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SUFFICIENT CONDITIONS FOR THE OSCILLATION OF n-TH
ORDER NONLINEAR DELAY DIFFERENTIAL EQUATION

JAN OHRIskA, KoSice

(Received March 12, 1979)

We consider the equation

(1) u™(1) + p(t) [u(x(2))|* sign u(z(t)) = 0,
where
(i) 0 < p(1) € Crg,0) P(1) is not identically zero in any neighborhood O(w0),
(ii) ©(t) € Crg,c0y> T(1) = 1, lim 7(1) = o0,
1o
(ili) n 2 2, & > 0.

Without mentioning them again, we shall assume the validity of conditions (i),
(ii) and (iii) throughout the paper.

Suppose that there exist solutions of the equation (1) on an interval of the form
[b, 0) where b = t,. In the sequel we shall use the term “solution” only to denote
a solution which exists on [b, oo) where b = t,. Moreover, we shall exclude from our
considerations solutions of (1) with the property that u(t) = 0 for t = T, = t,.

A solution u(t) of (1) is called oscillatory for t = t, if there exists an infinite se-
quence of points {s;};2; such that u(s;) = 0 and s; > o for i - c0. A solution
u(1) of (1) is called nonoscillatory if there exists a number T, = t, such that u(f) + 0
for t = T,. A nonoscillatory solution is said to be strongly monotone, if it tends
monotonically to zero together with its first n — 1 derivatives as t — oo.

The purpose of this paper is to give sufficient conditions for all solutions of (1)
to be oscillatory in the case n is even and for every solution of (1) to be either oscilla-
tory or strongly monotone when n is odd.

We begin our considerations with some preliminary lemmas.

Lemma 1. Let u(t) € C{r ., and let either

u(t) >0, u()<0 for tz4 2T,
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or
u(t) <0, u™(1)=20 for t21,2T.

Let u™(1) be not identically zero in any neighborhood O(c0). Then

1) there exists a number t, = t, such that the functions u¥(1),j = 1,3 ..., n — 1
are of a constant sign on [1,, ©),

2) there exists a number ke {1,3,5,....n — 1} if n is even, or k& (0,2.4,...,
n — 1} if n is odd, such that

(2 u(t)u(t) >0 for j=0,1,2,...k and t=1,,
()" u(@uP(t) >0 for j=k+1,k+2,...n—1 and ;>1,,
3) either

3) sign u(s) = signlim uY(t) for j=0,1,2,...,q and s=

t— 00

t,,

limu(f) =0 for j=q+1,9+2,...n—1,

t—> o
where q = k if u(s)lim u®(t) > 0, and g = k — 1 if k > 0 and lim u®(t) = 0, or
t— oo t— o
(4) limu®(f) =0 for j=0,1,2,...,n—1
t— o0
if k =0 andlim u®(t) = lim u(t) = 0.
t— oo t— o

Proof of this lemma may be found in [1].

Let us denote (1) = sup {s = t, | 1(s) < t} for t 2 t,.

We see that ¢ < y(7) and ©(y(t)) = t. Another property of the function y(1) is given
in the following lemma.

Lemma 2. For every t such that t, < t < oo, the value y(1) is finite.

Proof of Lemma 2 may be found in [1].

Theorem 1. Let o > 1 and let the equation (1) have an unbounded nonoscillatory
solution. Then

lim sup t”"‘f p(x)dx =0.
-0 (1)

Proof. Let u(z) be a nonoscillatory unbounded solution of (1). We may assume
that u(r) > 0 for t = T 2 t, (the case u(f) < 0 is treated similarly). Then (see (ii))
there exists t; = T'such that u(z(r)) > 0 for ¢ = t;. Now, by (1), we have u®™(1) < 0
for t 2 ty, but u™(z) is not identically zero in any neighborhood O(0). It is clear
that the function u(t) satisfies the conditions of Lemma 1. So we can use the assertions
of this lemma.
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Now suppose that (3) holds true. Integrating (1) successively n — g — 1 times
from #(21,) to oo we have

U= (1) 2 jfp(x) u(«(x ) dx,
—uD(p) > J w(x — 1) plx) u(x(») dx.,

6 ez o [ T R )

Integrating (5) from v, to v,(t, < v; < v,) We obtain

(6) (=1~ u(v,) — (- 1)n—q uD(v,) =

> x —p, ) 1 p(x 7(x)) dx
e G e ) )
oy i e = (e = e T ) o
It is easy to verify by induction that
(7) (v, = 0TS (x — o) T = (x =0T

for vy < v, £ x.
Therefore, taking into account (7), we obtain from (6) that

®) (=1 1u@(v,) — (1)1 u@(v;) =
eI, G e ) e o +
1 -1 " .
(n__q—_l)'(vz ) [ p(x) w(z(x)) dx .
Let n — g be even. Then 2) implies that k is odd if n is even and k is even if n is

odd. For this reason n — k is always odd. Thus g # k. But then ¢ = k — 1 (by
Lemma 1). Now (2) yields

u@t () = u®(t) >0 for t=t,

v

and
u®(1) =u*"D(1) >0 for t=t,.

