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1. INTRODUCTION

In the paper [1] the stability of solutions of the equation u™(r) + a,(A4).
V(1) + ...+ a,(A) u(t) = F(t, u(t)) under the assumption F € 4(2(u), 2(4'"))
was investigated. The aim of this paper is to obtain similar results for this equation
with the right hand side F € €"(2(u), H).

We shall use all the notations involved in [1]. Let us remember the most important
of them. Under the symbol 4 we mean a linear, selfadjoint and strictly positive
operator in a Hilbert space H. The norm in H will be denoted by | -|. The functions
a(A) satisfy the growth condition (1.1.1) from [1] (roughly speaking,
la(A) A= Tp| < C§|@|| fori=1,...,n, ¢ € H). In [1] (Section 1.2) we introduced
functions my(t; to, s), i =0,...,n — 2, and a function m,_(t; 1o, s) = m(t; to, 5).
Let us recall that m solves the equation m™() + a,(s) m"~2(1) + ... + a,(s) m(1) =
= 0 and fulfils the initial conditions m(to; to, s) = 6,4, i = 0,..,n — 1, 1,€ R¥,
s € o(A). With help of the function m we introduced the notion “type of the operator
£, where

Lu(t) = u™(t) + a,(A) u" V@) + ... + a(A)ut),

and we distinguished three kinds of operators .#; the exponentially stable, the stable
and the instable ones (see [1] (Section (1.4))). For the other details we recommend
the reader to have a look at the notation in the paper [1].
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Let I = R* be an interval of the type [a, b) or [a, b] and let F: 9(F) =
< {(t, u(t), w'(t), ..., u" (1)) | u € D(&L) such that D(u) < I, te D(u)} > H. We
shall write F € €(2(u,;), H), if for every u € 2(£) such that 2(u) < I, the functions
[F(t, u(®)|, |F'(z, u(r))| depend continuously on the variable ¢ for t e 2(u). The
symbol F’' means the total derivative of the function F with respect to the variable ¢.
(In order to save space, we write F(t, u(t)) instead of F(¢, u(z), u'(t), ..., u®™ = V(1)).

The Cauchy problem will be given by the equatign

(1.1) £ u(t) = F(t, u(t))
and by the initial conditions
(1.2) ut)) = @, @, €A "), i=0,...,n—1, t,eR".

The stability will be investigated with respect to the norm

Il = TS a2 w1,

2. THE CASE OF THE EXPONENTIALLY STABLE OPERATOR

Lemma 2.1. If the operator ¥ is of the type w < 0O, then |a,,"’(s)] =< |w ~" for

s e o(A), the operator a; '(A) exists, D(a, '(4)) = H and |a; (A)|| £ |o| ™"
Proof. By [1] (Theorem 1.5.2): Re 4(s) <  for se o(d), i = 1,...,n, and so

"= inllRe As)| = 'Ijl |2:s)] = |ai(s)], e

a;'(s) o] " for seo(4):

Thus a, '(A) x = [, a, '(s) dE(s) x for x e D(a, '(A)) = {x € H| [, |a, ' (s)|*.
.d||E(s) x|* < + o} = {xeH| [,4)d|E(s) x|* < + 00} = H. The last statement
of the lemma follows from the relation |a; '(4) x[|* = [, |a, '(s)|* d[|E(s) x[|* =

< |0 72" focy A|EG) x[* = (oo ™" [Ix]))*.

According to Lemma 2.1 we can define a function M,(t; 15, s) as follows:
(d/de) M(t; to, 5) = m(t; to, 5), a,(s) My(to; to, s) = —1,fortye R*, 1 2 to, s € o(A).

O<lw

Lemma 2.2. The condition
(2.1) there exists a constant K* such that |Ax| < K*|a,(A) x| for all x € 2(4),
is fulfilled if and only if 1 £ K*la,,(s)] s™! for all s e o(A).

Proof. Firstly, let (2.1) be fulfilled. Then A~ 'y e 9(A) for every ye H and
|44 1y|| < K*|a,(4) A7y, ie. |y S K*||a,(4) A~ 'y| for all ye H. By [1]
(Lemma 1.2.1): 1 < K*|a,(s)| s™* for s € o(A).
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Secondly, let 1 < K*|a,(s)| s~ *. Then by [1] (Lemma 1.2.1) | y| < K*|a,(4) 4™ 'y]
for all ye H, ie. |AA™'y| < K*||a,(4) A™'y|. Because every x € 9(A) can be ex-
pressed in the form x = A~y for some y € H, the last inequality proves the lemma.

Remark 2.1. The equation A% + A(s'79/% 4 5Y/2) + sCG~9/2 = 0 (¢ €(0, 1)),
which has the roots 1,(s) = —s'/2, 1,(s) = —s™~9'2, shows that the operator ¥
can be of the type < 0 and the condition (2.1) need not be fulfilled. (The proof
follows directly from Lemma 2.2 and [1] (Theorem 1.5.1).)

Lemma 2.3. Let the operator & be of the type w < 0, let the condition (2.1)
be fulfilled, ty € R*, t 2 to, s € 6(A). Then

() DM (15 to, A)) = H, R(M,(t; to, A)) = 9(A),
(i) lMl(l; to, s)l < K* C(z’) (1 + (n — 1) C:) s~ 1e@lt=t0)
(iii) |AM (55 to, A)| < K* C(L) (1 + (n — 1) C¥) ™™

(Constants C3, C(&£) were introduced in [1] (Sections 1.1, 1.2).)

Proof. Integrating the equation m®(t) + a,(s) m"~(t) + ... + a,(s) m(t) = 0
we obtain m®~ V(1) + a,(s) m""2(t) + ... + a,_,(s) m(t) + a,(s) M,(t) = 0. This
with help of (1.1.1) from [1] and [1] (statement (iii) of Theorem 1.2.1) gives

a,l(s) Ml(t; Lo, S)I = C(Z) (1 + (n - 1) C;) e@(t—t0)

Using Lemma 2.2 we see that [M(t; to, s)| £ K* C(£) (1 + (n — 1) C§) s™'e® ™™,
This immediately implies the lemma.

