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MUTANTS IN THE SYMMETRIC SEMIGROUPS

Jin Bar Kim, Morgantown
(Received September 23, 1969)

Let S, be the symmetric (or full transformation) semigroup on n letters. A subset K
of S, is called a mutant if KK is contained in the complement of K in S,. We shall
give an explicit form of a maximal mutant of T,_, = S,\D,, where D, denotes the
D-class of rank n.

1. INTRODUCTION

KM [6] has established a generalized Green’s Lemma and a generalized Clifford
and Miller’s Theorem in S, (and in the multiplicative semigroup L,,(V) of all linear
transformations of a finite dimensional vector space V,,(F) over a finite field F [5]).
In [3] Kim has proved that if T'is a topological semigroup and a in T'is not an idem-
potent, then there exists a maximal open mutant of T containing a. (This does not
give any information about the actual form of a maximal mutant of a semigroup.)
Using a generalized Clifford and Miller’s Theorem for S,, we shall give an explicit
form of a maximal mutant of T,_;. (This is the first time an application of a gener-
alized Clifford and Miller’s Theorem of S, has appeared.) In section 2, we shall
establish the rank theorem of S, by modifying the rank theorem of matrices. In
section 3, we shall introduce a generalized Clifford and Miller’s Theorem and mention
a part of a generalized Green’s Lemma in S,. Section 4 contains some basic results
for mutants. From section 5 we shall discuss an explicit form of a mutant of S,,.

2. THE RANK THEOREM OF S,

Let S = S, = Sy be the symmetric (or full transformation) semigroup on n letters
{uy, us, ..., u,} = X. The basic results of S can be found in [1, pp. 51—57]. From
now on S always denotes the symmetric semigroup on X. We may use the (classical)

notation if v;e X and a € S,
U, Uy ... U
o = 1 2 n
Uy Uy ... U,
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to mean that o is the mapping of X defined by ux = v; (i = 1,2, ..., n). With each
element « in S we associate two sets: (1) the range M(x) = X« of «, and (2) the parti-
tion N(«) corresponding to o. If M(at) = {v; : i = 1,2, ..., 7} and if we define v,a™! =
=V; = {ua = v;}, then we may write N(a) = {V; : i = 1,2, ..., r}; we can write

o =<V1 2 oo V’) =WVLVa Vs 03,0, 0) = (Voo ti =1,2,...,7).
Uy vy .. D,

lM(oc)| = r = ¢(«) is called the rank of . The rank of the partition N(«) is defined
by r = ¢(«). The following is called the rank theorem of matrices [4].

Theorem A. Let o and B be two elements of the multiplicative semigroup L,(V) of
all linear transformations of the n-dimensional vector space V;,(F) over a field F.
Let ¢(x) denote the rank of a. Then (o) = ¢(a) — dim (M(x) N N(B)), where
M(a) and N(B) denote the range space of « and the null space of B, respectively.

Although we know that Theorem A is applicable in the semigroup S, in view of
Exercise 6-(¢) of [1-1, p. 57], the meaning of dim (M(x) n N(p)) is not so clear when a
and B are members of S,. To get the analogue of Theorem A in S, we need:

Definition 1. Let « and B be elements of S, and let N(8) = {V,, V5, ..., V,}. Define

IM(z) A | = {LM(ZB},;Z;L; Lif M@ nV] 21,
and .
[ME) A NB)| = X [ME) ~ Vi

Now Theorem A takes the following form in S,

Theorem 1. Let o and B be two elements of the symmetric semigroup S,. Then
o(2p) = o(x) — [M(x) ~ N(B)|

The proof of Theorem 1 is not hard and shall be omitted.

3. A GENERALIZED CLIFFORD AND MILLER’S THEOREM
AND GREEN’S LEMMA

Kim [6] has established the following and Theorem B is considered as a generalized
Clifford and Miller’s Theorem [1, Theorem 2.17].

Theorem B. (i) Let ac S, and H be an H-class. Then «H = U{H,, : 1€ H}.

(ii) Let H; (i = 1,2) be two H-classes. HiH, = U{H, :®€ H, and B e H,}.

(iii) @B € D, iff D, is the D-class of the maximal rank such that S n Se N D;
contains an idempotent, where B € S,.
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Theorem C. Let o and B be elements of S, such that ae D,_,, e D,_, and
B = ya.

