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WEAK BASES IN MODULAR LATTICES

ZsoLT LENGVARSZKY, Pécs

(Received August 19, 1987)

A subset H of a lattice Lis called weakly independent iff for all h, hy, ..., h,e H
which satisfy h < h; v ... v h, there exists an (1 < i < n) such that h < h,.
A maximal weakly independent subset is called a weak basis of L.

In a lattice of finite length any chain is a weakly independent subset and any
maximal chain is a weak basis. In a finite distributive lattice any set of join-irreducible
elements is weakly independent and the set of all join-irreducibles is a weak basis.
Thus the following theorem which was proved in [1] generalizes the well-known
fact that in a finite distributive lattice the number of elements in a maximal chain
equals the number of join-irreducible elements.

Theorem A. Any two weak bases of a finite distributive lattice have the same
number of elements.

An example given in [1] shows that Theorem A will not be true if we change
distributivity for modularity. However, as it was proved in [2] any lattice of finite
length with the property that any two bases of it have the same number of elements
must be modular. The aim of this paper is to present two classes of modular lattices
in which Theorem A is true.

The breadth of a lattice Lis the least natural number b such that for any finite
X < Lthere exists Y = X with |Y’ < band VX = VY. We shall use

Theorem B (see [4]). Every finitely generated modular lattice of finite length
and breadth at most two is finite.

We also need the notion of c-sublattices. A sublattice L' of a lattice Lis said to be
a c-sublattice if for all u, v e L u covers v in L iff u covers vin L.

Theorem C (see [3]). A finite modular lattice is distributive if and only if it
contains no c-sublattices isomorphic to My (M is the five-element non-distributive

modular lattice).

Theorem 1. Let L be a modular lattice of finite length and breadth at most two
(or equivalently a dismantlable modular lattice of finite length, cf. [5]) Then for
any two weak bases Hy, H, < L we have lHll = 1H2[.

Proof. First observe that in a lattice with no infinite chains any weak basis H
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is finite. Indeed, let a,, a,, ... be an enumeration of elements from H such that for
i=1,2,... a;is minimal in {a;, @;4, ...}. Then ¢ defined by ¢(a;) = a; v ... v q;
maps injectively {ay, a,, ...} to some chain.

Thus in view of Theorem B, the sublattice L' generated by H, U H, is finite. Since
H, and H, are bases in L too, we may suppose that Litself is finite.

Clearly, it is enough to show that the number of elements in any weak basis H
is (L) + 1. For distributive lattices this is Theorem A, thus we can assume that L
contains a c-sublattice M isomorphic to M.

Let x;, X, and x; be the pairwise incomparable elements of M and let a =
= X; A X, A X3. For i =1,2,3 choose a join-irreducible element j; e L with
a v j; = x;. Itisstriaghtforward to check thatj;, j, and j, are pairwise incomparable.
Now there are three pairwise incomparable doubly irreducible elements y;, y, and y;
in L(see [6]). Since y; vV y, vV y3 = y; v y; for some 1 < i, j < 3, one of y;, y,
and yj, say yq, is not contained in H. But then H is a weak basis also in the sublattice
L = L~{y;}. Moreover, I(L) = I(L) and the assertion follows by induction on |L|.

Let Lbe a finite lattice. For any interval [a, b] of length two in Llet N, , be a (pos-
sibly empty) set of new elements such that NypNN,y=0if a +corb+d We

define a lattice L containing Las a c-sublattice on the set Lo |J N, by adding
I([a,bD=2
to the Hasse diagram of Lthe covering relations @ < u and u < b for any [a, b] of

length two in Land for any u € N, ;. Then we say that L can be obtained by inserting
new elements into L. Let .#, denote the class of modular lattices which can be
obtained by inserting new elements into some finite distributive lattice.

We need the well-known

Lemma D (see [3]). Let D be a finite distributive lattice. If for the elements j,
Xgs ... X, € D we have je Jo(D) (= the set of join-irreducibles of D) and j <
S x{ V...V Xx, thenj £ x; forsomei,1 <i < n.

Theorem 2. If Le ., then for any two weak bases H,, H, = L we have |H1| =
= |H,|.

