question which may be translated into 
modern terms as the problem whether there exists a tr-group not being an ro-group. 
In 1987, Adeleke, Dummett and Neumann (in the paper [ l]) answered this question 
in the affirmative by giving a tr-order on a free group of rank 2 which is not an ro-
-order. Further, in [4], Varaksin proved that everyfree n-solvable group ofrank ^ 2 , 
for any n ^ 2, admits such a right partial order that the system obtained is a tr-group 
but not an ro-group. Moreover, right partial orders obtained in both papérs are 
str-orders. 

In this paper some structure properties of tr-groups and str-groups are studied. 

Proposition 1. Let A,B,C be partially ordered sets such that C = A x"*B 
(i.e., C is a lexicographic product ofA and B) and let A be a tree and B a linearly 
ordered set. Then C is a tree. 
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Proof. 1. Let (aí9 bt)9 (a2, Ь2) є С, (al9 Ъг) || (а2, Ь2). 
a) If ах || a2, then there exists a3 e A with al9 a2 < а3. It is clear that for each 

Ь є В we have (аІ9 i^), (а2, f?2) < (а3, Ь). 
b) I f a x = a2, then b t || bl9 a contradiction. 
2. Because there exist al9 a2 є A with ^ || a2, we have (al9 b) || (a2, b) for each 

&eB. 
3. Let (al9 bi), (fl2, b2), (fl3, ò3) є C, (ai9 bx) < (a2, b2), (a39 b3). 
a) Let ax < al9 a3. Then a2 S o3 or a3 ^ a2. In the case a2 < a3, we have 

(a2, b2) < (a3, b3). Similarly for a3 < a2. Let a2 = a3. Then the linearity of B 
implies (fl2, b2) ^ (ii3, b3) or (a3, fe3) ^ («2, b2). 

b) For ax = a3 < al9 we have (a3, b3) < (а2, b2). 
c) If at = a2 = a39 then bx < bl9 b39 and the assertion follows from the linearity 

ofB. D 

Proposition 2. Let A, B be partially ordered sets. IfA x ~* B is a tree, then either 
\A\ = 1 and B is a tree or A is a tree and B is linearly ordered. 

Proof. Let al9 a2 be distinct elements of A. Since A x ~* B is a tree, there exist 
a3 eA,.b'eB such that (al9 b) ^ (a3, b') and (a2, ft) g (a3, ft'). Then al9 a2 ^ д3, 
so A satisfies the first of the axioms for a tree. 

This implies that there exist al9 a2 e A with at < a2. If b0 e B9 then (ax; b0) < 
< (a2, b) for all b e B. Thus, by the third axiom for a tree, {a2} x B is linearly 
ordered, and so the ordering of B is linear. 

Now, let (a l 5 bi) || (a2, ft2). Then we can have none o f ö t < a2, а2 < а І5 ax = а2, 
and so ax || а2. Thus Л satisfies the second axiom. 

Finally, if al9 a29 a3 e A and ax ^ а2, а3, then, for any ft є B, we have (я І5 b) ^ 
^ (а2 ,Ь) , (а3, ft). Thus (а2. ft) ^ (а3, ft) or (а3, ft) ^ (а2, ft), and so а2 £ а3 or 
«з й ai-

Hence A is a tree. D 

Let G = (G, •, ^ ) be a.right partially ordered group, N a normal convex sub­
group of G. We can define a partial order " ^ " on G|N as: 

Vx, j є G ; iVx g iV> odf За є N ; x S ay • 

Let us verify that the relation " ^ " is a partial order on G|N. The reflexivity is evident. 
Further, let x9 y e G and let Nx ^ Ny9 Ny S Nx, i.e. there exist ax, a2 є N such that 
x ^ alty, j ; ^ a2x. We have a2x = xa39 where а3 єЛГ, hence ya3

l S x. From this 
we o b t a i n y a J 1 <£ x S ^іУ, hence a 4 j ^ x ^ a ^ , where a^eN. Therefore a4 á 
g xy" 1 g au and since iV is convex, xy~l eN9 and so Nx = JVj. Hence, "<T' is 
antisymmetric. To prove the transitivity suppose that x, y9 z e G abd Nx g iVj, 
iVj g Nz. Then there exist a l 5 a2 eN such that x ^ a ^ , j g a2z. Let axy = j;ö3 ? 

where a3 eW.'Then xa3
l ^ j and y <£ a2z = za4, where a^eN. Hence x <£ za4Ö3» 

and so iVx ^ iVz. 
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Now, it is evident that G|N with the partial order " ^ " is a right partially ordered 
group. 

If for each g є G, Ng > N implies ag > e for all a eN, then G is cal ledafoc-
extension of the right partially ordered group N by means of the right partially 
ordered group G = G|N. 

Since the lex-extension G of a right partially ordered group N by means of G is 
(as a partially ordered set) isomorphic to che lexicographic product of the partiailly 
ordered sets G and N, the following theorem is true. 

Theorem 3. If G is a right partially ordered group which is the lex-extension 
ofa right partially ordered group N by means ofa right partially ordered group G\ 
then G is a tr-group ifand only ifN is an ro-group and G is a tr-group. П 

A subgroup Я of a right partially ordered group G is called a ud-subgroup of G, 
if Я is up-directed (i.e. if Va, b є Я 3c є Я ; a, b <£ c). Note that, contrary to (two-
sided) partially ordered groups, a ud-subgroup need not be down-directed. A convex 
ud-subgroup of G will be called a cud-subgroup of G. 

