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HYBRID FIXED POINT THEORY FOR RIGHT MONOTONE

INCREASING MULTI-VALUED MAPPINGS AND NEUTRAL

FUNCTIONAL DIFFERENTIAL INCLUSIONS

B. C. Dhage

Abstract. In this paper, some hybrid fixed point theorems for the right
monotone increasing multi-valued mappings in ordered Banach spaces are
proved via measure of noncompactness and they are further applied to the
neutral functional nonconvex differential inclusions involving discontinuous
multi-functions for proving the existence results under mixed Lipschitz, com-
pactness and right monotonicity conditions. Our results improve the multi-
valued hybrid fixed point theorems of Dhage [10] under weaker convexity
conditions.

1. Introduction

Multi-valued mappings and fixed points is an important topic of multi-valued
analysis and has a wide range of applications to the problems of differential and
integral inclusions, control theory and optimization. Geometrical fixed point the-
ory for multi-valued mappings initiated by Nadler (see Hu and Papageorgiou [20])
has been developed to its peak point, but the fixed point theorem of Covitz and
Nadler [5] for multi-valued mappings is the only result useful for applications to
differential and integral inclusions. Similarly topological fixed point theory for
multi-valued mappings has also reached to its culminating point and much has
been discussed in relation to differential inclusions (see Andres and Gorniewicz [3]
and the references therein). But the case with the algebraic fixed point theory for
multi-valued mappings is quite different. This is because of the fact that the com-
parison between two sets is not unique. A few results in this direction are found in
Dhage [7] and Hu and Heikkilä [17]. Recently this topic is revisited by the present
author(see Dhage [8, 9, 10]) and established several fixed point theorems for the
multi-valued mappings in ordered spaces. In this paper, we establish some hybrid
fixed point theorems for three right monotone increasing multi-valued mappings
satisfying some mixed hypotheses from algebra, geometry and topology.
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Neutral functional differential equations is an important topic of functional
differential equations and an exhaustive treatment may be found in Hale [15] and
Ntouyas [20]. However, the study of neutral differential differential inclusions is
relatively recent, but fast growing topic in the theory of differential inclusions. As
already mentioned that the multi-valued hybrid fixed point theory finds several
applications to differential inclusions for proving the existence theorems (see Dhage
[7, 8, 9, 10, 11, 12], Dhage and Ntouyas [13] and the references therein). Almost all
the results so far discussed in the literature, involve the assumption that the multi-
valued functions in question satisfy certain kind of convexity condition. The order
theoretic approach to the operator inclusions or differential inclusions allows us to
remove this stringent condition in establishing the existence results. In this paper,
we prove the existence results for certain perturbed first order neutral functional
differential inclusion under the mixed Lipschitz, compactness and monotonicity
conditions of multi-valued functions. We claim that our results are new to the
theory of multi-valued analysis and include several existence results for operator
and differential inclusions in the literature as special cases.

2. Preliminaries

Throughout this paper, unless otherwise mentioned, let X denote a Banach
space with norm ‖ · ‖ and let Pp(X) denote the class of all non-empty subsets
of X with property p. Here, p may be p = closed (in short cl) or p = convex (in
short cv) or p = bounded (in short bd) or p = compact (in short cp). Thus Pcl(X),
Pcv(X), Pbd(X) and Pcp(X) denote, respectively, the classes of all closed, convex,
bounded and compact subsets of X . Similarly, Pcl,bd(X) and Pcp,cv(X) denote,
respectively, the classes of closed-bounded and compact-convex subsets of X . For
x ∈ X and Y, Z ∈ Pbd,cl(X) we denote by D(x, Y ) = inf{‖x − y‖ | y ∈ Y }, and
ρ(Y, Z) = supa∈Y D(a, Z). Define a function dH : Pcl(X) × Pcl(X) → R

+ by

(2.1) dH(Y, Z) = max{ρ(Y, Z) , ρ(Z, Y )} .

The function dH is called a Hausdorff metric onX . Note that ‖Y ‖P = dH(Y, {0}).
A correspondence T : X → Pp(X) is called a multi-valued mapping or operator

on X . A point x0 ∈ X is called a fixed point of the multi-valued operator T : X →
Pp(X) if x0 ∈ T (x0). The fixed points set of T in X will be denoted by FT .

Definition 2.1. Let T : X → Pcl(X) be a multi-valued operator. Then T is called
D-Lipschitz if there exists a continuous and nondecreasing function ψ : R+ → R+

such that

(2.2) dH(Tx, T y) ≤ ψ(‖x− y‖)

for all x, y ∈ X , where ψ(0) = 0. The function ψ is called a D-function of T on X .
If ψ(r) = k r for some k > 0, then T is called a multi-valued Lipschitz operator on
X with the Lipschitz constant k. Further if k < 1, then T is called a multi-valued
contraction on X with the contraction constant k. Finally, if ψ(r) < r for r > 0,
then T is called a nonlinear D-contraction on X .
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Let X be a metric space. A multi-valued mapping T : X → Pcl(X) is called
lower semi-continuous (resp. upper semi-continuous) if G is any open subset of X
then {x ∈ X | Tx ∩ G 6= ∅} (resp. {x ∈ X | Tx ⊂ G}) is an open subset of X .

The multi-valued mapping T is called totally compact if T (S) is a compact subset

of X for any S ⊂ X . T is called compact if T (S) is a compact subset of X for
all bounded subsets S of X . Again, T is called totally bounded if for any bounded
subset S of X , T (S) is a totally bounded subset of X . A multi-valued mapping
T : X → Pcp(X) is called completely continuous if it is upper semi-continuous and
compact on X . Every compact multi-valued mapping is totally bounded but the
converse may not be true. However, these two notions are equivalent on bounded
subsets of a complete metric space X .

Let X be an ordered metric space with an order relation ≤. Let a, b ∈ X be
such that a ≤ b. Then an order interval [a, b] is a set in X defined by

[a, b] = {x ∈ X | a ≤ x ≤ b} .

When X is an ordered Banach space, the order relation “ ≤ ” in X is defined by
the cone K, which is a non-empty closed set in X satisfying (i) K +K ⊂ K, (ii)
λK ⊂ K for all λ ∈ R+, and (iii) {−K}

⋂

K = 0, where 0 is the zero element of X .
A cone K in a Banach space X is called normal, if the norm ‖ ·‖ is semi-monotone
on K. It is known that if the cone K is normal, then every order-bounded set is
bounded in norm. Similarly, the cone K in X is called regular if every monotone
increasing (resp. decreasing) order bounded sequence in X converges in norm. The
details of cones and their properties appear in Guo and Lakshmikantham [14] and
Heikkilä and Lakshmikantham [16]. In the following, we define an order relation
in Pp(X) which is useful in the sequel.