Hence u‘@(r) is an increasing and positive function if t 2 f,. It is clear that the
first integral on the right-hand side of (8) is nonnegative. Therefore from (8) we have

9y, 1 v, — )71 N x) u(t(x)) dx .
O W)z [REECOR
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Let g > 0. Integrating (9) from v to t (t, < v; < 1) we get

p—

u@=D(t) — 4@ () > —~[(t - vl)"""[wp(x) u*(t(x)) dx +

" (n - q) ‘

[ (o = nrtaten ) s

The second integral on the right-hand side of this inequality is nonnegative and
4" D(v;) > 0 (by (2)). Thus we can write
(10) e () 2

2 (t— v,)""‘J: p(x) u*(z(x)) dx .

Analogously, integrating (10) ¢ — 1 times from v; to ¢ we obtain

() w2 m(‘ s j o) () .

0
! (t- vl)"’IJ. p(x) u*(x(x)) dx .
(n— 1) . ,

Note that for ¢ = 0, the inequality (11) reduces to the inequality (9) (just replace v,
by t). Therefore, for n — g even, we can consider the case ¢ > 0 together with the
case g = 0.

We know that p(f) = ¢ and t(x) = ¢ if x 2 y(¢). Since, by the assumption of the
theorem, u(f) is an unbounded positive function, we conclude by Lemma 1 that
w'(t) > Ofor t 2 t,. Hence u(t(x)) = u(t) for x = 7(t) and from (11) we have

u(t) =

> (1) — )yt ? ¥) dx
025 T [ s
and also
) S =) " e
02 e = (n = 1) Lm"”d

The last inequality directly implies that
@
lim sup t""f p(x)dx =0
tmo (1)

and the theorem is proved in the case when (3) holds and n — g is an even number.
Again, let (3) hold true. Now let n — g be odd. Then, by Lemma 1, we obtain
q = k. Thus from (2) we have
u@ D) = u** D) <0 for t21,
and
u®(t) = u®() >0 for 121t,.
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Hence u@)(1) is a positive decreasing function for ¢ = t,. It is easy to see that the
second integral on the right-hand side of the inequality (8) is positive. Therefore (8)
yields

v

O ETCUCN Pe—_— j(—mr4‘u>@wmx

T (n—gq-1)
and for v, = o,

(13) ummws~~~—j<—qu*u>@m)

Let ¢ > 0. Integrating (13) from v; to t (t, < v3 < t) we obtain

I R 1 IO S LSO

q)!
! ) " — (x = )" p(x) u*(z(x)) dx
+Gf5J;u—%> (x = 07~ p(x) w(e(x)) d
It is evident (by (7)) that (t — v3)" ™ < (x — v3)" 9 — (x — 1)" 9 for vy < 1 < x.
) =

The first integral on the right-hand side of (14) is nonnegative, and by (2), u“~ (v,
= u®*~Y(v;) > 0. Thus replacing v; by v, in (14) we obtain

(t — v~ qup(x) u*(t(x)) dx .

u@—n >
(15) 0z = y

The inequality (15) coincides with the inequality (10). Consequently, continuing as
above we successively get the inequalities (11), (12) and the assertion of the theorem.

Now let ¢ =0, n — g = n being odd. Since g = k, the inequality (2) gives
u'(t) < 0 for each ¢ > t, but this is a contradiction with the assumption that u(r)
is a positive unbounded solution of (1).

Now consider the case when conditions (3) are not satisfied. Then conditions (4)
are satisfied but this is again a contradiction with the assumption that u(t) is a positive
unbounded nonoscillatory solution of (1). The proof is complete.