Lemma 2.4. Let the operator & be of the type w < 0, let the condition (2.1) be
fulfilled, Fe € (D(u;), H), D(u) < [to, +0) S 1, toe D(u), let u:D(u) > H
be a solution of the equation (1.1) which fulfils the initial conditions (1.2). Then
for te D(u)

(1) u(r) =i‘_i1nzi(t; to, A) @i + M,(1; 15, A) F(to, u(to)) —

— M, (to; to, A) F(t, u(t)) + J M(t + to — 5 to, A) F'(z, u(r)) dt,

@) 115 msto 4) o] < o] e,
MMl(I; to, A) F(to, u(to)) - Ml(to; tos A) F(t, u(t)) +
i

t
+J M,(t + to — 5 to, A) F'(t, u(x)) dr|| < C5|[F(to, u(to))]| e~ +
to

- CHF( ()] + C? f ;ewn_,)" Fi(e, u()| dr,
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where C5 = C(£)[K*(1 + (n = 1) C5) + n — 1], C& = K*C(£) (1 + (n — 1) C¥)
and the constant C3 was defined in [1] (Theorem 1.3.1).

Proof. Statement (i) is an immediate consequence of Remark 1.3.1 from [1]
and of Lemma 2.3. Now we shall prove the statement (ii). According to [1](Lemma
1.3.6) it suffices to prove the second estimate. Using Lemma 2.3 we obtain

m”qMﬁanmem»—M@M%@F@qm+

=

+fMﬁ+m—u%AN%J@Nﬂ
< AVt A) it )]+ A, 10 ) e )] +
44]uMm+w—wnm@vaMNMg

< K% C(#) (1 + (1 = 1) C5) | Flto, u(to)] e~ +
FREC(2)(1+ (0= 1) €8 |G u(o))] +

K@) 1+ 0= )6 [ et ae.
Applying Theorem 1.2.1 from [1] we get for i = 1, ..., n — 1

-

(2) |4 n/n(_jd. [Ml(r; to, A) F(to, u(to)) — M,(to; to, A) F(t, u(t)) +

+LM@+%—u%@P@WWm]
|

t
+J m (e + 15 — 15 5, A) F'(x, u(7)) drj”

0

A= iin l:m““ D(t; 1o, A) F(to, u(ty)) +

=

< HA<n—i)/nm(i~1)(t; tos A) F(to, u(to))” +
+ Jj ”A(u—i)/nm(i—l)(t + 1o = 15 L, A) F’(r, u(t))” dr <
= (@) [F(o ()] & + €(2) [ e 1P (s u(o)] ar.
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Now (1) and (2) yield

HEMt(t; to, A) F(to, u(to)) — My(to; to, A) F(t, u(t)) +

+ J: M(t + to — 15 to, A) F'(1, u(1)) d1:y\l S (&) [K*(1 + (n —1)C3) + n — 1].

N F(to, u(to))]] €7 + K* C(£) (1 + (n = 1) CF) | F(t, u())] +

+ C(L)[K*¥(1 + (n = 1)CF) + n — 1] J: e || F'(r, u(r))| dr.

The lemma is proved.

n—1
Lemma 2.5. If Yy € 2(A"" "), ueu = | NG, 2(A" M), te D(u),
I=[a,b)SR* i=0
1 [a,b]SR*

then |4~y | < 671 A0 '”"lPH HA(" IR O] = (CO)F

Proof.

HA(n—.'—n/nl[/Hz — Eoszm-i—n/n d“E(s) l//HZ <

< 5o jmsz(,.-n/n d|E(s) ]2 = [67 A=y |12 .

The second inequality immediately follows from the first one with help of the ine-
quality ¢; + ¢ + ... + ¢, Sn'*(cf + 5+ ...+ ) e z0(i=1 n).

Theorem 2.1. (Correctness Theorem.) Let the operator ¥ be of the type o < 0

let the condition (2.1) be fulfilled, F, F' € €([to, + ), H). Then the maximal solu-
tion of the Cauchy problem (1.1), (1.2)

(i) is uniquely determined,
n—1

(i) has the form u(t) =Y mt; 15, A) @; + M,(t; to, A) F(to) —
i=0

- Ml(t(); to, A) F(t) + j"

to

My(t + to — 1510, A) F'(7) dr, 1 2 1o,
(iii) fulfils the estimate |u(t)|| £ Ci[||u(to)]] e~ + C¥|F(to)] e*“* +

+ CLRO] + 1 [ e F) ar.

to

Proof. (i) can be proved analogously as Lemma 1.3.4 from [1]. The statements
(ii), (iii) are easy consequences of Lemma 2.4.
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Theorem 2.2. Let v : 9(v) > H be a maximal solution of the equation (1.1), let
the operator & be of the type w <0, F e (6(1)(@(11,@(0)), H), and let the conditions
(2.1), (2.2) be fulfilled.

(2.2) There exist constants Ky, K,, R > 0 such that the inequalities |[F(t, v(t) +
n—1
Al =0y O, [ F (8, ot) + u() -

) - Fe o) S KT,
— F'(1, o(1))| £ K,||u(t)|| are valid whenever u is a solution of the equation
L u(t) = F(t, o(t) + u(t)) — F(t, (1)), 2(u) = 2(v) and te D(u) is such that
llu@l = R.

Further, let

o + CiK, + C(Z) CeKin*?67 1" < 0
or
o + C3K, + C(£) CiKin*?67 1" £ 0.

Then the solution v is respectively uniformly exponentially stable or uniformly
stable with respect to the norm ||+||. (If moreover R = + oo then the solution v
is globally uniformly exponentially stable or globally uniformly stable with
respect to the norm ||-||.)