Let A,B ∈ Pp(X). Then we define

A±B = {a± b | a ∈ A and b ∈ B} ,

λA = {λa | a ∈ A and λ ∈ R} ,

‖A‖ = {‖a‖ : a ∈ A}

and ‖A‖P = sup{‖a‖ : a ∈ A} .

Let the Banach space X be equipped with an order relation ≤ . Then we define
the different order relations in Pp(X) as follows. Let A,B ∈ Pp(X). Then by

A
i

≤ B we mean “for every a ∈ A there exists a b ∈ B such that a ≤ b.” Again,

A
d

≤ B means for each b ∈ B there exists a a ∈ A such that a ≤ b. Furthermore,

we have A
id

≤ B ⇐⇒ A
i

≤ B and A
d

≤ B. Finally, A ≤ B implies that a ≤ b for
all a ∈ A and b ∈ B. Note that if A ≤ A, then it follows that A is a singleton set.
The details of these order relations in Pp(X) are given in Dhage [8] and references
therein.

Definition 2.2. An operator Q : X → Pp(X) is called right monotone increasing

(resp. left monotone increasing) if Qx
i

≤ Qy (resp. Qx
d

≤ Qy) for all x, y ∈ X for
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which x ≤ y. Similarly, Q is called monotone increasing if it is left as well as right
monotone increasing on X . Finally, Q is strict monotone increasing if Qx ≤ Qy

for all x, y ∈ X for which x ≤ y, x 6= y.

Remark 2.1. Note that every strict monotone increasing multi-valued operator
is left as well as right monotone increasing, but the converse may not be true.

The Kuratowskii measure α of noncompactness in a Banach space is a nonneg-
ative real number α(S) defined by

(2.3) α(S) = inf
{

r > 0: S ⊂
n
⋃

i=1

Si, and diam(Si) ≤ r, ∀ i
}

for all bounded subsets S of X .
The Hausdorff measure of noncompactness of a bounded subset S of X is a

nonnegative real number β(S) defined by

(2.4) β(S) = inf
{

r > 0: S ⊂
n
⋃

i=1

Bi(xi, r), for some xi ∈ X
}

,

where Bi(xi, r) = {x ∈ X | d(x, xi) < r}.

The details of the Hausdorff measure of noncompactness and its properties
appear in Deimling [6], Zeidler [22] and the references therein. The following
results appear in Akhmerov et. al. [2].

Lemma 2.1 ([2, page 7]). If S is a bounded set in the Banach space X, then
α(S) ≤ 2 β(S).

Lemma 2.2. If A : X → X is a single-valued D-Lipschitz mapping with the D-
function ψ, that is, ‖Ax − Ay‖ ≤ ψ(‖x − y‖) for all x, y ∈ X, then we have
α(A(S)) ≤ ψ(α(S)) for any bounded subset S of X.

Definition 2.3. A multi-valued operator T : X → Pcp(X) is called condensing
(resp. countably condensing) if for any bounded (resp. bounded and countable)
subset S of X , T (S) is bounded and β(T (S)) < β(S) for β(S) > 0.

Note that every condensing multi-valued operator is countably condensing, but
the converse may not be true. It is known that multi-valued contraction and com-
pletely continuous multi-valued operators are condensing (see Dhage [9], Petruşel
[21] and the references therein). A fixed point theorem for right monotone increas-
ing multi-valued countably condensing operators is

Theorem 2.1. Let [a, b] be a norm-bounded order interval in the ordered normed
linear space X and let T : [a, b] → Pcl([a, b]) be a upper semi-continuous and count-
ably condensing. Furthermore, if T is right monotone increasing, then T has a fixed
point in [a, b].

Proof. The proof is obtained by using essentially the same arguments that given
in Dhage [9] with appropriate modifications. We omit the details.
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An improvement upon the multi-valued analogue of Tarski’s fixed point theorem
proved by Agarwal et al. [1] is embodied in the following fixed point theorem for
the right monotone increasing multi-valued mappings in ordered metric spaces.

Theorem 2.2 (Dhage [11]). Let [a, b] be an order interval in a subset Y of an or-
dered Banach space X and let Q : [a, b] → Pcp([a, b]) be a right monotone increasing
(resp. left monotone increasing) multi-valued operator. If every monotone increas-
ing (resp. decreasing) sequence {yn} ⊂

⋃

Q([a, b]) defined by yn ∈ Qxn, n ∈ N

converges in Y , whenever {xn} is a monotone increasing (resp. decreasing) se-
quence in [a, b], then Q has a fixed point.

In the following section, we combine Theorems 2.1, and 2.2 to obtain some
general hybrid fixed point theorems for multi-valued mappings on ordered Banach
spaces.

3. Hybrid fixed point theory

Our main multi-valued hybrid fixed point theorem of this paper is

Theorem 3.1. Let [a, b] be a norm-bounded order interval in a subset Y of an
ordered Banach space X and let T : [a, b] × [a, b] → Pcp([a, b]) be a multi-valued
mapping satisfying the following conditions.

(a) The multi-valued mapping x 7→ T (x, y) is upper semi-continuous uniformly
for y ∈ [a, b].

(b) The multi-valued mapping x 7→ T (x, y) is countably condensing and right
monotone increasing for all y ∈ X.

(c) y 7→ T (x, y) is right monotone increasing for all x ∈ [a, b], and
(d) every monotone increasing sequence {zn} ⊂

⋃

T ([a, b] × [a, b]) defined by
zn ∈ T (x, yn), n ∈ N converges for each x ∈ [a, b], whenever {yn} is a
monotone increasing sequence in [a, b].

Then the inclusion x ∈ T (x, x) has a solution in [a, b].

Proof. Define a multi-valued operator Q : [a, b] → Pcp([a, b]) by

(3.1) Qy =
{

x ∈ [a, b] | x ∈ T (x, y)}.

Let y ∈ [a, b] be fixed and define the mapping Ty(x) : [a, b] → Pcp([a, b]) by Ty(x) =
T (x, y). Then Ty is a condensing, upper semi-continuous and right monotone
increasing multi-valued mapping which maps the order interval [a, b] of the Banach
space X into itself. Therefore, an application of Theorem 2.1 yields that Ty has a
fixed point in [a, b], and consequently the set Qy is non-empty for each y ∈ [a, b].
Moreover, Qy is compact for each y ∈ [a, b].

