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1. Introduction. The purpose of this note is to establish the existence of polytopes
which behave very poorly with respect to the possibility of inscribing any isomorphic
polytope into a sphere. To formulate the result and its background more precisely
we need some definitions.

Let P be a 3-polytope (that is, 3-dimensional convex polytope) with v(P) vertices.
We shall denote by s(P) the largest integer s with the property: There exists a 3-
polytope P’ isomorphic to P, and a sphere S that encloses P’, such that s vertices of P’
are on S.

Fig. 1

STEINER [7] asked whether all 3-polytopes are inscribable, where a 3-polytope P is
called inscribable provided s(P) = v(P). BRUCKNER [1, p. 163, footnote 4] remarked
that all simplicial 3-polytopes are necessarily inscribable; we recall that a 3-polytope P
is simplicial if all the faces of P are triangles. However, as was observed by STEINITZ
[8]. this remark of Briickner’s is mistaken; indeed, Steinitz proceeded to prove by
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a peculiarly elegant geometric argument that there are infinitely many types of 3-
polytopes (among them simplicial ones) that are non-inscribable. The non-inscribable
simplicial 3-polytope P, with fewest vertices obtainable by Steinitz’s method is
represented in Figure 1 by its Schlegel diagram. Note that P, may be interpreted as
the polytope arising from the tetrahedron by placing a sufficiently flat 3-sided
pyramid on each of the four faces of the tetrahedron.

Steinitz’s method was extended by Jucovi¢ [6]; a corollary of that paper which
we shall use here is: If S is a sphere that contains a polytope P; isomorphic to P,,
then not all four 3-valent vertices of Py are on S.

Another step in investigating how badly non-inscribable may 3-polytopes be was
taken in Jucovi¢ [5]. His result may be interpreted as asserting the existence of
simplicial 3-polytopes P with an arbitrarily prescribed number of vertices such that

s(P) = [(2v(P) + 13)/3].

The main aim of the present note is to improve upon those results by establishing
the following

Theorem. If P ranges over all types of simplicial 3-polytopes then

Jim inf 28 5(P) <1082 _ 630030 ...
logv(P) ~ log3

In other words, for every a > log 2/log 3 there exists a constant f, and a sequence
of non-isomorphic simplicial 3-polytopes P, such that

s(P,) < B.(v(P,)) forall n.

We shall present the proof of the Theorem in Section 2; various remarks, open
problems and conjectures are presented in Section 3.

2. Proof of the Theorem. Before starting the actual proof, we shall establish
a lemma. In order to ease its formulation, we shall first explain the terminology and
notation.

Let Q be a simplicial 3-polytope in which we have singled out a set T of 3-valent
vertices no two of which share an edge. Although the lemma would be valid also
without this assumption, we shall simplify its formulation by assuming that T is the
set of all 3-valent vertices of Q, the number of which is denoted by v5(Q). We denote
by W the set of v(Q) — v4(Q) vertices of Q that have valence 4 or more. We shall
denote by #(Q) and by w(Q) the maximal possible numbers of 3-valent vertices, and
of 4 or higher valent vertices, of any 3-polytope Q' isomorphic to Q, that belong to
a sphere that contains Q'. Therefore s(Q) < #(Q) + w(Q). Note that if Ve T, the
three faces of Q incident with V form a complex isomorphic to the complex N in-
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dicated in Figure 2. The vertices Uy, U,, U; of N belong to W. We shall denote by Q*
the simplicial 3-polytope obtained from Q by replacing every vertex Ve T by a copy
of the complex H shown in Figure 3. It follows easily that the polytopes Q and Q*

N H
v
Y
Up YUz Y Us
Fig. 2 Fig. 3

satisfy v(0*) = v(Q) + 3v5(Q) and v;(Q*) = 3 v;(Q). Furthermore, we shall
establish the following

Lemma. {(Q*) < 2 Q) and w(Q*) < w(Q) + #(Q).

Proof. If any one of the four “interior’ vertices V, Vi, V,, V5 of a copy of H
belongs to a sphere S containing a polytope Q*' isomorphic to Q*, the three triangles
determined by that vertex and by the three “outer” vertices U,, U,, U3 of H yield
a copy of N, and the convexity of Q*' is not affected by the replacement of that copy
of H by the just constructed copy of N. Therefore, if in more than #(Q) copies of H
a vertex would belong to a containing sphere S, we should be able to form a polytope
isomorphic to Q in which more than #(Q) of its 3-valent vertices belong to the sphere S
that contains it. As this is impossible, we must have w(Q*) < w(Q) + #(Q). On the
other hand, in each of the at most #(Q) copies of H that have any of the interior vertices
belonging to S, at most 2 of the three 3-valent vertices present may belong to the
sphere (unless all the vertices of Q*' that belong to S are among the seven vertices
of that one copy of H). Indeed, if for some copy of H the three vertices Vi, V,, V3
were on the sphere S that contains Q*, the convex hull of that copy of H and of an
arbitrary vertex of Q* outside of H that belongs to S would yield a polytope isomor-
phic to the polytope P, of Section 1, which has its four 3-valent vertices on a sphere
that contains P,. As that is impossible, we have #(Q*) < 2 #(Q), and the proof of the
Lemma is completed.

