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Чехословацкий математический журнал т. 11 (86) 1961, Прага 

EXTENSION OF LOCAL AND MEDIAL PROPERTIES 
TO COMPACTIFICATIONS WITH AN APPLICATION TO CECH 

MANIFOLDS *) 

R. L. WILDER, Ann Arbor-(USA) 

(Received September 20, I960) 

To Eduard Cech: In Memoria/n 

Conditions are investigated under which certain local and medial connect­
edness properties of a locally compact space extend to compactifications. 
Some applications are given for continuous mappings and to generalized 
manifolds in the sense of E. CECH. 

Introduction. This work was originally inspired by a paper of E.CECH [2] in which 
he proposed a définition of generalized closed manifold ("absolute «-manifold") 
according to the following procedure: (1) One first defines the concept of an orientable 
«-dimensional generalized closed manifold; (2) the «-dimensional generalized closed 
manifold, orientable or non-orientable, is then defined as a compact space in which 
each point has a neighborhood whose one point compactification is an orientable 
«-dimensional generalized closed manifold. In considering this mode of definition, 
one notes that condition (2) does not state that each point is to have arbitrarily small 
neighborhoods of the type described, so that in the case of the orientable closed 
manifolds, the entire manifold may be taken as the required neighborhood. This raises 
the question as to whether one could replace (2) by the following: (2') the «-dimensio­
nal generalized closed manifold is a compact space in which each point has arbitrarily 
small neighborhoods whose one point compactifications are orientable «-dimensional 
generalized closed manifolds. 

Now manifolds are locally connected in all dimensions and simple examples show 
that the one point compactifications of locally connected, locally compact spaces are 
not generally locally connected. For example, the subspace of the coordinate plane 
constituted by the set of points {(x, y) \ x a positive integer, y ^ 0} U {(x, 0) | x ^ 
§; 0} is a connected, 1-lc space, but its one point compactification is not 1-lc. We shall 
show that the requirement in condition (2') would imply the existence for every point 

*) Work done under Contracts No. AF 49 (638) - 104 and AF 49 (638) - 774. 
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of arbitrarily small neighborhoods that are r-acyclic for all r (in terms of homology 
with compact carriers). Since it is well-known that spaces which are le", n > 0, do 
not generally have such acyclic neighborhoods, the question arises as to whether 
manifolds must possess them. We give an example of a manifold in which such neigh­
borhoods do not exist for a certain point. Consequently, since the construction given 
can yield a manifold either orientable or non-orientable, to use condition (2') would 
imply an inconsistency (more precisely, the orientable case is defined in (1) without 
imposition of acyclicity on neighborhoods, while (2') would impose it). This brings 
out the fact that the difference noted between (2) and (2') is quite essential. 

We shall begin with an investigation of conditions under which local, and related 
medial, properties of a locally compact space extend to compactifications thereof. 
In particular, in § 1 we find conditions on a space which ensure that local connected­
ness properties extend to certain types of compactifications, such as the one point and 
Freudenthal "end" compactifications.1) In § 2, analogous problems concerning medial 
properties are treated; such medial properties have been systematically discussed in 
[10]. And, of importance for the study of manifolds, conditions obtained which ensure 
that the local Betti numbers pr(x) shall be ^ со in the compactifications. In § 3 some 
applications are indicated for continuous mappings and in § 4 applications are made 
to the matters discussed above. 

We shall take/? = 0 in Cech's definition of "rc-manifold of rank/?" [2], since it is in 
this form that the resulting manifolds become a subclass of the generalized manifolds 
currently employed under a number of equivalent definitions (see for instance 
[6; VIII]) including Cech's earlier definitions (see references in [2]). For purposes 
of the present paper only, we designate the former by the term "Cech manifolds"; 
and as for the latter, we use the symbol "n-gm" to denote "«-dimensional generalized 
manifold" and "p-gcm" to denote "л-dimensional generalized closed manifold". 

1. Extension of local connectedness properties to compactifications. Since the case of 
the common one point compactification is so simple, we dispose of it separately, saving 
generalization for subsequent treatment. We employ Cech homology and cohomology 
with coefficients in an arbitrary algebraic field; the ordinary homology and cohomo­
logy groups are indicated by use of the capital H — thus "Я„(Х)" denotes homology 
group of X. Since we make such frequent use of the "compact" groups (based on 
compact carriers of chains and cycles), we indicate these by the lower case " / i " — as in 
"K(X)". By "pn(X)" and V ( X ) " we denote the dimensions of hn(X) and hn(X) 
respectively. 