Proof. Similarly as in [1] (Theorem 2.1.2) we can show that it suffices to prove
the (global) uniform exponential stability or the (global) uniform stability of the
zero solution 0,4, of the equation

(1) L u(t) = F(1, o(t) + u(t)) — F(2, o)) .
Let t, € 2(v), 2(u) < [to, +0), to € D(u) and let u : D(u) - H be a solution of the
equation (1) satisfying the initial conditions (1.2). Let

@) ol = L% 01 5 :

< min R
= 27 1+ 2(CY + CICIK n*257 1" 4 CYCEIK, n*257 1))

In the case R < + oo let us suppose

(3) there exists a number h > 0 such that [t,, ty + h] = D(u), |
T € [to, to + h),

llutto + )| = R
Then using Lemma 2.4 and the condition (2.2) we obtain
@) flu@ll = C3lllu(o)l *~* + C5|F(to, vlto) + u(to)) =
= Flto, o(to))]| 7 + CE[F(t, o(t) + u(?)) — F(t, ()] +

lu(z)|| < R for
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+

cr j "0 | F/(z, o(z) + u(@)) — F'(z, o0))] dr <

to

n—1
CHu(o)] " + C3K 3, 47100 uO(ig) 2~ +
i=0

IIA

n—1 t
+ CeK, Y. |]A""""“/" u®(1)| + C?KZI e |u()|| dv for te[to, to + h].
i=0

to
Similarly as in [1] (Theorem 2.1.1), we can show that

n—1
ATV u(t) = Y myt; to, A) A" g +

j=o

+ J.tm(t + to — 75 tg, A) AT V"[F(z, v() + u(t)) — F(z, v(7))] dr

fo

and thus using [1] (Theorem 1.2.1 and Remark 1.3.1), we get according to (2.2)
() e ()] 5 CTT At e ¢
=
+ C(.?)J.t e V| F(r, v(t) + u(r)) — F(z, v(7))| dv <
to .
< C‘;ui‘j"A(n—j-l)/n(pj" g?@t—t) |
j=o
+ C(Z) Kl"li: J'tew('_‘)||A("“j"’/" u)(7)| dr for te[to, to + h],
J= to

i=0,..,n-1
The relations (4), (5) and Lemma 2.5 imply

(Ol 5 (€3 + CHCTR,mY25H0 + CHCTR 25 ) o) -1 +
t
+ (CiK, + C(£) CﬁKfnm&‘”")J. e I u(z)|| dz for te[to, to + h]
to
and so (see [1] (Theorem 2.1.3))

©6) el = (C5 + C3C5Kn*25~ 1" +

+ C;C:Klnyzé'”") Hlu(fo)lll e(w+Cs‘Kz+C(-?)C6'K12n3/‘6"/")(r—to)

for te[to, o + h]. Because of o + CIK, + C(&£) CeKin*?6~'" < 0 and (2)
we get [[u(t)]| £ (C3 + C3CEK 267" + CICEK, n/ 26 1") |||u(to)]| < R for
t€[to, to + h]. But this contradicts (3). So we have proved: the inequality (6)
holds for all t € 9(u). This proves the uniform exponential stability in the case R <
< + 00. The proof of the other assertions of the theorem is similar and thus we omit it.
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Theorem 2.3. Let v:%(v) - H be a maximal solution of the equation (1.1).

Let the operator & be of the typew < 0, F € %‘”(@(u/g(.,)), H), and let the conditions
(2.1), (2.3), (2.4) be fulfilled:

(2.3) F(t, v(t) + u(t)) = F(t, o(t)) + Fu(t, u(t)) + Fp(t, u(t)) for ue such that
2(u) < 2(v) and t € D(u), where F |, Fy ¢ €(2(4/a()), H).

(2.4) There exist numbers Cy, C3, C3, Cy4, R; > 0, v{ > 0, v, > 0 such that if u
is a solution of the equation & u(t) = F(t, u(t) + u(t)) — F(t, o(t)) fulfilling
2(u) = D(v) and t € D(u) fulfils the relation ||u(?)|| < R, then

[Pt )] = /5 o=

IFu(t u(0)] = Callu( S 4]

[Fu(e (@) = Csflu(l
IFA(E w(@)] = Callullff*
Further, let ® + CiCy + C(&) CeCin®/2571" < 0.

Then the solution v is uniformly exponentially stable with respect to the norm

-11-

Proof. Let us choose a number R € (0, R,] so small that
(1) o + C5(C3 + C4R™) + C(&) CE(Cy + C,R)? n*257 1" < 0.
Then if u is a solution of the equation & u(f) = F(t, v(t) + u(t)) — F(t, v(t)) such
that 2(u) = 2(v) and t € P(u) fulfils ||u(1)]| < R, we can write according to (2.3),
(2.4
@) £ o) + u(®) = F@ o] = [Fults w@O)] + [Fa(e, u()] <

< [C1 + CluT gl 000 =
S (€ + GRS 400 i),

(3) IF'(2 () + u(®) = F'(t, o) = (Cs + CoR™) [Juo)]] -

The theorem now immediately follows from (1), (2), (3) with help of Theorem 2.2.
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3. THE CASE OF THE STABLE OPERATOR

Let M(t; to, s) be defined by the relations (d/dz) M(t; to, s) = m(t; to, s)s
M(ty; to, s) = O for toe R™, t 2 1y, s € a(A).

Lemma 3.1. Let the operator & be of the type w, let the condition (2.1) be fulfilled,
toe R*, t 2 1, se o(A). Then

(i) D(M(t; 1, A)) = H, R(M(t; 1o, A)) < 2(4),
(i) |M(t; to, 5)] < K*[1 + ((n — 1) C§ +.1) C(L) e 7] 571,
(iii) [AM(t; 1o, A)| < K*[1 + ((n = 1) C§ + 1) C(£) e~

Proof. Similarly as in the proof of Lemma 2.3 we obtain
m (1) + a,(s) m" (1) + ..+ a,-q(s) m(1) + a,(s) M(1) = 1.