Proof. As in the proof of Theorem 1 we have to show that any weak basis H
satisfies |H| = I(L) + 1.

Let D be a distributive lattice with the property that Lcan be obtained by inserting
new elements into D. We may suppose that if [a, b] is an interval of length two in D
and N, , + 0 then |[a, b]| = 4. Indeed, let |[a, b]| = 3 and N, , + 0. Now we can
add a new element from N, , to D. By Theorem C, one can easily see that D remains
then distributive.

If Lis distributive then the assertion follows from Theorem A. Suppose that L
is not distributive. Now there is an interval [a, b] of length two in L such that
|[a,b] " D| =4 and N,, # 0. Let [a,b]n D = {a,b.x,y} and let ueN,, If
u ¢ H then H is also a basis in L' = L\ {u} and the assertion follows by induction.
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Let u e H. For any pe D set
J(p) ={j|j = p and je Jo(D)}.

Then we have J(x) = J(a)u {j} and J(y) = J(a)u {k} for some j, ke Jo(D),
moreover j v k = b. Indeed, if j,j € J(x)\ J(a) then a v j = a v j' = x since x
covers a. By Lemma D we have j 2 j' and j' 2 j, ie. j=j.Toseejv k=0>b
recall that in a modular lattice the mapping z — z v ¢ is an isomorphism between
the intervals [p A g, p] and [¢, p v q] for any p and g. Choose p = j v k and
q=a.Sincepvg=jvkva=xv y=b,thereis an element v in Lsuch that
pAg<v<pandvVva=u. Asuis join-irreducible in L and a < u we must
havev = u. Thenj vk=p>v=u,ie.jv k=D>.
We define a mapping x — X of Lto D by

~ _ Jthe unic upper cover of x if xe L\ D ;
x if xeD.

For any join x; Vv ... v x,in Lwe have either

Xy V...VX, =
or
Xy V...V X, = X;

forsomei,1 =i < n.
Define xeX < Land ye Y< L by

X ={peL|pzjand p%band p¢N,,},
Y={qeL|g=kand g% b and q¢N,;}.

Note that for any pe X and for any ge Ywe have pvg=j Vv k=>b=u and
p % u, g 2 u. This implies that either HN X = 0 or H n Y = @ and without loss
of generality we may -assume that H n X = . First observe that I’ = L\ X is
a sublattice of L. .

Indeed, if peN,;, or g€ N, , then either p v geN,, or p v ¢ = b and either
pAgeN,,orpangq=a,ie.pVv qpArqeL.If p¢N,,and q¢N,, then we
have four possibilities:

l.ptjand g%k Thenpvg=porpvg=qorpvg=pvgandin
the latter case by Lemma D p v g 2 j,i.e.p v qgeL.Sincep Agq=<p,p AqeL
is trivial.

2.p%xjand q=b. Then by pv g=b and by pA g %2 j we have p v g,
p AgqeL.

3. p = band g % k. This case is similar to case 2.

4. p=zbandg=b. Thenpv g, pArq=h.

On the other hand I(L) = I(L) as Au {u} U B is a subset of L where A =
={a’eL|a’ <a}and B = {b'eL | b’ = b}. This implies that if for some ve N, ,
we have ve L' then ¢, d € L holds too. Then L can be obtained by inserting new
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elements into D' = D n L. H is obviously a basis in L and by induction we have
[H = 1L) + 1 =I(L) + 1.

From [5] we know that any planar lattice is dismantlable. On the other hand it
can be easily shown that .#, too contains the class of planar modular lattices. Thus
either Theorem 1 or Theorem 2 implies

Corollary. In a planar modular lattice any two weak bases have the same number
of elements.

Remarks. 1. The example exhibited in [1] shows that Theorem 1 will not be true
in general for modular lattices of breadth three. The same example shows that
Theorem 2 does not remain true if we consider modular lattices which can be obtained
in two steps by adding new elements to some finite distributive lattice.

2. It can be easily seen that not one of the classes of modular lattices considered
in Theorem 1 and Theorem 2 contains the other one.
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