Lemma. If X is compact and M a closed subset of X such that both pn{X) and 
pn-t(M) are finite, n > 0, then pn(X; M) is finite. 

Proof. Immediate consequence of the exactness of the homology sequence of the 
compact pair X. M. 

*) For the classical type of local connectedness, this was treated by L. ZIPPIN [11]. 
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Corollary 1.1. If X is compact and lcn, n > 0, and M is a closed subset of X such 
that рп-х(М) is finite, then pn{X, M) is finite. 

Proof. Immediate consequence of the complex-like character of X (see [6; 180]) 
and the lemma. 

Corollary 1.2. If X can be imbedded as an open subset of an lcn compact space S, 
n > 0, so that S — X is complex-like in dimensions 0 to n — 1, then X is complex-
like in its compact cohomology in dimensions 1 to n. 

Proof. We recall pr(X, M) = pr(X — M) for a compact pair X, M. 
R e m a r k . That p°(X) is not necessarily finite under the hypothesis of Corollary 1.2 

00 

is shown by the example in E2 of X = U Xt where X{ = {(x, y) \ x = l/i", 0 S У < 
i=l 

< oo}, and S is the one point compactification of X. 
A 

Theorem 1.1. In order that the one point compactification X of a connected and 
lcn space X should be lcn, it is necessary and sufficient that X be complex-like in 
compact cohomology in dimensions 1 to n. 

P r o o f of necess i ty . A consequence of Corollary 1.2. 
л л A л 

P r o o f of sufficiency. Since Hr(p) = 0 for all r (where p = X — X), Hr(X) « 
л л л 

« Hr(X, p) « hr(X) for r = 1 , . . . , n; and pr(X) is finite since h\X) is of finite dimen-
Л 

sion. Then by Theorem 4 of [5]2) if X were not 1сл, it would fail to be lcw at a non-
degenerate set of points. 

If by "lc00" we denote possession of the r-lc property for all r, then we can state 
a similar theorem for lc00 spaces. 

л 

Theorem 1.2. In order that the one point compactification X of the connected and 
lc00 space X should be /c00, it is necessary and sufficient that the compact cohomology 
groups of X be finitely generated in all dimensions greater than 0. 

P r o o f of necess i ty . As above. 
P r o o f o f s u f f i c i e n c y . The proof of Theorem 4 of [5] can be applied to show that 

the property of being lc00 is expansive (op. cit.) relative to the class of compact spaces 
that are complex-like in all dimensions. The proof of Theorem 1.1 is then adaptable to 
the present theorem. 

2. Relations of medial properties of a space to its compactifications and other types of 
extension. We recall (see [8]) that a subset M of a space X is said to have property 
(P, Q)r if for every canonical pair of open sets P, Q (i. е., Q is compact and P з Q), 
the group hr(M ft Q \ M ft P) is finitely generated. (By hr(U | V) we denote the image 
of hr(U) under the inclusion mapping U -» V). Property (P, Q)r is similarly defined in 
terms of cohomology. 

2) Although the results of [5] were stated only for metric spaces, their extension to the non-
metric cases presents no difficulty. 
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Of equal interest are medial properties defined in terms of bounding (or cobound-
ing): Thus a subset M of X has property (P, Q, ~)r if for every canonical pair P, Q 
of open subsets of X, the image of id in the sequence of homomorphisms 

hr+1(M, M П Q) Л ftr(M П Ô) ̂  Ы м П P) 
where i is induced by inclusion and д by the boundary operator, is finitely generated. 
The corresponding cohomology property is denoted by (P, Q, ~)r. 