Using [1] (the relation (1.1.1) and Theorem 1.2.1) a,(s) M(t; to, s)| <
+ ((n = 1)C§ + 1) C(£) e~ Now applying Lemma 2.2 we can conclude

|M(t; 1o, 5)] < K*[1 + ((n = 1) C§ + 1) C(£) e "] 57!

This inequality proves the lemma.

Lemma 3.2. Let the operator £ be of the type w, let the condition (2.1) be fulfilled,
Fe 4" (2(uy), H), 2(u) < [to, +0) I, to€ D(u), let u : 2(u) > H be a solution
of the equation (1.1) which fulfils the initial conditions (1.2). Then for t € 9(u)

n—1

(i) u(r) =i=20m,-(z; to, A) @; + M(1; 1o, A) F(to, u(to)) +
+ th(t + 1y — 15 to, A) F'(1, u(1)) dr,

() 175 ms 10 A) o] = CSuCo)] e,

%}M(t; to, A) F(to, u(to)) + ‘[t M(t + 1y — 15 tg, A) F'(1, u(r)) dt

=

‘r
= (K" €3 G )] + [ (6 + ) 1) 0

where C3 = C(£)[((n —1) Cg + 1)K* + n — 1] and the constant C5 was defined
in [1] (Theorem 1.3.1).

Proof. We shall prove the second estimate of the statement (ii) only (for the proof
of the other statements see the proof of Lemma 2.4). Using Lemma 3.1 we get
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<

1) “A I:M(t; tor A) Flto, u(to)) + J’ ;M(t T to — 7 toy A) F(x, u(c)) dr:l

< | AM(E; to, A) F(to, u(to))|| +

[ 1AM+ 10 = 5510 4) P e a5

< K1+ (1 = 1) €3+ 1) () ] [, u(to)] +

#1000 108+ 1) €(2) 0] [P e )] o
Now, using [1] (Theorem 1.2.1) we obtain

(2) [An=Dm _c%il [M(t; to, A) F(to, u(to)) + j‘;M(t + to — 175 to, A) F'(1, u(1)) dr]

A(n—i)/" [m(i-‘l)(t; to, A) F(t07 u(to)) +

<

t
+ J m(i—l)(t + ty — T; to, A) Fl(r’ u(r)) d‘l’]

to

< C(£) e F(to, u(to))]| +
t
+ C(.%’)J e“’(”')HF’('c, u(t))||dr for i=1,2,...,n—1
to
Now (1), (2) imply the inequality

<

IHM(t; to, A) F(to, u(to)) + ‘[;M(z + to — T to, A) F'(1, u(r)) dr

<[K*+ (&) [(n — 1) Cs + 1) K* + n — 1] e~ | F(to, u(to))| +

t
+IWHG%MMMQ+UF+MHW“MNM@ML
to
The lemma is proved.
Theorem 3.1. (Correctness Theorem.) Let the operator £ be of the type w, let the

condition (2.1) be fulfilled, F, F' € %([to, +®), H). Then the maximal solution
of the Cauchy problem (1.1), (1.2)

() is uniquely determined ,
n—1
(ii) has the form u(t) = Y. my(t; to, A) @; + M(t; to, A) F(t,) +
i=0
t
+ J M(t + to — 1510, A) F'(r)dt for t 21,
to
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(iii) fulfils the estimate  [[u(t)]| £ C3||u(to)|] €~ +
+ (K* + Creoti=1) ”F(to)" + '[I(K* + Cheet=) HF/(T)” dv for t=1,.

Proof. For (i) see [1] (Lemma 1.3.4). The statements (ii), (iii) are easy con-
sequences of Lemma 3.2.

Theorem 3.2. Let v : 9(v) —» H be a maximal solution of the equation (1.1). Let
the operator £ be of the type 0, F € €"(2(u,q,), H) and let the conditions (2.1),
(2.3), (3.1), (3.2) be fulfilled:

(3.1) There exist constants K, K,,K3,K,, R >0, vy >0, v, > 0 such that if
u,u;, (i = 1,2) are solutions of the equation £ u(t) = F(t, v(t) + u(1)) —
— F(t, o(t)) fulfilling 2(u) = 2(v), D(u;) = D(v) then

i) |Fu(t w(®)] = Kil[[u(o)l] for te 2(u) such that [[u(@)]| < R,

[Fo(t, us(r) = Fi(t, uz(0)] < Ksflus()) = ua(0)]| for te D(uy) v D(u,)
such that ||lu(t)]| £ R, (i = 1,2),

(i) 1En( wO)] = Ksflu(ll" ™,

[Fa(t, u(®)| < KofJu(@)||**>* for te D(u) such that |[u(t)]| < R.
(3.2) There exists a number x > 0 such that if ;€ (A" "), (i =0,. - 1),
A" Vg, < % and ty € D(v) then there exists a maximal solution
(5 140~ |21 5  and ty < 9(e) then ! so

of the equation £ u(t) = F(t, u(t)) which fulfils the initial conditions (1.2).