Firstly, we show that Q is a right monotone increasing multi-valued operator
on [a, b]. Let y1, y2 ∈ [a, b] be such that y1 ≤ y2. Then have that

Qy1 = {x ∈ [a, b] | x ∈ T (x, y1) = Ty1
(x)}

and

Qy2 = {x ∈ [a, b] | x ∈ T (x, y2) = Ty2
(x)} .
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Let z ∈ Qy1 be arbitrary. Take z0 = z. From the right monotonicity of T (x, y) in
y, it follows that

z ∈ T (z, y1) = Ty1
(z)

i

≤ Ty2
(z)

i

≤ T (z, y2) .

Therefore, there is an element z1 ∈ Ty2
(z0) such that z0 ≤ z1. Again, the right

monotonicity of T (x, y) in y implies that Ty2
(z0)

i

≤ Ty2
(z1). Therefore, there

is an element z2 ∈ Ty2
(z1) such that z0 ≤ z1 ≤ z2. Proceeding in the is way,

by induction, we obtain a monotone increasing sequence {zn} in [a, b] such that
zn+1 ∈ Ty2

(zn), n = 0, 1, . . . . As Ty2
: [a, b] → Pcp([a, b]) is upper semi-continuous

and condensing, by Theorem 2.1, lim
n→∞

zn = z∗ exists and z∗ ∈ Ty2
(z∗) = Qy2.

Thus for every z ∈ Qy1 there is a z∗ ∈ Qy2 such that z ≤ z∗. As a result,

Qy1
i

≤ Qy2, i.e., Q is a right monotone increasing multi-valued operator on [a, b].
Thus, Q defines a right monotone increasing operator Q : [a, b] → Pcp([a, b])(see
also Dhage [7, 8] and the references therein).

Next, let {yn}be a monotone increasing sequence in [a, b]. We will show that
the sequence {zn} ⊆

⋃

Q([a, b]) defined by zn ∈ Qyn for each n ∈ N converges.
By virtue of Q, there is a monotone increasing sequence {zn} in [a, b] such that
zn ∈ T (zn, yn), n ∈ N. Let S = {zn}. Then S is a bounded and countable
subset of [a, b] such that S ⊆

⋃

n∈N
T (S, yn). Since the multi-valued x 7→ T (x, y)

is condensing for each y ∈ [a, b], one has

β(S) ≤ β
(

⋃

n∈N

T (S, yn)
)

= sup
{

β(T (S, yn)) : n ∈ N
}

< β(S)

for each n ∈ N. If β(S) 6= 0, then we get a contradiction. As a result, β(S) = 0 and
that S is compact. Hence the sequence {zn} converges to a point, say z in [a, b].
By upper semi-continuity of T (x, y) in x uniformly for y, there exists an n0 ∈ N

such that zn ∈ T (z, yn) for all n ≥ n0. Now, by hypothesis (d), every sequence
{zn} in {T (z, yn)} converges. As a result, the sequence {zn} ⊆

⋃

Q([a, b]) defined
by zn ∈ Qyn for each n ∈ N converges, whenever {yn} is a monotone increasing
sequence in [a, b].

Thus, the multi-valued operator Q satisfies all the conditions of Theorem 2.2
on [a, b] and hence an application it yields that Q has a fixed point. This further
implies that the operator inclusion x ∈ T (x, x) has a solution in [a, b]. This
completes the proof.

As a consequence of Theorem 3.1 we obtain

Corollary 3.2. Let [a, b] be an order interval in a subset Y of the ordered Banach
space X and let T : [a, b] × [a, b] → Pcp([a, b]) be a mapping satisfying

(a) x 7→ T (x, y) is an upper semi-continuous, condensing and right monotone
increasing uniformly for y ∈ [a, b], and

(b) y 7→ T (x, y) is right monotone increasing for each x ∈ [a, b].

Then the inclusion x ∈ T (x, x) has a solution if any one of the following conditions
is satisfied.
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(i) [a, b] is norm-bounded and T is compact.
(ii) The cone K in X is normal and y 7→ T (x, y) is compact for each x ∈ [a, b].
(iii) The cone K is regular.

The study of multi-valued hybrid fixed point theorems involving the sum of
two multi-valued operators in a Banach space may be found in the works of the
Adrian Petruşel [21]. See also Dhage [9] and the references therein. In this case,
one operator happens to be a multi-valued contraction and another one happens
to be a completely continuous on the domains of their definitions. Since every
contraction is Hausdorff continuous, both operators in such theorems are upper
semi-continuous continuous on the domain of their definition. Below we prove a
multi-valued hybrid fixed point theorem involving the sum of three multi-valued
operators in Banach spaces and relax the continuity condition of one of the oper-
ators in such hybrid fixed point theorems, instead we assume the monotonicity to
yield the desired results on ordered Banach spaces.

To prove the main results in this direction, we need the following lemma in the
sequel.

Lemma 3.1. Let A,B : X → Pcp(X) be two multi-valued operators satisfying

(a) A is a multi-valued D-contraction, and
(b) B is completely continuous.

Then the multi-valued operator T : X → Pcp(X) defined by Tx = Ax+Bx is upper
semi-continuous and β-condensing on X.

Proof. The proof appears in Dhage [9]. See also Petruşel [21] for the details.

Theorem 3.3. Let [a, b] be an order interval in the ordered Banach space X

and let A,B,C : [a, b] → Pcp(X) be three right monotone increasing multi-valued
operators satisfying

(a) A is a multi-valued D-contraction,
(b) B is completely continuous,
(c) every monotone increasing sequence {zn} ⊂

⋃

C([a, b]) defined by zn ∈
C(yn), n ∈ N converges, whenever {yn} is a monotone increasing sequence
in [a, b], and

(d) the elements a and b satisfy a ≤ Aa+Ba+ Ca and Ab+Bb+ Cb ≤ b.

Furthermore, if the cone K in X is normal, then the operator inclusion x ∈ Ax+
Bx+ Cx has a solution in [a, b].

Proof. Define a mapping T on [a, b] × [a, b] by T (x, y) = Ax + Bx + Cy. From
hypothesis (d), it follows that T defines a multi-valued mapping T : [a, b]× [a, b] →
Pcp([a, b]). From Lemma 3.1, it follows that the multi-valued x 7→ T (x, y) is
condensing, upper semi-continuous and right monotone increasing uniformly for
y ∈ [a, b]. Now the desired conclusion follows by an application of Theorem 3.1.