It is clear from their definitions that these medial properties, as applied to subsets 
of a space, are positional or relative in character, inasmuch as the sets P and Q are 
taken as open in the "parent space". However, as applied to a space X and its topo­
logical images, they are topological invariants, since here the sets P and Q are open 
relative to X (or its images). Consequently in discussions where the medial properties 
of a space X and those of its compactifications are concerned, it becomes necessary to 
distinguish between those which are relative to X itself (and hence topological) and 
those properties of X which are relative to the compactifications (and hence posi­
tional); we shall call the former intrinsic and the latter extrinsic. The following 
example will make this distinction clearer: 

Example. In E2, let A = {{x, y) | 0 < x й 1/я, У = sin (1/x)}, В = {(x, у) \ x = 0, 
— 1 й У й 1}> and let С be an arc joining (1/я, 0) and (0, —1) in the fourth quad­
rant of E2 but not meeting A [} В otherwise. Let X be the bounded domain having 

л __ 

A U В U С as boundary, and X = X (each with the subspace topology induced 
л 

by the topology of E2). Then X, as a subspace of X, does not have property (P, Q)0 

extrinsically; however, it does have property (P, Q)0 intrinsically, since X is homeo-
morphic with the open circular disk bounded by x2 + y2 = 1. 

л 

Remark . Clearly if X, as a subset of a space X, has one of the medial properties 
defined above extrinsically, then it has it intrinsically. 

To indicate these medial properties over a range of dimensions к to n inclusive, 
к < n, we use pairs of indices; thus "ft(P, ô)„" indicates property (P, Q)r for r = 
= к, к + 1,..., п. 

Since many of our conclusions hinge upon certain groups being finitely generated, 
we shall use the abbreviation "f. g." to denote "finitely generated". 

л 

Theorem 2.1. Let X be a locally compact space, Та closed, totally disconnected 
л л л 

subset of X, and X = X — T. If X has property (P, Q, ~)n intrinsically, then X has 
л 

property (P, Q, ~)„. Conversely, if X has property (P, Q, ~)n, then X has property 
(P, Q, ~)n both extrinsically and intrinsically. 

' A _ 

Proof. Let P, Q be a canonical pair of open subsets of X; we may assume that P 

is compact. Let T = (X - P) U Q U T. Then T is closed, and X - P and Q are 
л л 

disjoint closed subsets of T. We assert that there exists an open subset R of X such that 

( 1 ) P D D R 3=) ß a n d ( 2 ) f f l F(R) - 0. 
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To see this, we note that since Tis a locally compact subspace of X and Q is a com-
л л л л л 

pact subset of T there exists a decomposition T = Tl [] T2 separate, where T\ з Q 
л л л 

and T2 з X — P. (See [6; 100, Th. 1.3].) For each x e Tx there exists an open subset 
л л л 

Ux of X such that Ux с P and Ux П T2 — 0. As T\ is compact, a finite number of such 
л 

sets Ux covers T± and their union, JR, is a set of the type desired. 
л 

Since Tis closed, there exist open sets P1 and Q1 such that (l) P ZD ID F1 ID ID P ZD => 
л 

D D Ö j D a ß and (2) ГП {Pt - Qi) = 0; and open sets (7! and Vx such that 

(1) t/1 => Л(РД F, = F(ß1) , (2) ГП (Ui U П) = 0, (3) Ü, <= P - R, П с 
cR-Q. 

Now suppose ß contains an infinite collection {Z'„} of compact и-cycles that are 
Л 

lirh in P and bound on X. Then there exists, for „each i, a cycle Zl
n + 1 mod Q U F(Pl) 

on Px such that 

dZl
n + l = Zl

n - y*, where ŷ  is a cycle on F(Pl) . 

The portion of Zl
n+1 on ? ! - Qx is a relative cycle Zl

n+i such that 

^ « + i = Уп - < , where ŵ  is on F(Ql) ; 

and since X has property (P, g , ~)„ intrinsically, there exists a homology 

left - I>X ~ 0 
in L^ U Fj. But the sets Uu Vl are disjoint, so that this implies a homology ^а1Уп ~ ° 
in t / j . But the y,,1 must be lirh in P since the Z^ are, so the existence of the cycles Zl

n 

must be impossible. 
To prove the converse, let P, Q be a canonical pair as before, and select R as above. 

Since X is open, there exists an open set U such that P — Q => £/ => F(P) and I/ cz X. 
This time we suppose the Zl

n lie i n l f ] ß and bound in X. They are therefore homo-
л 

logous in P П X to cycles yl
n on P(P), and using the (P, g , ~ ) w property of X, we 

find that the yl
n are not lirh in U. But as [/ с I , this implies the Zl

n not lirh in P П X. 
We conclude that X has property (P, Q, ~)„ extrinsically and hence intrinsically. 