(i) Then the mapping © — yt (t € H,) is a one-to-one mapping from H, onto yH ¢

(i) yH, = U{H,, : 1€ H,} and {H,, : T € H,} contains n — 1 distinct H-classes of
rank n — 2.

Theorem C is taken from a generalized Green’s Lemma in S, [6]. To get a Theorem,
which we shall need later, we introduce:

Definition 2. (i) 7(X) denotes the collection of all partitions on X and define
7(X) = {N e n(X): the rank of N is r}.

(ii) p(X) denotes the collection of all non-empty subsets of X, and p/(X) =
= {Yep(X):|¥| =r}.

(iii) IfN = {V}, V>, ..., V,} € m(X), then V, is called a block of N.

(iv) Let N, e m(X) (i = 1, 2). If for every block V of N, there is a block U of N,
such that V'is a subset of U, then we write N; = N,.

Let « € S. By Lemmas 2.5, 2.6 and 2.7 in [1], if R,, L,, H,, D, denote, respectively,
the R, L, H, D-class containing a, then we can write N(x) = N(H,) = N(R,) and
M(x) = M(H,) = M(L,).

Lemma 1. M(«f) = M() and N(x) = N(«p).

Theorem D. If H; (i = 1,2) are two H-classes of rank n — 1 and if HH,
c D,_j, then HH, = U{H,; : € H, and B € H,} = F and F contains (n — 1)*.
.(n — 2)[2 H-classes such that if N € m,_»(X) and M € p,—»(X) with M = M(H,)
and N(H,) = N, then there is H,; in F with N(H,;) = N and M(H,;) = M.

The proof of Theorem D follows from applications of Theorems B, C and
Lemma J.

4. PRELIMINARY RESULTS
We rewrite Theorem 2.10-(i) of [1] in the following:

Lemma 2. Let H be an H-class of rank r with H = (V,, vi). Then H contains an
idempotent iff [V; n M(H)| = 1 for every V..

Definition 3. (i) Y in p,(X) is said to be a cross section of N € n,(X), denoting by
Y # N, if every block of N contains just one element of Y.

(i) Let Nen(X) and M e p(X). A pair [N, M] is called a partitionrange.
nxp(X) = {[N, M]: N e n(X) and M € p(X)}.
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(iii) Let [N, M] € nxp(X). [N, M](D,) = {Be D, : M(B) = M and N = N(B)}.

(iv) A non-empty subset A of 7,xp(X ) is called a section (of m,xp(X )) if there are
two sets I and J such that 4 = {[N;, M;]:je Jand iel}.

(v) A section A4 as in the above (iv) is said to be idempotent free if non N (j € J)
is a cross section of M (i €I).

(vi) Two sections 4, and 4, in 7,xp,(X) are said to be orthogonal if N; + N, and
M; + M, for all elements [N;, M;] of 4, and all elements [N,, M,] of 4,.

(vii) Two sections A; and A, are said to be parallel if for each [N;, M,] in 4, there
is [N,, M,] in A, such that M; = M, and vice versa.

(viii) A collection F = {4, e n,xp,(X)} of sections 4; is said to be orthoparallel if
any two distinct elements 4; and A4; in F are either orthogonal or parallel and if there
are no partitionranges [N, M] in 4; and [N’, M'] in A; with N = N’ for i * j.

Definition 4. A subset K of a semigroup S is called a mutant if KK < S\K.

Lemma 3. Let F = {4, € n,xp,(X)} be a collection of orthoparallel and idempotent
free sections. Then F(D,) = {a € D, : [N(x), M(«)] € U{4; € F}} is a mutant.

Proof. (1) Let A; € F and let « and § be elements of 4,(D,). Since 4, is idempotent
free, there is a block ¥ of N(B) such that ¥ contains at least two elements of M(x) and
hence | M(x) N N(B)| = 1. By Theorem 1, o(xf) = ¢(a) — | M(x) A N(B)|| < r, and
hence af ¢ F(D,).

(2) Let 4; and A4; be elements of F. Let a € A(D,) and B e A;(D,). If A; and 4; are
parallel, then 4; U 4; is a section. By (1), «B ¢ F(D,). If A; and A4; are orthogonal,
then we have that either (@) = r or @(aB) < r; the latter case we have af ¢ F(D,).
If ¢(ef) = r, then, by Theorem 2.17 of [1], H,H; = H,;. From N(a) = N(H,,) and
M(B) = M(H,), it follows that [N(x), M(B)] ¢ (U{A4;€ F}), whence «f ¢ F(D,).
Thus F(D,) is a mutant of S,,.