When A is a single-valued operator, Theorem 3.3 reduces to
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Corollary 3.4. Let [a, b] be an order interval in the ordered Banach space X. Let
B,C : [a, b] → Pcp(X) be two right monotone increasing and A : [a, b] → X be a
nondecreasing operator satisfying

(a) A is a single-valued contraction,
(b) B is completely continuous,
(c) every sequence {zn} ⊂

⋃

C([a, b]) defined by zn ∈ C(yn), n ∈ N has a cluster
point, whenever {yn} is a monotone increasing sequence in [a, b], and

(d) the elements a and b satisfy a ≤ Aa+Ba+ Ca and Ab+Bb+ Cb ≤ b.

Furthermore, if the cone K in X is normal, then the operator inclusion x ∈ Ax+
Bx+ Cx has a solution in [a, b].

Proof. Define a mapping T : [a, b] × [a, b] → Pcp([a, b]) by

T (x, y) = Ax+Bx+ Cy.

We shall show that the mapping Ty(·) = T (·, y) is a α-condensing on [a, b]. Since
the order cone K in X is normal, the order interval [a, b] is a norm-bounded set
in X . Now for any subset S in [a, b] one has

Ty(S) ⊂ A(S) +B(S) + Cy.

Hence, by sublinearity of α, it follows that

α(Ty(S)) ≤ α(A(S)) + α(B(S)) + α(Cy) ≤ α(A(S)) ≤ ψ(α(S)) < α(S)

for all S ⊂ [a, b] with α(S) > 0. The rest of the proof is similar to Theorem
3.1.

The hybrid fixed point theory involving the product of two multi-valued oper-
ators in a Banach algebra is initiated by the present author in [7] and developed
further in the various directions in the due course of time. Some details are given
in Dhage [10] and the references therein. The main feature of these fixed point
theorems in the direction of Dhage [7] is again that the operators in question sat-
isfy certain continuity condition on their domains of definition. Below we remove
the continuity of one of the operators and prove a multi-valued hybrid fixed point
theorem involving the product of two operators in a Banach algebra. We need the
following preliminaries in the sequel.

A cone K in a Banach algebra X is called positive, if

(iv) K ◦K ⊆ K, where “ ◦ ” is a multiplicative composition in X .

Let X be an ordered Banach algebra. Then for any A,B ∈ Pp, we denote

AB = {ab ∈ X | a ∈ A and b ∈ B} .

We need the following results in the sequel.

Lemma 3.2 (Dhage [8]). Let K be a positive cone in the Banach algebra X. If
u1, u2, v1, v2 ∈ K are such that u1 ≤ v1 and u2 ≤ v2, then u1u2 ≤ v1v2.

Lemma 3.3 (Dhage [9]). For any A,B,C ∈ Pp(X),

dH(AC,BC) ≤ dH(C, 0) dH(A,B) = ‖C‖P dH(A,B).
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Lemma 3.4 (Banas and Lecko [4]). If A,B ∈ Pbd(X), then

β(AB) ≤ ‖A‖P β(B) + ‖B‖P β(A).

Lemma 3.5. Let S be a closed convex and bounded subset of a Banach algebra X
and let A,B : S → Pcp(X) be two multi-valued operators such that

(a) A is a D-Lipschitz with the D-function ψ,
(b) B is completely continuous, and
(c) Mψ(r) < r for r > 0, where M = ‖B(S)‖P = sup{‖Bx‖ | x ∈ S}.

Then the multi-valued operator T : S → Pcp(X) defined by Tx = AxBx is upper
semi-continuous and condensing on X.

Proof. The proof appears in Dhage [7, 9].

Theorem 3.5. Let [a, b] be an order interval in the ordered Banach algebra X

and let A,B : [a, b] → Pcp(K) and C : [a, b] → Pcp(X) be three right monotone
increasing multi-valued operators satisfying

(a) A is D-Lipschitz with the D-function ψ,
(b) B is completely continuous,
(c) every monotone increasing sequence {zn} ⊂

⋃

C([a, b]) defined by zn ∈
C(yn), n ∈ N converges, whenever {yn} is a monotone increasing sequence
in [a, b], and

(d) the elements a and b satisfy a ≤ AaBa+ Ca and AbBb+ Cb ≤ b.

Furthermore, if the cone K in X is positive and normal, then the operator inclusion
x ∈ AxBx + Cx has a solution in [a, b] whenever Mψ(r) < r for r > 0, where
M = ‖B([a, b])‖P = sup{‖Bx‖P : x ∈ [a, b]}.

Proof. Define the mapping T on [a, b] × [a, b] by T (x, y) = AxBx + Cy. From
hypothesis (d), it follows that T defines a multi-valued mapping T : [a, b]× [a, b] →
Pcp([a, b]). We show that the multi-valued x 7→ Ty(x) = T (x, y) is upper semi-
continuous, condensing and right monotone increasing uniformly for y ∈ [a, b].
First we show that it is condensing on [a, b]. Let S be a subset of [x, y]. Since
the cone K in X is normal, the order interval [a, b] and consequently the set S is
norm-bounded in X . Then by sublinearity of beta,

β(Ty(S)) ≤ β(A(S)B(S)) + β(C(y))

≤ ‖B(S)‖P β(A(S)) + ‖B(S)‖P β(B(S)) + β(C(y))

= ‖B(S)‖P β(A(S)) + β(C(S))

≤M ψ(β(S)) < β(S)

for all sets S in [a, b] for which β(S) > 0. This shows that the mapping x 7→
Ty(x) = T (x, y) is condensing uniformly for y ∈ [a, b].