Lemma 4. Let H be a subgroup of a tr-group G and let there exist g e Gsuch that 
ag > efor each a є H. Then H is an ro-subgroup of G. 

Proof. If ag > e for each a є Я, then a > g~x for each a є Я, and this means Я 
is a chain. • 

Lemma 5. Let H be a normal ud-subgroup of a tr-group G, let g e G andlet 
g > b for each b є P(H). Then ag > e,for each a e H. 

Proof. Let g > b for each b eP(H). Since Я is a ud-subgroup, for any a eH 
there exists b e P(H) such that a ^ b. Hence g > a for each a є H. But this means 
ga > e for each a є Я. From the normality of Я we obtain ag > e for each a є Я. • 

Theorem 6. Let H be a normal cud-subgroup of a tr-group G, and let there exist 
g є G, g < e, such that g ф P(H)'1. Then H is an ro-subgroup of G. 

Proof. Let g < e, g фР{Н)~і. Then g'1 > e, and since Я is convex, g'1 > b 
for each b є P(H). By Lemmas 4 and 5, we obtain that Я is an ro-subgroup of G. • 

In [1] it isshown that every tr-group G is generated by its subset of positive 
elements P(G). Moreover, G = P(G)'1 . P(G). Because P(G) is a cha in , these t of 
all normal cud-subgroups of G is linearly ordered by inclusion. And, since every 
of these subgroups is an ro-subgroup, all subgroups belong to just one chain in G. 

Corollary 1. Every tr-group contains a greatest proper normal cud-subgroup 
(which is an ro-group). 

Proof. Let us denote by Я the union of all proper normal cud-subgroups of G. 
It is evident that Я is a convex ro-subgroup of G, hence Я Ф G. П 

Proposition 7. If an ro-group G is an str-group, then G is a linearlyordered 
group (o-group). 
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Proof. Let a, b є G, a g b, x e P(G)'1. Let xa > xb. Since x" 1 є P(G), we have 
x~îxa > x~íxb, a contradiction. Therefore xa ^ xb. • 

As a consequence we obtain the following theorem. 

Theorem 8. If G is an str-group and H is a normal cud-subgroup of G, and if 
there exists g є G, g < e, such that g ф P ( # ) " 1 , then H is an o-subgroup of G. • 

Corollary 2. The greatest proper normal cud-subgroup of every str-group is 
an o-subgroup. • 

Theorem 9, Let G be a tr-group, N a normal cud-subgroup of G.Then G is the 
lex-extension ofN by means of G|N. 

Proof . Let x e G, xN > N. Then there exists c e N such that xc > e, i.e. x > c"1 . 
From the w-directedness ofiV we obtain the existence of b є P(N) such that c"1 ^ b. 
Since x and b are comparable, we have x < b or b < x. In the first case, x є N, 
a contradiction. Hence b < x, and since N is convex, x > a for each a e N. • 

Let G be a group. A system 5(G) of subgroups of G which is linearly ordered by 
inclusion is called full, if e, G є S(G), and if S(G) contains the union and the inter­
section of every set of subgroups of S(G). A jump A ~< B in a full system 5(G) is 
any pair A, B e 5(G) such that A c B and A ç C Ç B imply A = C or B = C for 
each C e 5(G). If g e G, g ф e, then g defines a jump A < B, where A is the union 
of all subgroups of 5(G) not containing g and B is the intersection of all subgroups 
of 5(G) containing g. 

A system 5(G) is called subnormal, if for each g є G, g ф e, in the jump A ^ B 
defined by g, A is a normal subgroup of B. A system 5(G) is called normal, if all 
subgroups from 5(G) are normal in G. A subnormal system 5(G) is called solvable, 
if the factor group B|A is abelian for every jump A < B. 

Let now G be a tr-group. We will denote the system of all normal cud-subgroups 
of G by C(G). By Theorem 6 it is clear that C(G) is a full system of subgroups of G. 

Theorem 10. / / G is a tr-group such that the normal system C(G) is solvable, 
then G is an ro-group. 

Proof. Let H be the greatest proper normal cud-subgroup of G. By the assumption, 
G|H is abelian, and by Theorem 9, G is the lex-extension of H by means of G|H. 
This means, by Theorem 3, that G|H is a tr-group. But G|H is abelian and so it is 
an o-group. So we have that G is the lex-extension of an ro-group by means of an 
o-group, hence G is an ro-group. • 

Corollary 3. If the assumptions of Theorem 10 are satisfied, then the convex 
subgroups of Gform a full system of subgroups of G. • 

! Theorem 11. / / G is an str-group such that the system G(G) is solvable, then G 
is an o-group. П 

No te . V. M. Kopytov has informed the author that N. L. Petrova showed that 
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any tr-group is a torsion-free group. But this fact is not proved directly, and her 
proof uses a representation of a tr-group in terms of automorphisms of the group. 

Here we will show that this proposition can be proved directly from the definition 
ofatr-group. Namely, let G be a tr-group and x e G. Suppose that x has finite order n. 
Since <x> is finite, there exists у є G such that y ^ xl for all i and, multiplying on the 
right by suitable powers ofx, we have yxl ^ e for all i. Therefore {y, yx,..., yx""1} 
is linearly ordered. The map ух1ь~*ух1+1 is an order automorphism and therefore 
it must be trivial. Thus x = e and Gis torsion-free. 
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