Lemma 4. Let A; = {[N;, M]e n,xp(X) :je J}, A, = {[N, M;] e n,xp(X): : iel}
and Ay = {[N;, M|]e nxp{X):je J and ielI}. If M is a cross section of N, then
A,(D,) Ay(D,) contains A5(D,).

Proof. Let H =(N;, M;)e Ay(D,) be an H-class determined by N; and M,.
Choosing two H-classes H; = (N;, M)e A,(D,) and H, = (N, M;) e A,(D,), we
have that H,H, = H by Theorem 2.17 of [1]. This completes the proof.

Definition 5. (i) Let A, = {[N;, M;]enxp/(X):jeJ, and iel,} and 4, =
={[N;, M;]e nxp(X):je J, and i el,} be two orthogonal sections. Then 4; =
={[N;,M]:jeJ, and iel,} and A, = {[N;, M;]:jeJ, and iel,} are called
the right and left complementary sections of A; and A,, respectively. ’
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(ii) If A5(A,4) has an element [N, M| with M # N, then we shall say that the right
(left) complementary section of A, and A4, has a cross section. If 4; and A, have
cross sections then we shall say that the complementary sections of 4; and A, have
cross sections.

Lemma 5. If A; (i =1,2) are orthogonal in mnxp(X) and if the left (right)
complementary section Ay(As) of A, and A, has a cross section, then A,(D,) A(D,)
(A5(D,) Ay(D,)) contains A5(D,) (A4(D,)).

The proof of the lemma follows from Lemma 4.

5. MUTANTS IN S,
To get an explicit form of a mutant of T, _,, we introduce:

Definition 6. (i) Define M; = X\u;. N;; denotes a partition of rank n — 1 having
one block consisting of two elements u; and u; (i < j). i denotes the set {1, 2, ..., m}.

(ii) (if) denotes a sequence from the set i with i < j. Let (ij) and (st) be two distinct
sequences from the set 7. (ij) < (st)ifeither j < torj = tand i < s. Letting (n,n,) <
< (mym,), define [nyny, mym,] = {N; € m,_y(X) : (nyn,) < (ij) < (mymy)}.

(iii) Let t,,t, € i with t; < t,. Define [t,t,] = {M;ep,—(X) i =t;,t; + 1,...

AR

(iv) [niny, mymy] [t,] = {[Nyj, M,] : Ny € [nyny, mymy 1}, [ngn,] [t 1,] =
={[Nupn» M} : M, €[t,,1,]}, and  [nyn,, mym,][t,,t,] = {[N;;, M;] : N;; €
€ [nyny, mym,| and M, e[t,, t,]}.

(v) K5 = {[Ny2, M3],[Nys. M,], [N23, M1}, K, = {[12,23] [4] U [14,24] .

-[3] v [34] [1 2].
(vi) K5 = UAS,, Asy = [12,24][4,5], As, = [14][2,3] U [15][2,3], 4s3 =
= [24, 34] [1] and As, = [25,45][1]. K, GA,,(t =6,7,8), A¢; = [12,34].

05,61 Agy = [15,251[3.4), Aey = [35.161[2), Ags = [26, 561 [1]. Ay, =
= [12,45][6,7], A7, = [16, 36] [4, 5], Aqs = [46, 17] [2, 3], Aqq = [27,67] [1],
Asr = [12,56] [7.8]. Az = [17.47][5.6], Aus = [57,28][3.4] and Ay, =
— [38, 78] [1, 2].

(vii) For 9 = n, A(n) = UA,,,, Ay =[1n=3,n-3n=-2][n-1,n], 4, =

=[ln—1,n—4n-1] [n——3 n—2], Ay=[n—-3n—-1,n—-6n][n—5n-4],
and A,y =[n—5nn—1n][n—-7n-6]
(viii) K, (n =5, 6,7, 8) and A(n) are called ladders. A,, is called the ith step of the
ladder A(n) or K, ‘
(ix) If n takes the form n =4m + 4 + i for 1 < i £ 4, then we define K, =
=An) Vv A(n —4)u...0 Al — (m — 1)4) U K4y,
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Lemma 6. Let n =4m + 4+ i (1 <i < ) . (n = 5) is a union of ortho-
parallel and idempotent free sections A,; (j = 1,2,3,4) for te{n,n — 4,...,n —

— (m — 1) 4}.