To show the mapping x 7→ T (x, y) is an upper semi-continuous uniformly for y,
let {xn} be a sequence in [a, b] converging to a point x∗. Let {yn} be a sequence
in AxnBxn + Cy such that yn → y∗. It suffices to show that y∗ ∈ Ax∗Bx∗ + Cy.
Now,

D (y∗, Ax∗Bx∗ + Cy) = lim
n→∞

D(yn, Ax
∗Bx∗ + Cy)
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≤ lim sup
n→∞

dH(AxnBxn + Cy,Ax∗Bx∗ + Cy)

≤ lim sup
n→∞

dH(AxnBxn, Ax
∗Bxn) + lim sup

n→∞

dH(Ax∗Bxn, Ax
∗Bx∗)

≤ lim sup
n→∞

[

dH(Axn, Ax
∗)dH(0, Bxn)

]

+ lim sup
n→∞

[

dH(0, Ax∗)dH(Bxn, Bx
∗)

]

≤Mψ
(

lim sup
n→∞

‖xn − x∗‖
)

+ ‖Ax∗‖P lim sup
n→∞

dH(Bxn, Bx
∗)

→ 0 as n→ ∞

for all y ∈ [a, b]. This shows that y∗ ∈ Ax∗Bx∗ + Cy, and therefore, the multi-
valued mapping x 7→ AxBx + Cy is an upper semi-continuous uniformly for y ∈
[a, b]. Now the desired conclusion follows by an application of Theorem 3.1.

A D-function ψ : R+ → R+ is called sumultiplicative if ψ(λr) ≤ λψ(r) for
λ ∈ R

+. There do exist the submultiplicative D-functions on R
+. Indeed, the

function ψ(λ r) = λr, λ > 0 is a submultiplicative D-function on R+.

Theorem 3.6. Let [a, b] be an order interval in the ordered Banach algebra X.
Let A : [a, b] → K, C : [a, b] → X be two nondecreasing single-valued operators and
B : [a, b] → Pcp(K) be a right increasing multi-valued operator satisfying

(a) A is a D-Lipschitz with the submultiplicative D-function ψ,
(b) B is completely continuous,
(c) C is compact, and
(d) the elements a and b satisfy a ≤ AaBa+ Ca and AbBb+ Cb ≤ b.

Furthermore, if the cone K in X is positive and normal, then the operator inclusion
x ∈ AxBx + Cx has a solution in [a, b] whenever 2Mψ(r) < r, where M =
‖B([a, b])‖P = sup{‖Bx‖P : x ∈ [a, b]}.

Proof. Define a mapping T : [a, b] × [a, b] → Pcp([a, b]) by

T (x, y) = AxBx + Cy .

We shall show that the mapping Ty(·) = T (·, y) is a β-condensing on [a, b]. Since
the order cone K in X is normal, the order interval [a, b] is a norm-bounded set
in X . Now for any subset S in [a, b] one has

Ty(S) ⊂ A(S)B(S) + Cy .

Hence from Lemmas 3.1 and 3.2, it follows that

β(Ty(S)) ≤ ‖B(S)‖Pβ(A(S)) + ‖A(S)‖Pβ(B(S)) + β(Cy)

≤ ‖B(S)‖P α(A(S))

≤ 2Mψ(β(S)) < β(S)

for all S ⊂ [a, b] with β(S) > 0. The rest of the proof is similar to Theorem
3.3.

Theorem 3.7. Let [a, b] be an order interval in the ordered Banach algebra X. Let
A,B : [a, b] → Pcp(K) and C : [a, b] → Pcp(X) be three right monotone increasing
multi-valued operators satisfying
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(a) A is D-Lipschitz with the D-function ψ,
(b) B is bounded and every monotone increasing sequence {zn} ⊂

⋃

B([a, b])
defined by zn ∈ B(yn), n ∈ N converges, whenever {yn} is a monotone
increasing sequence in [a, b],

(c) C is completely continuous, and
(d) the elements a and b satisfy a ≤ AaBa+ Ca and AbBb+ Cb ≤ b.

Furthermore, if the cone K in X is positive and normal, then the operator in-
clusion x ∈ AxBx + Cx has a solution in [a, b] whenever Mψ(r) < r, where
M = ‖B([a, b])‖P = sup{‖Bx‖P : x ∈ [a, b]}.

Proof. Define a operator T on [a, b] × Pcp(X) by T (x, y) = AxBy + Cx. From
hypothesis (d), it follows that T defines a multi-valued mapping T : [a, b]× [a, b] →
Pcp([a, b]). It can be shown as in the proof of Theorem 2.3 with appropriate
modifications that the multi-valued mapping x 7→ T (x, y) is condensing and upper
semi-continuous uniformly for y ∈ [a, b]. Now the desired conclusion follows by an
application of Theorem 3.1.

Theorem 3.8. Let [a, b] be an order interval in the ordered Banach algebra X

with a cone K. Let A,B : [a, b] → Pcp(K) and C : [a, b] → Pcp(X) be three right
monotone increasing multi-valued operators satisfying

(a) every monotone increasing sequence {zn} ⊂
⋃

A([a, b]) defined by zn ∈
A(yn), n ∈ N converges, whenever {yn} is a monotone increasing sequence
in [a, b],

(b) B is completely continuous,
(c) C is multi-valued contraction, and
(d) the elements a and b satisfy a ≤ AaBa+ Ca and AbBb+ Cb ≤ b.

Furthermore, if the cone K in X is positive and normal, then the operator inclusion
x ∈ AxBx+ Cx has a solution in [a, b].

Proof. Define a mapping T on [a, b] × [a, b] by T (x, y) = Ay Bx + Cx. From
hypothesis (d), it follows that T defines a multi-valued mapping T : [a, b]× [a, b] →
Pcp([a, b]). Now the desired conclusion follows by an application of Theorem 3.1.

Note that Theorems 3.3, 3.5, 3.6, 3.7 and 3.8 include the multi-valued hybrid
fixed point theorems proved in Dhage [7, 8] for a pair of multi-valued operators
in ordered Banach spaces and algebras as special cases. In the following section
we prove an existence theorem for the perturbed discontinuous neutral functional
differential inclusions under some mixed Lipschitz, compactness and monotonic
conditions.

4. Neutral discontinuous functional differential inclusions

The method of upper and lower solutions has been successfully applied to the
problems of nonlinear differential equations and inclusions. For the first direction,
we refer to Heikkilä and Lakshmikantham [16] and for the second direction we
refer to Dhage [9, 10, 11]. In this section, we apply the results of the previous sec-
tions to the first order initial value problems of ordinary discontinuous differential
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inclusions for proving the existence of solutions between the given upper and lower
solutions under certain monotonicity conditions.

4.1. Neutral functional differential inclusions. Let R denote the real line.
Let I0 = [−δ, 0], δ > 0 and I = [0, T ] be two closed and bounded intervals in R.
Let C = C(I0,R) denote the Banach space of all continuous R-valued functions on
I0 with the usual supremum norm ‖ · ‖C given by

‖φ‖C = sup{|φ(θ)| : − δ ≤ θ ≤ 0} .