Remark. From the proof of Theorem 1 we obtain the following consequence:
Let « = 1 and let the equation (1) have an unbounded nonoscillatory solution. Then

limsup "~ '| p(x)dx < (n —1)!

o (1)

Theorem 2. Let o > 0 and

(16) lim sup t”_‘f p(x)dx = .
t

t—

Then, for n even, all nonoscillatory solutions of (1) are unbounded, while, for n
odd, every nonoscillatory solution of (1) is either unbounded or strongly monotone.

494



Proof. The proof is easy modification of that of Theorem 1. Let u(f) be a non-
oscillatory solution of (1). We may assume that u(f) > 0 for t = T = t,. Then
u(t(t)) > 0 for 1 2 t; = Y(T). Now, by (1), we have u®™(t) <0 for t = t;, but
u™(t) is not identically zero in any neighborhood O(). It is clear that this function
u(t) satisfies the conditions of Lemma 1. So we can use the assertions of this lemma.

Now suppose that (3) holds true. As well as in the proof of Theorem 1 we succes-
sively get the inequalities (5), (6), (7) and (8).

Let n — q be even. Then, as in the corresponding part of the proof of Theorem 1,
q = k — 1and we get (9).

Let ¢ > 0. Then from (9) we obtain (10) and (11). We see that for g = 0, the
inequality (11) reduces to the inequality (9) (just replace v, by t). Therefore, for
n — q even, we can consider the case g > 0 together with the case ¢ = 0. Note that
for ¢ = 0 we have k = 1. Thus by (2), u(t) > Ofort > t,. Sincex 2 t 2 t, 2 t; =
= p(T)in (11) and u(t) is an increasing function for ¢ 2 1,, we get (from (11))

(17) u(t) 2 (e J p(x) dx
(n — 1) .
for t 2 9(1,).

From the last inequality, by (16), we have

(18) “limu(f) = o
t— o0
and the theorem is proved in the case when (3) holds and n — g is an even number.

Again, let (3) hold true. Now let n — g be odd. Then g = k. Continuing as in the
corresponding part of the proof of Theorem 1 we get (13), further, for ¢ > 0 we get
(14) and (15) which coincides with the inequality (10). From (10) we obtain (11)
and (17) as above. Finally, from (17) we obtain (18).

Now let ¢ = 0. Then n — g = nis odd. Since ¢ = k, (2) implies u'(t) < O for each
t = t,. This means that u(t) is a positive decreasing function for t 2 t, and, by (3),
lim u(t) = ¢ (¢ > 0). We shall show that the condition (16) is not satisfied in this

t—= o
case.
We know that

c <u(t) S uty) for t21,,
and for t = y(t,) we have
c < u(t) = u(x(t)) < u(ty) .
These inequalities imply that

o p(t) < p(t) wi(x(r) = —u™(1)
" ¢ p(t) < —u™(r).
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Integrating the last inequality n times from ¢ to oo (1 = y(1,)) and using (3), we obtain

oo f( ) dv = () -

IIA

whence

because ¢ > 0 and u(f) < u(t,).
Without loss of generality we can assume that ¢t > 0. Then

(21~ j:p(x) dx < 27! Jj(x it px)dx =

_1fw(x - t)"‘l p(x) dx < on=1 w&)’

whence

ca

s""‘pr(x) dx 21 .~(-—~n )] u(tz)’

where s = 2¢t. From this we see that

lim sup s""f p(x)dx < .
5§00 s
This completes the proof of the theorem if (3) holds and n — g is an odd number.
Again, let u(f) be a nonoscillatory solution of (1). Consider the case when the con-
ditions (3) are not satisfied. But then the conditions (4) are satisfied and we see that
in this case the solution u(f) is strongly monotone. On the other hand, we know
(by Lemma 1) that the conditions (4) are satisfied only if k = 0 and, further, that
k = 0 only if n is odd. This completes the proof of the theorem.
Combining what has been said with Theorems 1 and 2 we arrive at the following
result:

Theorem 3. Let o > 1. If

(19) lim sup t"‘lf p(x)dx >0
= (1)

and

(20) lim sup t”“J‘ p(x)dx = o0,
t— 0 t

then every solution of (1) is oscillatory if n is even, and is either oscillatory or
strongly monotone if n is odd.
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Proof. On the contrary, let u(f) be a nonoscillatory solution of (1). Moreover,
let u(1) be not strongly monotone if n is odd. Then, by (19) and Theorem 1, u(t)
must be bounded. On the other hand, by (20) and Theorem 2, u(t) must be unbounded
if n is even, and u(f) must be either unbounded or strongly monotone if n is odd.
This is a contradiction and the theorem is proved.
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