Further, let Fi(t, 0,)) = 0, Fi(t, 0,;) = 0 for every I = 2(v). Finally, let the zero
solution O,g,, of the equation

(3.3) ‘ &L u(t) = Fi(t, u(t))

be uniformly exponentially stable with respect to the norm ||*||. Then the solution v
is uniformly exponentially stable with respect to the norm |||

Proof. Clearly, it suffices to prove the uniform exponential stability of the zero
solution 0,4, of the equation

1 L u(t) = Fi(t, u(r)) + Fy(t, u(?)) .

If u, is a solution of the equation (3.3), 2(uy) S [to, +©), to€ 2(v) N D(uy),
then by Lemma 3.2 and by the assumptions of the theorem,

(2) ut) = Z m(t; to, A) us?(to) + M(t; to, A) Fi(to, us(to)) +
+j M(t + to — 151, A) Fi(t, ug(r))de for te D(uy).
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(3) There exist positive constants C, «, ¢ (independent of the choice of t, € 2(v))
such that

lluc(to)lll = 0 = lur(ll] = Ce™ " urlto)l] for 1€ D(up)-

We shall use the notation B = K* + C% in this proof. Let a; €(0,a), C; > C.
For this a,, Cy, let us choose constants h > 0, R, € (0, min (x, ¢, R)], ¢, €(0, R,)
in such a way that C,9, < R, and

(4) C + [BK;0}' + hBK,R}(C} + BK, + BK,0}') PK2*KsRiH] o@BKatanh < ¢
(5) Ce™@ ™" 4 [BK,0)' + hBK,R}(CY + BK, +
+ BK}Q\I-|)CB(K2+K4R‘,’3)hJ eBK2+ah <

Now let 1o € 2(v) and let uy be a solution of the equation (1) for which 2(uy) <
< [to, +0), to € D(uy), ||un(to)l| = 1. According to Lemma 3.2 this solution fulfils

n—1

(6) un(r) = 3 mi(t; 1, A) uy(to) + M(t; 1o, A) [F(to, un(to)) + Fylto, un(to))] +

+ J-;M(t + to = 15 to, A) [Fi(t, uy(7)) + Fy(z, uy(r))] dt for te D(uy).

Let u;, be a maximal solution of the equation (3.3) with D(u,) = [t,, + o), fulfilling
the same initial conditions as the solution uy (such a solution exists in virtue of (3.2)).
Let us suppose

(7) there exists a number i < h such that [t,, t, + ] = D(uy),
[lus()|| < Ry for te[to, to + h),
llun(to + M| = Ry

Using Lemma 3.2 and the relations (6), (7), (3.1) and Fi(t, 0ja0,,) = 0 we obtain
s = CSllunCol] + BOF(ro )] + 1Fx(n i) +
+ 8 [ (e @] + [ i) b = Sl +
+ BK ()] + Kl ) +
8 [ (Rallun(] + Koll( e S (€5 + BK, + BRag) )] +
# 80K, + KoRD) [ (Ol e or 1€ [to + 4],

This implies (see [1] (Theorem 2.1.3))
)l = (€5 + B, + BKa?) (ol 55400 tor s i 1y 4
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Subtracting (2) from (6), using Lemma 3.2, the relations (7), (8), (3.1) and [|u,(1)[| <
< Ce™ T uy(to)|| € Croy < Ry < R for t 2 1o, we get

s = )] = Bt ()] + B [ ([Pl 5] = Fife ()] +
+ | Fx(t, un(7))]) de = BK|[Jun(to)]]' " +
+ 8 [ (Kallde) = O] + Kl ) e <
< [BKs0}' + RBK,RYP(CY + BK, + BK,o}') eP®2+KeRIDF] 11y (1 4
+ BK, f ;”{uN(T) —w(@) dr for te[to o + i].

This yields

) [lux(t) = u,(1)]] < [BKse}* + RBK,RY(CY + BK, + BKyo}') eB®a+KemiDA]
un(to)|| "X~ < [BKs0}' + ABK4RY(CY + BK, + BK30)') ePka+ KeRIDH]
L ePRataligmate=ro) Ly (1)1 for te [ty, to + ]

It follows from (3), (9) that

(10) [lux@l = (sl + lun(r) = w (Ol =

< {C + [BK;o}' + ABK,RY(CY + BK, + BKo}') e" %2t Kakih] oKz tanhy

ceTHEmO (10| for te [to, to + A

Because /i < h, we get with help of (4) [[ux(t)]] £ Cioy < Ry for te[to, 1, + h],
which contradicts (7). So [[ux(1)]| < R, £ Rfor te [to, to + h] N Z(uy). Moreover,
if we write h instead of & the relations (9), (10) are again valid on [1,, 1, + h] A D(uy).
Thus (4), (10) yield

(1) lun@ll = Coem N un(to)ll for 1€ [to, 1o + h] N Huy) .

If ty + h e Z(uy), then by (3), (9), (5),

(12) [Jun(to + h)|| = {Ce™ ™" + [BKs0}' + hBK,RY(C5 + BK, +
+ BK}) PKa KRN PRt e) e (1) < e Juy (1) -

Now, the uniform exponential stability of the zero solution 0,4, follows from (11),
(12). Therefore, if ||uy(to)|| < 01, t € Z(uy), we can find a natural number k and
a number se [0, h) such that t = t, + kh + s. Then using (11) and k-times (12)
we get [luy(to + kh + s)|| < Ce™*[ux(ty + kh)|| < Cie e luy(to)]| =
= C,e ™" luy(t,)||. The theorem is proved.
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4. INSTABILITY

Theorem 4.1. Let v : D(v) = [to, +00) » H be a maximal solution of the equation
(1.1).If 400 is a limit point of o(A) then we suppose that there exist limits
lim as) s/ = af, (i=1,...,n) and that the equation A"+ a}A""' + ...

s=+
sea(A)

... + af = 0 has simple roots only. Let F € €"(9(u,qg,), H). Further, let us as-
sume:

(4.1) There exist numbers K; > 0, K, > 0, R > 0, v; > 0, v, > 0 such that if u
is a solution of the equation £ u(t) = F(t,v(t) + u(t)) — F(t, v(t)) with
D(u) = 2(v) then
[E(t0, v(to) + u(to)) — F(to, v(to))]| < K Ju(to)l]]**™,
[F/(2, o(2) + u(t)) — F'(1, o(t)| < K,||u(t)]]|'** for te D(u) such that
ll«()ll = R.

(4.2) If A(s) are solutions of the equation 2"(s) + a,(s) A" *(s) + ... + a,(s) = 0
then A(s) % A (s) for i +j, (i,j = 1, ..., n), s o(A).