For any continuous R-valued function x defined on the interval J , where J =
[−δ, T ] = I0

⋃

I, and for any t ∈ I, we denote by xt the element of C defined by

xt(θ) = x(t + θ), −δ ≤ θ ≤ 0 .

Given a function φ ∈ C, consider the perturbed neutral functional first order
differential inclusion (in short NFDI)

(4.1)







d

dt
[x(t) − f(t, xt)] ∈ G(t, xt) +H(t, xt) a.e. t ∈ J ,

x0 = φ ,

where f : I × C → R, G,H : I × C → Pp(R).

By a solution of the NFDI (4.1) we mean a function x ∈ C(J,R) ∩AC(I,R) such
that

(i) the mapping t 7→ [x(t) − f(t, xt)] is absolutely continuous on I, and
(ii) there exists a v ∈ L1(I,R) such that v(t) ∈ G(t, xt) + H(t, xt) a.e. t ∈ I,

satisfying
d

dt
[x(t) − f(t, xt)] = v(t), for all t ∈ I and x0 = φ ∈ C,

where AC(I,R) is the space of all absolutely continuous real-valued functions on I.

The special cases of NFDI (4.1) have been discussed in the literature very exten-
sively for different aspects of the solutions under different continuity conditions.
See Dhage and Ntouyas [13], Deimling [6], Hale [15], Ntouyas [20] and the refer-
ences therein. But the study of NFDI (4.1) or its special cases with discontinuous
multi-valued mappings have not been made so far in the literature for the ex-
istence results. In this section, we will prove the existence theorems for NFDI
(4.1) via functional theoretic approach embodied in Corollary 3.4 under the mixed
Lipschitz, compactness and right monotonic conditions.

We shall seek the solution of NFDI (4.1) in the space C(J,R) of continuous and
real-valued functions on J . Define a norm ‖ · ‖ and an order relation “ ≤ ” in
C(J,R) by

(4.2) ‖x‖ = sup
t∈J

|x(t)|

and

(4.3) x ≤ y ⇐⇒ x(t) ≤ y(t) for all t ∈ J .
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Here, the cone K in C(J,R) is defined by

K = {x ∈ C(J,R) | x(t) ≥ 0 for all t ∈ J} ,

which is obviously positive and normal. See Guo and Lakshmikantham [14] and
Heikkilä and Lakshmikantham [16].

For any multi-valued mapping β : I × C → Pcp(R), we denote

S1
β(x) = {v ∈ L1(I,R) | v(t) ∈ F (t, xt) a.e. t ∈ I}

for some x ∈ C(J,R). The integral of the multi-valued mapping β is defined as
∫ t

0

β(s, xs) ds =
{

∫ t

0

v(s) ds : v ∈ S1
β(x)

}

.

Definition 4.1. A multi-valued function β : I → Pcp(R) is said to be measurable if
for every y ∈ X, the function t→ d(y, β(t)) = inf{|y−x| : x ∈ β(t)} is measurable.

Definition 4.2. A measurable multi-valued function β : I → Pcp(R) is said to
be integrably bounded if there exists a function h ∈ L1(I,R) such that |v| ≤
h(t) a.e. t ∈ I for all v ∈ β(t).

Remark 4.1. It is known that if β : I → Pcp(R) is an integrably bounded multi-
valued function , then the set S1

β of all Lebesgue integrable selections of β is closed

and non-empty. See Hu and Papageorgiou [18].

Definition 4.3. A multi-valued mapping β : I × C → Pcp(R) is said to be L1-
Carathéodory if

(i) t 7→ β(t, x) is measurable for each x ∈ C,
(ii) x 7→ β(t, x) is upper semi-continuous almost everywhere for t ∈ I, and
(iii) for each real number k > 0, there exists a function hk ∈ L1(I,R) such that

‖β(t, x)‖P = sup{|u| : u ∈ β(t, x)} ≤ hk(t), a.e. t ∈ I

for all x ∈ C with ‖x‖C ≤ k.

Then, we have the following lemmas due to Lasota and Opial [19].

Lemma 4.1. Let E be a Banach space. If dim(E) <∞ and β : J ×E → Pcp(E)
is L1-Carathéodory, then S1

β(x) 6= ∅ for each x ∈ E.

Lemma 4.2. Let E be a Banach space, β : J × E → Pcp(E) an L1-Carathéodory
multi-valued mapping with S1

β 6= ∅ and let K : L1(I,R) → C(I, E) be a linear con-

tinuous mapping. Then the composition operator K◦S1
β : C(I, E) −→ Pcp(C(I, E))

is a closed graph operator in C(I, E) × C(I, E).

Remark 4.2. It is known that a compact multi-valued mapping T : E → Pcp(E)
is upper semi-continuous if and only if it has a closed graph in E, that is, if {xn}
and {yn} are sequences in E such that yn ∈ Txn for n = 0, 1, . . .; and xn → x∗,
yn → y∗, then y∗ ∈ Tx∗.

We need the following definitions in the sequel.
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Definition 4.4. A multi-valued mapping β(t, x) is called right monotone increas-

ing in x almost everywhere for t ∈ I if β(t, x)
i

≤ β(t, y) a.e. t ∈ I, for all x, y ∈ C,
for which x ≤ y.

Definition 4.5. A multi-valued mapping β : I×C → Pcp(R) is called L1-Chandrabhan
if

(i) t 7→ β(t, xt) is Lebesgue measurable for each x ∈ C(J,R),
(ii) x 7→ β(t, x) is right monotone increasing almost everywhere for t ∈ I, and
(iii) for each real number r > 0 there exists a function hr ∈ L1(I,R) such that

‖β(t, x)‖P = sup{|u| : u ∈ β(t, x)} ≤ hr(t) a.e. t ∈ I

for all x ∈ C with ‖x‖C ≤ r.

Definition 4.6. A function a ∈ C(J,R)∩AC(I,R) is called a strict lower solution
of NFDI (4.1) if t 7→ [a(t) − f(t, at)] is absolutely continuous on I and for all
v1 ∈ S1

G(a) and v2 ∈ S1
H(a) we have that d

dt
[a(t) − f(t, at)] ≤ v1(t) + v2(t) for all

t ∈ I and a0 ≤ φ. Similarly, a function b ∈ C(J,R) ∩ AC(I,R) is called a strict
upper solution of NFDI (4.1) if t 7→ [b(t) − f(t, bt)] is absolutely continuous on I

and for all v1 ∈ S1
G(b) and v2 ∈ S1

H(b) we have that d
dt

[b(t)−f(t, bt)] ≥ v1(t)+v2(t)
for all t ∈ I and b0 ≥ φ.