л 

Corollary 2.1. With X and X as in Theorem 2.1, if X has property (P, Q, ~)n 

intrinsically, then it has property (P, Q, ~)n extrinsically. 
R e m a r k . That Theorem 2.1 fails if "(P, Q)n" is substituted for "(P, Q, ~)„" is 

shown by the following example : Let X be the space of [6; 341, 5.19], consisting of 
a denumerable set of circles Cn successively tangent and converging to a point p. 
Let T consist of p together with a point xn of each Cn, which may as well be distinct 

from the points of tangency with Cn_t and Cn + l. Here the set X = X — Thas pro-
Л 

perty (P, Q) x even extrinsically, yet X does not. This example also shows, incident­
ally, that property " 0 (P , Q)n" cannot be substituted for "(P, Q, ~)„". 
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Corollary 2.2. / / X is a locally compact space having property (P, Q, ~)n9 and X 
A 

is a compactification of X such that X — X is a closed, totally disconnected subset 
л л 

of X, then X has property (P, Q, ~ ) n . 

Corollary 2.2a. If X is a locally connected, locally compact space having property 
(P, Q, ~)n, then the Freudenthal compactification [3] of X has property (P, Q, ~)„. 

л 

Theorem 2.2. Let X be a compact space and T a closed, totally disconnected 

subset of X such that X = X — Thas property (P, Q, ~)n intrinsically, is (n + l)-/c, 

and has finite pn + 1(x). Then X is (n + l)-lc and, moreover, has property (P, Q)n+1. 
Proof. Since Hn+1(X, T) « hn+1(X) and pn + 1(X) is finite, the group Hn + 1(X, T) 

is f. g. And since Tis closed and totally disconnected, Hn + 1(T) = 0. It follows, from 
л л л 

the homology sequence of the pair X, T, that Hn + l(X) is f. g. And since X is compact, 
л 

X is semi-(w + reconnected. 
Since X has property (P, Q, ~ ) я and is (n + l)-lc, X has property (P, Q, ~ ) n + 1 

[10; Th. Ill 1]. By Theorem 2.1, X has property (P, Q, ~)n+1. Hence by [10; Lemma 
л 

I I 1 ] , X has property (P, Q)n + 1 and is a fortiori (n + l)-lc. 

Corollary 2.3. J / X is a locally compact, (n + l)-/c s/?ace having property 
A A 

(P, g , ^)„ and X is a compactification of X such that the set T = X — X is a closed, 
A A 

totally disconnected subset of X, then a sufficient condition that X be (n + i)4c is 
that pn+1(X) be finite. And if either (1) n > 0 or (2) Tis finite, then this condition is 
necessary. 

A 

Proof. For the necessity, X has property (P, Q, ~)n by Theorem 2.1 and together 

with the fact that X is (n + l)-lc this implies that pn + 1(X) is finite [10; Cor. Ill 2] . 
л 

Hence if n > 0 or Pis finite it will follow from the homology sequence of the pair X, 
T that pn + 1(X, T) = pn + \X) is finite. 

That the necessity fails when n = 0 and Г is not finite is shown by the familiar 
examples of dendrites having a closed, infinite set of endpoints; denoting such a den-

л л 
drite by X and the set of endpoints by T, p\X — T) is infinite. 

Corollary 2.4. If X is a locally compact, lc™+1 space, n < m ^ oo, having 
A A 

property (P, Q, ~)n and X is a compactification of X such that the set T = X — X 
A , Л 

is a closed, totally disconnected subset of X, then a sufficient condition that X be 
lc™+l is that the numbers p\X), r = n + 1 , . . . , m, all be finite. And if either (1) 
n > 0 or (2) Tis finite, then this condition is necessary. 

m P r o o f of sufficiency. By [10; Th. Ill 2], X has property n + 1(P, Q)m and a for-
л 

tiori property „ + i(P, Q, ~ ) m . Hence by Corollary 2.3, X is lcJT+i. 
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Corollary 2.5. In order that the one point compactification of a locally compact, 
lc™+i space X having property (P, Q, ~ ) й should be lc™+1, n < m fg oo, it is neces­
sary and sufficient that the numbers pr(X), r = n + 1, ..., mt all be finite. In parti-

л 

cular, if X is lcm, then for X to be lcm it is sufficient that the numbers p\X), r = 
= 0, 1, ..., n, all be finite. 