(4.3) There exists an eigenvalue s, of the operator A and an index ice{l,...,n}
such that Re A;(s) > 0 and max sup Re A(s) £ Re 4;(so).

(4.4) There exists a number x > 0 ;;ch,;l::t(j} 0, € YA M), (i=0,...,n—1),
[niI]IA‘"""/’%p,.]I 2112 < w then there exists a maximal solution of the equation
 u(t) = F(t, o{i) + u(t) — F(t, o(t)) fulfilling the initial conditions (1.2).

Then the solution v is instable with respect to the norm |||-||.

Proof. Clearly, (see [1] (Theorem 2.1.2)), it suffices to prove the instability of the
zero solution 0,4, of the equation

1) £ u(t) = F(t, o(t) + u(t)) — F(t,0(2)) .

By [1] (Theorem 1.5.1), the following assertion holds:

®

2 The operator .Z is of the type = Re 4;(so) > 0.

We shall use the notation

* K* c*
A=K K*+C))+1, B=K, —— +—= ) +1
o(l +v,) v,

in this proof. (Remember that C% was defined in Lemma 3.2.)
Let us choose a number C satisfying

(3) Ce(1,min (2,1 + BR")).
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Obviously, there exists a number

. c— 17
Mo € (O, min (1, %, {AC““] ))

such that if 5 € (0, o], the equation

(4) C-1= Ar’v’ + anzcl+vzcwv;h

has a unique solution h = h(y) > 0.
Let ¢, € H be such that

(5) Apo = 5090,
”(‘Po’ 'q-in(A) Q’O’ ey /Vi'u— I(A) QDO)”@(A) XD(AM=1D/nyx .. x D(AL/n) = 1.

If u, is a maximal solution of the equation (1) fulfilling the initial conditions u§(t,) =
= 14 (A) @0, (j = 0,...,n — 1), n€(0, 7o), then obviously

(6) uelt) = et~ 4

+ M(t; to, A) [F(to, (1) + uo(to)) — Flto, v(to))] +

# [0+ 1= 500 A P00 + ) = Pl (] a
and according to (5),

n—1
I e e b

In particular, [|uo(t,)|| = n < = and thus by (4.4) such a solution u, really exists.
Now, let ne(0,n,], h = h(n). Let he (0, h] be such that [[ue(t)]] < nCe®~*
for t € [to, t + h]. Then by (3), (4),

lluo@llf = nCe*™* < nCe* =

— vi1/v _ 1/v2 vyl /v
e oA O TP [BRETE g
BC B B

for t € [to, to + h] and thus using Lemma 3.2 and condition (4.1) we obtain

®) HMoo 4 Fistg, 4) [F(tor (ta) + wo(te)) — Flton o(t0)] +

<

4 jm”M(ho + k= 5 to, A) [F'(t, o(r) + uo(7)) ~ F'(z, o(7))] de

to

< Ky(K* + C7e”) [lug(to)l|' ™ +

to+ﬁ
+ Kz-[ (K* + C’;e“’(m”_’)) ”]uo(‘r)m1+v2 dr < K,(K* + C’;e“’”)r,”‘" +

to
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* %
+ K,(nC)' [C—OHI—(;/——) + El:l e R < peh( gy 4 gpraCttraeendh)
V) v,

Now, we shall suppose that
(9) there exists a number / € (0, h) such that
[luo(t)]| < nCe®~* for te[to, to + h),
lluo(to + )| = nCe™.
Then by (4), (6), (7). (8),
lluo(to + B)|| < ne“[1 + Ap’* + By*2C'**2e>?] <
< e [1 + A" + By 2C' e = nCe”,
which contradicts (9). So
[luo(t)]| < nCe®"" < R for telty, t + h]

and thus the estimate (8) holds also for A = h. Finally, with help of (4), (6), (7), (8)
we get

(10) luo(to + H)|| = ne"[L — (An** + By*2C'**2%e™M)] =

o _[C—1— A
r’e (2 - C) - I:A_Bcjli-vz o (2 - C) g

C — 1 — A viT11/v2
> [__ECTT”Q] (2= C)=const > 0.

Because [[|uo(to)[| = #, the inequality (10) proves the theorem.

5. TWO EXAMPLES

Example A. Let H be a real Hilbert space of real vector functions h = h(x) =
= (hy(x), ..., hy(x)) (k = 1) that are defined on a subset Q of a Euclidean space E,.
Let g; 20 (i =0,...,n — 1) be natural numbers and f;; (i =0,....,.n — 1, j =
=1, ..., q;) functions fulfilling the condition

(5.1) f;; : 9(4) » R are continuous functions and there exists a constant F* such
that .f;j(s)‘ < Fxstimi=Uinfor sea(4), i =0,...,n—1,j=1,...,q,.

Further, let 1o € R and let a;; = a;;(t, x) be such mappings (defined on [y, + o0) x
x Q) that a;t, x) fi(A) u'(t, x) e €D ()0 4 ) H), (i=0,..,n—1, j=
=1,..., q,-).
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Theorem 5.1. Let the condition (2.1) be fulfilled. Let O, ., solve the equation

-1

(5.2) 2u(t, ) =>:0 ila,.j(t, %) fi(A) ud(t, x) .
Let

(5.3) there exist constants a;;, M;;, N;; such that

(@) fau(t, x) fi(A) u(t, x) — ay; £,(4) w(t, x)|| <
< M| AT OO ()]

(i)

for solutions u of the equation (5.2) for which 2(u) < [to, + ), t € D(u),
xeQ,i=0,...n—-1,j=1,...,q,

£ Nyflu()l]

2 2 DA O %) = 1 A) e )

Finally, let the coefficients of the operator
p— n-1 a .
Zu(t) = L u(t) -—i-zo j;ﬁijfij(A) u(f)

fulfil the condition (1.1.1) from [1] with a constant Cy instead of C¥, let @ be of
the type w < 0 and

n—1 q
o+ CZ)K1+(n-1)C) +n—-1]Y YN, +
1

i=0 j=
qi

+K*CHZ)(1 + (n — 1) Cy) max? (Y M;)n*?6 1" <0 (or £0).
i= j=1

0,...,n—1 j=

Then the solution O, . ., is globally uniformly exponentially stable with respect
to the norm ||-||| (or globally uniformly stable with respect to the norm ||+||, respec-
tively).