We shall now prove our Theorem by exhibiting a sequence P,, n = 0, 1, ..., of
simplicial 3-polytopes such that v(P,) = 2 + 6.3" and s(P,) < 1 + 6.2" It is obvious
that

timinf 28 3P) < jip, log 5(P)  log2
logo(P) ~ n-w logov(P,)  log3
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We construct the sequence P, by induction, taking as P, the polytope described
in Section 1 and shown in Figure 1. If any P, is already constructed, we form Py,
as P}, by replacing the configuration N around each 3-valent vertex of P, by a copy
of the complex H. Since v(P,) = 8 and v4(P,) = 4, the construction clearly implies
that o(P,) = 2 + 6.3" and v5(P,) = 4.3". Using the Lemma and #(P,) = 3, w(Po) =
= 4, it then follows at once that #(P,) < 3.2", and w(P,) < 1 + 3.2", so that s(P,) £
<1 + 6.2"% as asserted.

This completes the proof of the Theorem.

3. Remarks. (1) Following the terminology introduced in GRUNBAUM-WALTHER
[4], the number

log s(P)
log v(P)
where P ranges over all d-polytopes, could be called the ““inscribability exponent”

of the family of all d-polytopes. Our Theorem asserts that s < log2[log 3; we
make the following

5@ = lim inf

Conjecture. s® = log 2[log 3.

It should be pointed out that our conjecture could be wildly wrong. Not only do
we ignore whether s > 0, but all our present knowledge is even compatible with
the following rather outrageous statement: There exists an absolute constant k and
3-polytopes P with arbitrarily large v(P) such that s(P) < k.

(2) The results of Steinitz [8] and Jucovi& [6] mentioned in Section 1 may easily
be extended to higher dimensions. It follows, for example, that P{, the “Kleetope”
(see GRUNBAUM. [ 3, p. 217]) over the d-dimensional simplex has the following proper-
ty: If a polytope P’ isomorphic to P§” is contained in the ball determined by some
(d - 1)—dimensional sphere S, then not all d + 1 of the d-valent vertices of P’ can
be on S. By a simple extension of the proof of the Theorem in Section 2 we may
construct a sequence PP, n = 0, 1, ..., of simplicial d-polytopes such that

im o8 s(P{P) log(d — 1)
n- log v(PL) logd

We venture:

Conjecture. The inscribability exponent of the family of simplicial d-polytopes,
d=3, ,
5 _ lim inf 122 5(P)
log v(P)

where P ranges over the simplicial d-polytopes, satisfies

59 =log(d — 1)[logd .
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It should be noted that, as shown by the 4-dimensional pyramids based on the
3-polytopes P, constructed in Section 2, the inscribability exponent s of all 4-
polytopes satisfies s < log 2[log 3; similarly s@ < log 2[log 3 for all d = 3. It is
well possible that strict inequality holds in this relation, at least for sufficiently large d;
this is in contrast to the conjectured relation s = §3,

(3) It was shown in Griinbaum [2] that there exist simple 3-polytopes P which are
not inscribable. (A d-polytope is called simple if each vertex is incident with precisely d
different edges.) It would be of interest to investigate the inscribability exponent §
of simple d-polytopes. So far we were unable to show that §® < 1 for any d = 3.

(4) If P is a d-polytope, let ¢(P) denote the maximal number of co-spherical vertices
in any polytope isomorphic with P. Then clearly ¢(P) = s(P), but if P is non-in-
scribable then ¢(P) < v(P). It would be of interest to investigate whether

lim inf 128 _
log v(P)

when P ranges over all d-polytopes, or over certain classes of them.

(5) If P is a d-polytope with f(P) facets (that is, (d — 1)-dimensional faces),
let i(P) denote the greatest integer i such that there exists a polytope P’ isomorphic
with P, with the property that i facets of P’ are inscribable (d — 1)-spheres. Clearly
i(P) = f(P) whenever P is a simplicial polytope; on the other hand, if P is simple then
s(P) < v(P) if and only if i(P) < f(P). The 3-dimensional case of this observation
was used in Griinbaum [2] to derive the existence of simple non-inscribable 3-poly-
topes from the existence of 3-polytopes “without circumcircles”. Although it is easy
to find a sequence of 3-polytopes P, such that

n-w f(P,)

it is not known whether other sequences would give smaller limits. Similarly, the
higher dimensional analogues are completely unexplored.

(6) It is probably true that if P is a 3-polytope with v(P) < 7 then P is inscribable;
this is easily checked for simplicial P. However, in general we have no method of
determining whether a given 3-polytope is inscribable or not. Several criteria esta-
blishing non-inscribability of 3-polytopes are known (Steinitz [8], Griinbaum [2])
but they certainly do not cover all cases.

2/3

(7) As explained in detail in Steinitz [8], the question whether a polytope P is
circumscribable (that is, isomorphic to a polytope all facets of which are tangent to
a fixed sphere) is equivalent to the question whether the polytope P* dual to P is
inscribable. However, the following problems are still open:

(i) Does every 3-polytope P have an isomorphic polytope P’ such that every
facet of P’ is a polygon with an incircle?
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(ii) Is every 3-polytope isomorphic to a cage for the sphere? (Here a polytope Q
is called a cage for the sphere provided there exists a sphere that touches all the
edges of Q.)

(iii) Is every 3-polytope isomorphic to a normal one? (We call a 3-polytope Q
normal if there exists a point O such that for each face F of Q the foot of the per-
pendicular from O to the plane of F belongs to the interior of F.)

Clearly, such and similar questions may be formulated also for higher dimensional
polytopes, and in many other variations.
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