Proof. We can see that K,.; (i = 1, 2, 3, 4) is a union of orthoparallel and idem-
potent free sections. We can also see that each A(n — 4k) (k =0, 1, ey m — 1) is
a union of orthoparallel and idempotent free sections by Definition 6-(vi). Now
consider A(f) and A(t — 4). The third step of the ladder A(t) is parallel to the first
step of (¢ — 4) and the end of the first step of the ladder A(f) is touched at the top of
the fourth step of the ladder A(t — 4). This is true for t = n — 4k. Let us consider
A(n — (m — 1) 4) and K, ;. In the above statement, we can replace A(f) by A(n —
— (m — 1)4)and A(t — 4) by K, ;. It is clear that 4,; is idempotent free by construc-
tion. This proves the lemma.

Lemma 7. (i) K(D,-1) (n = 3,4, 5,6, 7, 8) is a mutant of S,
(i) K(D,-,) (n = 9) is a mutant of S,.

The proof follows from Lemmas 3 and 6.

6. K3(D3_;) IS A MAXIMAL MUTANT OF T,_,

We see that

Ky(Ds_,) = {(‘{“1’ u,} {“3}) , <{"1’ us} {"3}> 3

uy U Uz Uy

{us us} {us} <{“1’ us} {us} {ui} {ua, “3}> <{“1} {u2s “3})}
Uy us ’ us Uy ’ U us LE) L]
is a mutant of S; by Lemma 7-(i). Since D5 _, is the set of idempotents and D;_, .

. K3(D5_,) is a union of H-classes each of which is a group, K3(D; ) is a maximal
mutant in Ty_; = D;_; U Dy_,.

7. Kg(Dg_1) IS A MAXIMAL MUTANT OF T, _,

(i) Kg(Dg-4) = U Ag{Dg_,), and Ag; are orthogonal and idempotent free
sections.

(ii) Since any two distinct sections Ag; and Ag; have cross sections, U{4si(Ds-1)
Agj(Dg_,)} contains Dg_ 1\ U Ag(Dg-,) by Lemma 5.

(iii) In Kg, for each N, there are two partitionranges [N;, M,] and [N, My—]-
Thus if H, = (N,;, M) and H, = (N,;, M,_,), then by Theorem D, H;H, < Ds-,

ij> ij>
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and H,H, U H,H, contains (n — 1) (n — 2)[2 R-classes R; such that if N is a parti-
tion of rank 6 with N < N then there is R; such that N(R;) = N for some i. Hence

we can infer that U {Ag{Ds-1) Ag{(Dg_1)} contains Dg_,.

i,j=1

Definition 7. (i) Let M € p,_3(X) and let [N;, M,] € m,_yxp,—4(X). If M = M,
and {u;, u;} ¢ M, then we say that M is passable to [N;;, M,].

(ii) Let [N;;, M,]Je A. If Y is passable to [N;;, M,], then we shall say that Y is
pasaable to A.

(iv) We can check that for any element M in pg_5(X), there is [N;;, M,] in Kq to
which M is passable.

For example, if M = {u,, u,, us, uy, us} € pg_3(X), then taking [Nss, Mg] in g,
M is passable to [Nss, Mg]. Hence every element Yin pg_5(X) is passable to K.

Lemma 8. If Ye p,_3(X) is passable to [N,;, M,], then

(i) a subset M of Y is passable to [N;, M,];
(ii) letting H = (N;;, M,) and a = (N,,Y)e D,_3 for N en,_5(X), «H con-
tains o;
(iii) if B = (N5, M) € D,_5_,, then BH contains .

Proof. (i) follows from Definition 7. (ii) By Definition 7, [|[M(a) n Ny = 0;
@(2B) = ¢(a) for B € H, by Theorem 1. It follows from N(«f) = N(«x) and M(ap) =
< M(B) o Y = M() that a € aH. The proof of (iii) is analogous as the above.

Finally we have that if « € Dg_;_; then aKg4(Dg—,) contains a, whence Kg(Dg—)
is a maximal mutant of Ty _, in view of (ii), (iii) and Lemma 8.

8. K,(D,_;) O =n) AND D,_; (i =2)

We begin with

Lemma 9. K,(D,-,) K,(D,-,) contains D, _,.