Proof. We can rewrite the equation (5.2) in the form
—_— -1 a4 . .
Zu(t, ) = L 3 Lot ) 1(4) 6 %) = @y ) w5 )]
i=0 j= .
The statement of the theorem directly follows from Theorem 2.2.

Example B. Let H = L,(Q), where Q = (0, nc,) x (0, 7mc,) x ... x (0, ney),
¢;>0(i=1,...,N). Let p = 1 be a natural number such that 2p/n is an integer.
The operator A will be given by

N
(54) 4v(x) = (=1 [ ¥ DI]? v(x) for ve 2(4) =
i=1
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= {u(x) € Ly(Q) | u(x) = Yuy sin kaXy | gin X ,
k Cy Cn

ki\? ke \*P? >
k=(ky,..oky), (2] +...+ (= u; < +ooy,
Kk cy Cx

0 . U
D; = — (in the sense of distributions).
X

The symbol ) stays for Y
k

We shall suppose that

(5.5) F(t, u(t)) = f(t, x, for(A) u(t), ..., fogo(A) u(t), f11(A) w' (1), .., f14,(4) w' (1), ...
oo Jam1 1(A) T I(1), L fusy g, (A) u"TU(1)), where the functions f;; fulfil
the condition (5.1).

We shall need the following lemmas (see [1] Lemmas 3.2.5, 3.2.6).

Lemma 5.1. There exists a constant K such that if u € 9(A"") then Hu“wzlp/n(g) <
< it

Lemma 5.2. (The Sobolev Embedding Theorem.) Put s* = (N + 1)/2 if N is odd,
s* = (N + 2)2 if N is even. Then there exists a constant K3 such that for each
ue WZS*(Q) there exists a continuous representant of this element satisfying
lule@ = max |u(x)| < K3 [jullw,5mcor-

In the rest of this section, we shall consider only such solutions that f;(4) u'"(r)
(i=0,...,n—1,j=1,..,4q;) are continuous for te P(u), xe Q. We shall call
them continuous representants (of solutions).

Suppose that -

(5.6) there exist continuous G-derivatives of the function f with respect to the
variables f;(A)u'® (i =0,..,n—1,j=1,...,q,), up to the second order.

Then
(5.7) F(t, o(t) + u(t)) = F(t, v(t)) + Fo(t, u(t)) + Fa(t, u(t)),
where
Fy(t, u(t) =:'=i: jiaii(” o(1)) f1,(4) u (),
Fy(ta) =5 575 o w0 4) 46 ft) ),

=0 j=1k=01
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ai(t, of1)) = g (f X, for(A) (1), ..y a1 g,-,(4) 077 1(D)),
riat, u(t)) = J J‘lf‘,-,-k,(t, (1) + 90 u(t)) 0 d9 do

Figua(t, u(t) = (f X, fos(A) u(t), -.s fumi g, ,(4) u™ (1))

(i, k=0,...,n— 1, i=1..,q, l=1,.. q,‘) for u,ve# sﬁch that
2(u) = 2(v) and for t € 9(u). (For the sake of simplicity we have put

o(t) = [fos(4) v(1), . ,fn g (4) D)),
u(t) = [for(A)U(t), ... fum s g, (4) u" V(D]

Theorem5.2. Let v : 9(v) = [y, + )~ H be a maximal solution of the equation

(1.1) such that sup llo@)]| < +o0. Put o* [z Z sup? Ifii A) o1, x)[ ]2,

i=0 j=1 te2(v),x
Let Fe(g“)(@(u/g(v)) H) satisfy the conditions (5.5), (5.6) and let the functions
@ijs Tijos Fijus Fro F be defined by (5.7). Let the operator A be defined by the relation
(5.4). Further, let there exist a number ¢ > o* such that the functions

ay(t 1), — au(t o), —— a(t, o(1) s Figult u(0)) s

a

0 ~
6—t rijkl(t’ "(l)) > y "ijkl(t’ "(t))
ap
exist and are continuous and bounded on Z(v) x Q@ x K,, i, k, ae{0,...,n — 1},
ji=1..,q, l=1..,4q, p=1,..,4q, where K, {yeEqI ||y||c <905, 9=

n—1

= Z q;. Finally, let s* < 2p|n.

Then Fi(t,0,4) =0, Fi(t,0,)) =0 for every I = 2(v), the conditions (2.2),
(2.3), (2.4), (3.1), (5.3) are fulfilled with some constants K;, C; (i = 1,2, 3, 4),
R=R, >0, vy=v,=1, a;;, Mj;N;; (i=0,....n—1, j=1,...,q,) (in the
equation (5.2), a;(t, x) = a1, o(t, x)), of caurse).

If moreover (2.1), (3‘2) hold, the operator & is of the type 0, the coefficients of

n—1 gi

the operator L u(t) = Lu(t) =Y Y a;; fi(A)u'?(1) fulfil the condition (1.1.1)
i=0 j=1

from [1] with a constant C, instead of C%, the operator 2 is of the type w < 0 and

n—1 qi

o+ C(Z)[K¥1 + (n —1)Co) + n — 1]'2 ZN,, +
+K*CAZ) (14 (1= 1) C) _max’ (zM Jn257 1 <0,

then the solution v is uniformly exponentially stable with respect to the norm ||-||.
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Proof. By Lemmas 5.1, 5.2
(1) 1£:44) 4P e = K3[£:(A) u2(O)]|w 002y <

< K3[|£i{A) w0 2omiey £ KIKS| A" fi(4) uO(1)]| <

< KIKIF*| A"~ 2 yO(1)| < KTK3

,fori=0,....,n—1,
i=1..4, uel, te 3(u).