Proof. For the lcm case, we recall that the 0-lc and (P, Q)0 condition are equivalent. 
And if p°(X) is finite, X has only finitely many components so that the proof of suffi­
ciency for 0-lc reduces to an appeal to the fact that no continuum can fail to be 0-lc at 

л 

one point. That X is also lc"' follows from Corollary 2.3. 
That p°(X) is not of necessity finite, in general, is shown by such an example as that 

in the Remark following Corollary 1.2. 
л 

Corollary 2.6. In order that the Freudenthal compactification X of a connected, 
locally connected, lc™+1, n < m ^ oo, locally compact space X having property 
(P, Q, ~)„ should be /c™+1, it is necessary and sufficient that the numbers pr{X), 
r = n + 1, ..., m, all be finite. In particular, if X is lcm, then for X to be lcm it is 
sufficient that the numbers pr(X), n = 1, ..., m all be finite. 

Let us turn now to the cohomology case. Here we can expect substantial differences, 
inasmuch as r-colc at a point x is equivalent to pr(x) = 0, while the range of possible 
values of pr(x) is infinite. (See [6; 190, § 6.6].) On the other hand, in the case of homo­
logy the corresponding numbers gr(x) have only two possible values, 0 and oo, the 
former corresponding to r-lc at x. (See [6; 192].) However, corresponding to Theorem 
2.1 we have: 

л 

Theorem 2.3. Let X be a compact space, Та closed, totally disconnected subset 
л л л 

of X, and X = X — T. If X has property (P, Q, ~)n intrinsically, then X has pro-
A 

pert y (P, Q, ~ ) " . Conversely, if X has property (P, Q, ~)n, then X has property 
(P, Q, ~y* both extrinsically and intrinsically. 

Proof. By the fundamental duality between homology and cohomology of 
"(P, Q, ~ ) " properties [10; Th. II 1], if nt > 0, X has property (P, Q, - ) n _ t intrinsi-

л 

cally, so that by Theorem 2.1, X has property (P, Q, ~)n-i and, by duality, property 
(P, Q, ~)n- When n = 0, and P, Q form a canonical pair, every cobounding 0-cocycle 

л л 

of Q П X is in the same cohomology class of Q П X as a 0-cocycle of Q (] X, so that 
л 

the (P, Q, ~ )° property of X yields the desired result immediately. Conversely, if X has 
property (P, Q, ~)n, X has (P, Q, ~)n intrinsically since X is open. However, to show 
the property is extrinsic we proceed as in the converse of Theorem 2.1, this time letting 
Ux and U2 be open sets such that 

P — g z 3 Z D t / 1 3 i D Î 7 2 z D F(R), X => (7Х and U2 is compact. 
л 

Then Uu U2 form a canonical pair in X; and if z" are cobounding cocycles of X in Q, 
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they are cohomologous in X (] P to cocycles y" in U2 which are related (because of the 
л 

properties of X) by cohomologies in Uu hence in P П X. 
A 

Theorem 2.4. Let X be a compact space, Та closed, totally disconnected subset 

of X, and X = X - T. If X has property (P, Q, ~ ) " + 1 and pn(x) й со for all 
A 

x e X, n ^ 1, fftera ш order Г/ш£ /?"(x) S со for x e X it is sufficient that pn(X) be 
finite. And if n > 1 or T is finite, this condition is also necessary. 

Proo f of sufficiency. By [10; Th. VI 2], X has property (P, Q, ~)n and hence by 
Theorem 2.3, X has property (P, Q, - ) " . And if pn(X) is finite, it follows from the 
exactness of the sequence 

hn(X, X) - i - hn(X) *~L- h\X) <-^~ hn~\X, X) 
A A 

and the fact that hn(X, X) = 0 forn ^ 1, that pn(X) is finite. Hence by [10; Lemma 

II 2] X has property (P, Qf and a fortiori that p\x) й со for all x e l 

P roo f of necess i ty for case n > 1 or Г finite: We are given that X has property 

(P, ß , ~ ) n + 1 , p\x) й о) for all x E X, and must show that p\X) is finite. Since, by 

Theorem 2.3, X has property (P, g , ~ ) n + 1 , it follows that X has property (P, ß)w 

л 

[10; Th. VI 2]. Hence pn(X) is finite. It then follows from the above exact sequence 
that if n > 1 (in which case 

hn'\X, X) = hn~\T) = 0 = h\X, X) 
is finite) or Tis finite then pn(X) is finite. 