We now introduce the following hypotheses in the sequel.

(f0) f(0, x) = 0 for each x ∈ C.
(f1) The mapping f is continuous on I×C and there exists a real-valued bounded

function ℓ on I such that

|f(t, x) − f(t, y)| ≤ ℓ(t)‖x− y‖C ,

for all (t, x), (t, y) ∈ I × C.
(f2) The mapping f(t, x) is nondecreasing in x for almost everywhere t ∈ I.
(G1) G(t, x) is compact subset of R for each t ∈ I and x ∈ C.
(G2) G is L1-Carathéodory.
(G3) The multi-valued mapping G(t, x) is right monotone increasing in x for al-

most everywhere t ∈ I.
(G4) The multi-valued x 7→ S1

G(x) is right monotone increasing in C(J,R).
(H1) H(t, x) is compact subset of R for each t ∈ I and x ∈ C.
(H2) H is L1-Chandrabhan.
(H3) The multi-valued x 7→ S1

H(x) is right monotone increasing in C(J,R).
(H4) NFDI (4.1) has a strict lower solution a and a strict upper solution b with

a ≤ b.

Remark 4.3. Note that if the multi-function H(t, x) is L1-Chandrabhan and (H4)
holds, then it is measurable in t and integrably bounded on I × [a, b]. It follows
from a selection theorem (see Deimling [6]) that S1

H is non-empty and has closed
values on [a, b], i.e.,

S1
H(x) =

{

v ∈ L1(I,R) | v(t) ∈ H(t, xt) a.e. t ∈ I
}

6= ∅

for all x ∈ [a, b] ⊂ C(J,R).



RIGHT MONOTONE INCREASING MULTI-VALUED MAPPINGS 279

Theorem 4.1. Assume that the hypotheses (f0)−(f2), (G1)−(G4) and (H1)−(H4)
hold. Furthermore, if ‖ℓ‖ < 1, then the NFDI (4.1) has a solution in [a, b] defined
on J .

Proof. Let X = C(J,R) and define an order interval [a, b] in C(J,R) which does
exist in view of hypothesis (H4). Note that the cone K is normal in X , and
therefore, the order interval [a, b] is norm bounded in X . As a result, there is a
constant r > 0 such that ‖x‖ ≤ r for all x ∈ [a, b].

Now NFDI (4.1) is equivalent to the integral inclusion

(4.4) x(t) ∈ φ(0)−f(0, φ)+f(t, xt)+

∫ t

0

G(t, xs) ds+

∫ t

0

H(t, xs) ds , if t ∈ I ,

satisfying

(4.5) x(t) = φ(t), , if t ∈ I0 .

Define three multi-valued operators A,B,C : [a, b] → Pp(X) by

(4.6) Ax(t) =







−f(0, φ) + f(t, xt) , if t ∈ I,

0 , if t ∈ I0 ,

(4.7) Bx(t) =











φ(0) +

∫ t

0

G(s, xs) ds , if t ∈ I ,

φ(t) , if t ∈ I0 ,

and

(4.8) Cx(t) =











∫ t

0

H(s, xs) ds , if t ∈ I ,

0 , if t ∈ I0 .

Clearly, the multi-valued operators A, B and C are well defined in view of hy-
potheses (G2) and (H2) and map [a, b] into X . Now the NFDI (4.1) is transformed
into an operator inclusion as

x(t) ∈ Ax(t) +Bx(t) + Cx(t), t ∈ J.

We shall show that A, B and C satisfy all the conditions of Corollary 3.4 on [a, b].

Step I. Firstly, we show that A is monotone increasing and B and C are right
monotone increasing on [a, b]. Let x, y ∈ [a, b] be such that x ≤ y. Then, by (f2),

Ax(t) =

{

−f(0, φ) + f(t, xt) , if t ∈ I ,

0, if t ∈ I0,

≤

{

−f(0, φ) + f(t, yt) , if t ∈ I ,

0 , if t ∈ I0 ,

= Ay(t)
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for all t ∈ J . Hence, Ax ≤ Ay, and so, the operator A is monotone increasing on

[a, b]. Since (G4) and (H3), we have that S1
G(x)

i

≤ S1
G(y) and S1

H(x)
i

≤ S1
H(y). As

a result, we obtain Bx
i

≤ By and Cx
i

≤ Cy. Thus B and C are right monotone
increasing on [a, b]. By (H4), a ≤ Aa+Ba+ Ca and Ab +Bb+ Cb ≤ b

Step II. Next, we show that A is a contraction operator on [a, b]. Let x, y ∈ [a, b]
be arbitrary. Then by hypothesis (f1),

‖Ax−Ay‖ ≤ sup
t∈J

|f(t, xt) − f(t, yt)| ≤ sup
t∈J

ℓ(t)‖xt − yt‖C ≤ ‖ℓ‖ ‖x− y‖ .

This shows that A is contraction on [a, b] with the contraction constant ‖ℓ‖ < 1.

Step III. Secondly, we show that the multi-valued operator B satisfies all the condi-
tions of Theorem 2.2. It can be proved as in the Step I that B is a right monotone
increasing mapping on [a, b]. We only prove that it is completely continuous on
[a, b]. First we show B maps bounded sets into bounded sets in X . If S is a
bounded set in X , then there exists r > 0 such that ‖x‖ ≤ r for all x ∈ S. Now
for each u ∈ Bx, there exists a v ∈ S1

G(x) such that

u(t) =











φ(0) +

∫ t

0

v(s) ds , if t ∈ I ,

φ(t) , if t ∈ I0 .

Then, for each t ∈ J ,

|u(t)| ≤ ‖φ‖C +

∫ t

0

|v(s)| ds ≤ ‖φ‖C +

∫ t

0

hr(s) ds ≤ ‖φ‖C + ‖hr‖L1 .

This further implies that ‖u‖ ≤ ‖φ‖C + ‖hr‖L1 for all u ∈ Bx ⊂
⋃

B(S). Hence,
⋃

B(S) is bounded.
Next we show that B maps bounded sets into equicontinuous sets. Let S be,

as above, a bounded set and u ∈ Bx for some x ∈ S. Then there exists v ∈ S1
G(x)

such that

u(t) =











φ(0) +

∫ t

0

v(s) ds , if t ∈ I ,

φ(t) , if t ∈ I0 .