So for every u e % there exists its continuous representant and ¢* < + 0. Let us
choose numbers R = R; > 0 so small that

(2) [for(A) (v(t, x) + Sou(t, x)), ...y faz1 4. ,(A) ((t, x) + You(t, x))] € K, for
9,6€[0,1]), ue such that 2(u) = 2(v), xe Q@ and te D(u) such that
flu@lll = R = R,.

(This is possible according to (1))

Let a,; be constants (i =0, . -1, j=1
boundedness of the functions a;; we get

(@) fla e, o(0)) fi(4) wO(t, x) = @ fi(A) u(t, )| <

< o [fi(A) u(t, x)|| £ e F*| AT DO, x)|.

s . q;). Then in virtue of the

In this proof ¢; will mean suitable constants. Putting @,; = 0 in (3) we obtain

wMMWﬂggmwmwwg

n

§

lIM[

n—1
imwﬁmwwwéqmwﬂﬂwww
j= i=0

Let us restrict ourselves to such u e % that 2(u) S 2(v) and such e 2(u) that
[lu()ll < R. Then the boundedness of the functions 73, on 2(v) x Q@ x K,
together with (1), (2), (5.1) yields

Iresedt, u(®)) £:,(4) u2(2) fi ) u®(1)|| <
< co| £i(4) uO(t) fu(4) u®(O] < esl[u@ - |fu4) w2 =
< collu(Ol] . [ 4“0 O], ke {0, — 13,
j=1..,q9;, 1=1,..,¢qx.

The last inequality implies
O IR )] =% 375§ o ) f34) 400 Sl w0 2
< OIS J 4~ o).
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Using (4), (5) we obtain
(6) 17, o) + u(0) = Fo. o0)] = [Fule,u(0) + Fy(, ()] <
< (e + U S 400 <

n—1
< (e3 + &R) T [4*7 P uO(o)].
i=o
As a consequence of (4), (5) and of Lemma 2.5 we get

) [Fule, u()] = esn® 2™ |u(o)]
®) [Fa(t, w(@)]] < en*25~ ()]

In the sequel we shall suppose that the function u solves the equation & u(t) =
= F(t, o(t) + u(t)) — F(t, u(t)) and either the condition (6) or the conditions (4) and
(5) or (7) and (8) are fulfilled, or that the function u solves the equation £ u(t) =

i=0 j=

n—1 gq;
=Y Y a;ft, x)fij(A)u®(t) and the condition (3) is fulfilled. (In the last case
i 1

a;j(t, x) = a;j(t, o(t, x)), of course, and we omit the assumption |[[u(?)]| £ R.)
Then, because

u™(t) = F(t, o(t) + u(t)) — F(1, v(t)) _.'Z":lai(A) U= (1)

or
n—-1 qi n
u™(t) =Y ¥ aift, x) fi(4) u(t) = T ai(4) u"""(1),
i=0 j=1 i=1
we can derive with help of Lemma 2.5 and of the properties of the functions a(4):
(9) There exists a constant cg such that [[u®™(t)]| < csf|u(?)|| for t € 2(u).
An easy consequence of (9) and (5.1) is the following estimate:

(10) [ fap(A) u=* B (1)|| £ co|u(?)]|, where

{F* ,iflSa+1=5n-1
Cyg =

F*cg, if o = n — 1.

Using the boundedness of the functions a;; — @;, 8/0t aij, 0[0fup Gy, the relations
(1) and (10), we obtain

(1) |3, Coult )10 w0) = a1y 1) (0]
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_ H[a% afiold) +5, 3 b;jlﬂ auft, o) -
- fap(A4) U(“”(’)] FifA)u®(t) + (ay(t, o(t)) — ay) fi(A) u""V(0)|) =
< (cro + cnrfle@ID Hu@ll + cozflu@l = exsfu@f]-

Because F(t, u(t)) = 3. 3 & Tyt o0)14) w0, we obtain from (11) by
i=0 j=1

putting a;; = 0

(12) IFi(e w@)] = exalllu@] -

In virtue of the boundedness of the functions 7, ;FU“ 9 Fijx We get using
t

. " g
(1), (10),

|4 o ) Jf) 176 ) 0]

- J' : J : [% Fujualts o(t) + 9o a(1)) +

Y TR o) + 9o u0) () (0470 +
=0 =1 faﬂ
+ 90 utet 1)(;))] o d9 do fi(A) u(1) ful A) u(t) +
# it 1) 4) 0 1) 46) + 14) 100 ul ) (0]

< (ers + éms’j:g'l)lllv(f) + 9o u(®)[) [l + essllu@)]* =

=

< [ers + Cle(:;(l:)m”(’)m + R) + 7] [[u()]|* -

Because
Au0) =5 3T 5 S o 0) ) 4O Sl ) (0]

the last inequality yields

(13) [Fx(t u@] = ewsflu@)] -

The relations (12), (13) give

(14) @ o) + u(®) = F o)) = [Filt u(?) + Fa(o u(@)] =

= (C14 + C18R) m“(‘)m :
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Now obviously the relation (2.3) is fulfilled. Moreover, F,(t, 0,;) = 0, F;(t, 0,;) = 0
for every I = 9(v). The condition (2.2) is fulfilled according to (6), (14). The relations
(4), (5), (12), (13) imply (2.4). The relations (7), (8), (12), (13) with help of the relation
Fi(t, uy(1)) — Fi(t, u(2)) = Fi(t, uy(t) — uy(t)) give (3.1). The relation (5.3) is an
easy consequence of (3) and (11). The last statement of the theorem directly follows
from Theorems 3.2 and 5.1. The theorem is proved.
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