Remark . In the sufficiency proof of Theorem 2.4, we also proved: 
л л 

Theorem 2.4a. If X, X and Tare as in the hypothesis of Theorem 2.4; then X has 
property (P, Qf. 

The extensions of the preceding two theorems by induction are obvious. In parti­
cular, we have: 

л 
Theorem 2.5. Let X be a compact space, Та closed, totally disconnected subset of 

A A 

X and X = X — T. If к and n are positive integers such that к ^ n and X has pro­
perty (P, Q, ~ ) " + 1 , pr(x) ^ со for all x e X and pr{X) finite for r = к, к + 1, ..., n, 

A A 

then X has property \P, Q)n. Moreover, X is lc\. 

That X is lc£ follows from [10; Th. VI10]. 
л 

Theorem 2.6. / / X is the compactification of a locally compact space X by the 
A 

addition of a point set T which is a closed and totally disconnected subset of X and X 
has property (P, Q, ~ ) " + 1 and pr(x) ^ со at all x e X, r = к, к + 1 , . . . , n where 
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1 ^ к :g n, then for pr(x) to be ^ со at all points of X (for the same range of r), it is 
sufficient that pr(X) be finite. And if к > 1 or T is finite, this condition is also ne­
cessary. 

3. Applications to continuous mappings. Generally, the image of an lc" space, 
n > 0, under a continuous mapping is not lc". For instance, if on the circle С = 
= {(x, y) I x2 + y2 = 1}, the points рю qn obtained by intersection of С with the line 
x = (n — \)jn are identified for n = 1, 2, 3, ..., the resulting configuration С is not 
1c1, although С is. It is therefore of importance to know under what conditions 
a mapping preserves the 1си property (see [8; VIII], for instance). From the theorems 
of § 2 we can obtain conditions of this nature. 

Theorem 3.1. Let X be a locally compact, lcn space (n ^ oo), and Та closed, 
totally disconnected subset of X such that the groups hr(X — T), r ^ n, are all 
finitely generated. Then the space Y formed by identifying all points of T is lcn. 

Proof. Denoting by y the point of 7formed by identification of the points of T, we 
have 

hr(Y - y) « h\X - T), r ^ n , 

so that the groups hr(Y — y) are finitely generated. But Yean be considered as the one 
point compactification of Y — y, so that Fis le" by Corollary 2.5. 

Theorem 3.2. Let U be an lc™+1 open subset, n < m, of a compact space X such 
that U has property (P, Q, ~)n intrinsically and pr(U) is finite for r = n + 1, ..., m. 
Then iff : X -* Y is a continuous mapping of X onto a locally compact space Y such 
that f \ U is a homeomorphism, f(U) П f(X — U) = 0, and f(X — U) is a closed, 
totally disconnected subset of Y, then Y is lc™+1. 

Proof. The set V = f(U) has property (P, Q, ~)n intrinsically, is lcjf+1, and the 
numbers pr(V), r = n + 1 , . . . , m, are all finite. Accordingly, by Corollary 2.4, F i s 

4. Applications to the Cech manifolds. We return now to the discussion of the 
Introduction concerning Cech manifolds. 

Theorem 4.1. Let M be an n-gm and x a point of M having arbitrarily small 
neighborhoods Ux whose one point compactifications are orientable n-gcms. Then x 
has arbitrarily small neighborhoods Vx which are orientable n-gms for which 
hr(Vx) = hn~r(Vx) = 0, 1 й г й n - 1, 

Proof. Since an n-gm is r-lc for all r, we may limit our attention to Uxs such that 
л 

hr(Ux | M) = 0. Let Ux denote a one point compactification of such a Ux, forming an 
orientable n-gem by the addition of an ideal point p. We assert that Ux is a Vx of the 
desired type. 