Proof. Let H = (H,, Y)be an H-class in D, _,. Then there exist two partitionranges
[N, M,] and [Na, M,] in K, with N;; = Ny and Y = M. Let H, = (N;;, M,) and
H, = (N4, M,) be H-classes determined by the partitionranges. Then H,H, con-
tains H by Theorem D. This completes the proof.

Lemma 10. Every element Y in p,_3(X) is passable to K, forn = 4,5,6,7, 8.

Lemma 11. Let n 2 9. (i) po-3(X) = U Q‘, where Q; = {Ye p,—5(X) :n¢Y},
0x ={Yep,- 3(X)\UQ,.n—k+1¢Y} (k—l 2,..,n—=2).
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4
(ii) Every Yin U Q; is passable to A(n).
i=1

(iii) Let W = {a1, @, ..., a,} be a set of s elements and let Z = {by, by, ..., by,}
be a set of 4t elements with W Z = 0, the empty set. Let Y, € p,_3(W) and
[Ny, M,] € n,_ xps—1(W) such that Y, is passable to [Ny, M,]. Then setting N, =
={Ny, {b},{bs}, ., {ba}}, My =M, UZ and Y, =Y, U Z,Y, is passable to
[N,, M,].

(iv) Every Y in p,—5(X) is passable to K,.

Proof. (i) and (iii) are clear.

(ii) Let Ye Q,. We note that |[Y| =n—3 <|[1n—3n—-3n-2][n] =
(n—4)+ (n—3), and Y= M,. If Y contains u,_,, then Y\u,_, contains n — 4
elements. Butin[1 n — 3,n — 3 n — 2] [n] there are n — 3 distinct partitionranges
of-the form [N;,_5, M,] (i = 1,2, ...,n — 3). Thus there must exist a partitionrange
[Nis—2, M,] such that Y is passable to [N;,_,, M,] for some ie{l,2,...,n — 3}.
If Y does not contain u,_,, then Y is passable to [Ni,,_z, M,] for all ie{1,2,...

.»n = 3}. Similarly, we can show that for any Y in U Q; there is a partitionrange
[N M,] in A(n) to which Y is passable. =t

(iv) We shall prove the part (iv) by induction on n = 4m + 4 + i. If n =
=4 + i (i £ 4) then it follows from Lemma 10. We assume that we have been

proved that (iv) holds for n < t — 1. Now let n = t. From (iii) and the inductional
4(k+1)

ij»

assumption, it follows that any Y in {J Q; is passable to A(n — 4k) (0 < k <
n—2 4k+1

< m — 1); similarly, every Yin (J Q; is passable to K, ;. This proves Lemma 11.
4m+1

By Lemmas 7, 8, 10 and 11, we have that if xe D,_; (i = 3), then aK,(D,-,) con-
tains a.

9. K,(D,_,) AND D,_; (9 = n)

Let n =4m + 4 + i (1 £i<4). Consider A(s). We abbreviate [Ny, M,] as

Lij, 1]

Definition 8. (i) (—A(s)) = {[ij, 1] :(1s = 3) S (/) S (s — 1s)and t = 5 + 1} U
Vil :(ts=1) = (i) (s — 1s)andt = 5,5 — 1} U {[ij, 1] : (s—3s- 1) =
<(zj)<(s— Lsht=s=2s5s=3Vu{liit]:(s=5s) ()< (s—1s)t=

=s—4,5s — 5}
(ii) (=K,) = (=Am) v (=A(n - 4)v... U (=A(n — (m — 1)4) U (=K4,y)
is called the left complementary s¢t of K,.

(iii) (K,—) = mu—1xpa—1(X)\K, U (—K,) is called the right complementary set
of K,,. '
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Lemma 12. (i) K,(D,_,) K(D,—,) contains (—K,) (D,_,).
(ii) If o € (K,—) (Dy—4), then aK,(D,_,) contains a.

Proof. (i) follows from Lemma 4 (and Lemma 5 if necessary).

(ii) For any partitionrange [N;;, M,] in (K,—), there are [N;;, M,] and [N,,, M,]
in K,, and [N,, M,] in (K,—) such that M, is a cross section of N,,. Therefore,
taking H, = (N,;, M,) and H, = (N, M,) we have H,H, = (N;;, M,). This proves
the part (ii).

o
Finally we have:

Theorem 2. Let S, be the symmetric semigroup on n letters.

(i) Let n = 3. K,(D,-,) is a mutant of S,,.
(ii) Ky(D,-,) is a maximal mutant of T,_,.
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