Let Zr be any compact r-cycle of Ux, r S n — 1 ; it is carried by a compact subset К 
л л л л л 

of Ux — p. Let N be a neighborhood of p in Ux such that N П К = 0. Since Ux is an 
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orientable rc-gcm, it is completely r-avoidable [6; 229] at p for r ^ n — 2, and 
locally (n — l)-avoidable [6; 218] at p. Hence there exist neighborhoods P and Q of 
л л — 
p in Ux such that N^P=>P=>Q=>Q, and such that every r-cycle on F[P) bounds 

A 

onUx — Q, r ^ n — 1. 
Since hr(Ux \ M) = 0, Z,. - 0 on M. Hence Zr ~ 0 mod M — Ux, and accordingly 

л 

Zr ~ 0 mod P on (7X (we continue to use the same symbols for subsets and cycles of 
л 

Ux9 whether considered as a subset of M or of Ux). It follows that there exists a cycle 

Cr on F(P) such that Zr - Cr on Ux - P. And since Cr ~ 0 onÛ - Q = U - Q9 so 
must Zr - 0 on a compact subset of U. Hence hr(U) = 0; and since U is an orientable 
n-gm, hn~\Ux) = 0 by duality [6; 260, Lemma 5.16]. 

It is interesting to note that Theorem 4.1 has a converse: 

Theorem 4.2. Let M be a/i n-gm and x a point of M having a neighborhood U 
which is an r-acyclic, orientable n-gm, r ^ n — 1. Then the one point compactifi-
cation of U is a spherelike n-gcm.3) 

А л 

Proof. Let U denote the compactification of U by an ideal point p. Consider the 
exact sequence 

(1) ... -> hr(U) - h\U) -> hr(U, U)^ ... 

Since 
hr(U) « /in_r(C/) [6; 260, Lemma 5.16] , 

and 

hr(U, U) я hr(p) = 0 , 1 й г й n - 1 , 

it follows from (1) that h\U) = 0. Hence by duality, hr(U) = 0, so that h*(U) = 0 for 
all r ^ n — 1. 

л л 

Let P be any neighborhood of p in U, and let Zr, 1 ^ r ^ n — 1, be a cycle of 
л л л 

U mod U — P. Since /*?(£/) = 0, there is a cycle Cr of U such that, for some neigh-
л л л л 

borhood Q ofp, Cr ~ Zr mod U — Q. And since hr(U) = 0, we have Cr ~ 0 on t/ and 

accordingly Zr - 0 mod C7 - Q. It follows that pr\U) = 0.4) By Theorem 2.6, 
p\p) ^ ш for r = 1, ..., n. — 1 , 

3) When this paper was completed, we noticed that what is really proved here is that the one 
point compactification of an r-acyclic, orientable n-gm, r ^ n — 1, is a spherelike и-gcm; and that 
the latter result has recently been established by F. RAYMOND in a paper to appear in the Pacific 
Journ. Math. Since our proof is evidently quite different from Raymond's, as well as for reasons of 
completeness, we include it here. 

4 ) This is the dimension of the Alexandroff group Hp(U); [7: § 2]. 
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and by [7; Th. 4], 

Pr(p) = Pb(U) = 0. 

It remains to show that pn(p) = 1. 

Since U is orientable, it carries a non-bounding infinite cycle Cn. Let P be a neigh-
A A - A 

borhood of p such that U — P Ф 0. Since by Theorem 1.1,1/ is lcn , there is a neigh­

borhood Q of p such that g c P and / Î „ _ I ( Q | P) = 0. As Cn is cycle mod g , its 

boundary dCn is a cycle of Q, and since dCn ~ 0 in P, there is an absolute cycle Zn of U 
л 

such that Cn ~ Zn mod P. Now Zn ~ 0 mod £7 — Q else (since U is rc-dimensional) 

Z„ = Cn = 0 on Q — p, implying Cn is carried by the closed proper subset U — Q of 
Л д 

U and hence is ~ 0 on U. We conclude that Zn * 0 mod U — Q and that /?„(/?) ^ 1. 
Л Л д 

Finally, suppose Z„, Z^ are cycles of U mod 17 — P for some neighborhood P of p. 
A 

Since ftn~i(y) = 0, they are extendible (as was Zr) to cycles C^, Cf„ respectively, of U 
л 

in such a way that Cl
n ~ Zl

n mod t7 — Q for some neighborhood ß с Р, i = 1, 2. 
But L7 is an orientable и-gm, so there must be a relation aC^ ~ bC% mod /7, implying 

Л д 

that aC\ = ЪС2
п mod U — Q. We conclude that pn(p) ^ 1, and, with the above 

relation, that pn(p) = 1. 
л л 

That U is orientable follows from the sequence (1), which gives ^(L^) « /zr(C7). 
Example of a 3-gcm having a point p which does not have arbitrarily small 

1-acyclic neighborhoods. Let A denote the solid Alexander horned sphere in S3; i. е., 
the "wild" sphere of [1] together with its (tame) interior. Let S denote the quotient 
space resulting from identifying all points of A, and p the point of S corresponding 
to A. Then S is an orientable 3-gcm of the same homology type as -S3 (see [8]). We 
shall show that p does not have arbitrarily small 1-acyclic neighborhoods, or, which is 
equivalent, that A does not have arbitrarily small 1-acyclic neighborhoods in S3. 

Referring to the Alexander construction [1], let E denote the totally disconnected, 
closed set of "endpoints" needed to complete the "horns", and suppose U is a 1-acyclic 
neighborhood of A. Define stages of construction of the horned sphere such that: 
(1) At stage 1, there are just two "interlocked" horns; (2) at stage 2, there are just 
4 new "interlocked" horns, emanating in pairs from the horns of stage 1; .. .; (n) at 
stage и, there are 2n new "interlocked" horns, etc. 

Clearly there exists n such that all 2" horns of the rc'th stage lie in U; moreover, we 
may assume (see Figure 1) that the connecting cylinders C*, C„,..., C^ (which do not 
form part of the horned sphere, of course) all lie in 17. Let С be the connecting cylinder 
С^_! of stage n — 1, containing C\ and C2

n (see Figure 1). The curves Jt and J2 , lying 
as shown on the rc'th stage horns and running through C* and C2

n lie in U. 
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Consider Jt; let Zx denote its fundamental 1-cycle. Since U is 1-acyclic, Zx ~ 0 in U. 
Then Zt is homologous in С f) U to a cycle Z[ on F(C) — see [6; 203,1.13]. We may 
assume that there exists a chain C2 in С П I/ such that Z\ ~ Zx on || C21| irreducibly,5) 
so that 

Fig. 1. 

is connected (see [4; 299, Lemma 5]). However, since Z\ ~ 0 on F(C), it follows that 
К must meet J2> inasmuch as Jx and J 2 are linked. This implies that the arc Al on the 
parent horn (see the Figure) can be extended through С over to a simple closed curve 
A[ in U; and similar situations prevail in regard to each of the 2n~l parent horns of the 
other horn-pairs of stage n. 

Now consider the pair A[, A'2 of closed curves obtained by extensions of A± and A2 

as described above. As these lie in U, the fundamental 1-cycle on A[ bounds in U, and 
we can proceed as before to show that corresponding to the associated parent horn of 
the 2"~2-th stage there exists a simple closed curve analogous to Jx and A[. And this 
process can be continued back to the 1st stage. 

But U, when taken as a sufficiently close approximation to A, will not permit 
bounding of the curve indicated at the 1st stage. 

5) If D is a chain, then by ||D|| we denote a carrier of D. 
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Р е з ю м е 

РАСПРОСТРАНЕНИЕ ЛОКАЛЬНЫХ И МЕДИАЛЬНЫХ СВОЙСТВ 
НА КОМПАКТНЫЕ РАСШИРЕНИЯ С ПРИМЕНЕНИЕМ 

К МНОГООБРАЗИЯМ В СМЫСЛЕ ЧЕХА 

Р. Л. УАЙЛЬД ЕР (R. L. Wilder), Энн Арбор (США) 

Рассматриваются условия, при которых некоторые локальные, а также так 
наз. медиальные свойства, касающиеся связности, переносятся с простран­
ства на компактные расширения. Даются приложения полученных результатов,, 
в частности, в теории обобщенных многообразий в смысле Э. Чеха. 
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