Then for any t1, t2 ∈ I with t1 ≤ t2, we have

|u(t1) − u(t2)| ≤

∣

∣

∣

∣

∫ t1

0

v(s) ds−

∫ t2

0

v(s) ds

∣

∣

∣

∣

=

∫ t2

t1

|v(s)| ds ≤

∫ t2

t1

hr(s) ds .

If t1, t2 ∈ I0, then |u(t1)− u(t2)| = |φ(t1) − φ(t2)|. For the case when t1 ≤ 0 ≤ t2,
we have that

|u(t1) − u(t2)| ≤ |φ(t1) − φ(0)| +

∫ t2

0

|v(s)| ds ≤ |φ(t1) − φ(0)| +

∫ t2

0

hr(s) ds .

Hence, in all three cases, we have

|u(t1) − u(t2)| → 0 as t1 → t2 .
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As a result,
⋃

B(Q) is an equicontinuous set in X. Now an application of Arzelá-
Ascoli theorem yields that the multi B is totally bounded on X. Consequently,
B : [a, b] → Pcp(X) is a compact multi-valued operator.

Step IV. Next, we prove that B has a closed graph in X . Let {xn} ⊂ X be a
sequence such that xn → x∗ and let {yn} be a sequence defined by yn ∈ Bxn for
each n ∈ N such that yn → y∗. We will show that y∗ ∈ Bx∗. Since yn ∈ Bxn,

there exists a vn ∈ S1
G(xn) such that

yn(t) =











φ(0) +

∫ t

0

vn(s) ds , if t ∈ I ,

φ(t) , if t ∈ I .

Consider the linear and continuous operator K : L1(I,R) → C(I,R) defined by

Kv(t) =

∫ t

0

v(s) ds .

Now, when n→ ∞,we obtain

|yn(t) − φ(0) − (y∗(t) − φ(0))| ≤ |yn(t) − y∗(t)| ≤ ‖yn − y∗‖ → 0 .

Therefore, from Lemma 4.2 it follows that (K◦S1
G) is a closed graph operator and

from the definition of K one has

yn(t) − φ(0) ∈ (K ◦ S1
F (xn)).

As xn → x∗ and yn → y∗, there is a v ∈ S1
G(x∗) such that

y∗(t) =











φ(0) +

∫ t

0

v∗(s) ds , if t ∈ I ,

φ(t) , if t ∈ I0 .

Hence, B is an upper semi-continuous multi-valued operator on [a, b].

Step V. Finally, we show that the multi-valued operator C satisfies all the condi-
tions of Theorem 2.2. First, we show that C has compact values on [a, b]. Observe
first that the operator C is equivalent to

(4.9) Cx(t) =







(L ◦ S1
H)(x)(t) , if t ∈ I ,

0 , if t ∈ I0 ,

where L : L1(I,R) → X is the continuous operator defined by

Lv(t) =

∫ t

0

v(s) ds , if t ∈ I .

To show C has compact values, it then suffices to prove that the composition
operator L ◦ S1

H has compact values on [a, b]. Let x ∈ [a, b] be arbitrary and let
{vn} be a sequence in S1

H(x). Then, by the definition of S1
H , vn(t) ∈ H(t, xt)

a.e. for t ∈ I. Since H(t, xt) is compact, there is a convergent subsequence of
vn(t) (for simplicity call it vn(t) itself) that converges in measure to some v(t),
where v(t) ∈ H(t, xt) a.e. for t ∈ I. From the continuity of L, it follows that
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Lvn(t) → Lv(t) pointwise on I as n → ∞. In order to show that the convergence
is uniform, we first show that {Lvn} is an equi-continuous sequence. Let t, τ ∈ I;
then

(4.10) |Lvn(t) − Lvn(τ)| ≤
∣

∣

∣

∫ t

0

vn(s) ds−

∫ τ

0

vn(s) ds
∣

∣

∣
≤

∣

∣

∣

∫ t

τ

|vn(s)| ds
∣

∣

∣
.

Now, vn ∈ L1(I,R), so the right hand side of (4.10) tends to 0 as t → τ . Hence,
{Lvn} is equi-continuous, and an application of the Ascoli theorem implies that it
has a uniformly convergent subsequence. We then have Lvnj

→ Lv ∈ (L ◦ S1
H)(x)

as j → ∞, and so (L ◦ S1
H)(x) is compact. Therefore, C is a compact-valued

multi-valued operator on [a, b].

Let {yn} be a sequence in
⋃

C([a, b]) defined by yn ∈ Cxn, n ∈ N, where {xn}
is a monotone increasing sequence in [a, b]. Then there is a sequence vn ∈ S1

H(xn)
such that

yn(t) =











∫ t

0

vn(s) ds , if t ∈ I ,

0 , if t ∈ I0 .

We show that {yn} has a cluster point. Since (H3) holds, we have

|yn(t)| ≤

∫ t

0

|v(s)| ds ≤

∫ t

0

hr(s) ds ≤ ‖hr‖L1

for all t ∈ J . This implies that ‖yn‖ ≤ ‖hr‖L1 and so, {yn} is uniformly bounded.
Next we show that {yn} equicontinuous. Now for any t1, t2 ∈ I with t1 ≤ t2 we

have

|yn(t1) − yn(t2)| ≤
∣

∣

∣

∫ t1

0

vn(s) ds−

∫ t2

0

vn(s) ds
∣

∣

∣
≤

∫ t2

t1

hr(s) ds .

If t1, t2 ∈ I0 then |yn(t1) − yn(t2)| = 0. For the case, where t1 ≤ 0 ≤ t2 we have
that

|yn(t1) − yn(t2)| ≤
∣

∣

∣

∫ t2

0

vn(s) ds
∣

∣

∣
≤ |p(t2) − p(0)| ,

where p(t) =

∫ t

0

hr(s)ds. Hence, in all three cases, we have

|u(t1) − u(t2)| → 0 as t1 → t2 .

As a result {yn} is an equicontinuous set in X. Now an application of Arzelá-Ascoli
theorem yields that the sequence {yn} has a cluster point. Thus all the conditions
of Corollary 3.4 are satisfied and hence the operator inclusion x ∈ Ax+Bx+ Cx

has a solution in [a, b]. This further implies that the NFDI (4.1) has a solution in
[a, b] defined on J .
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5. Remarks and conclusion

In this paper, we have established the multi-valued hybrid fixed point theorems
only for right monotone increasing operators, however, similar results can also
be obtained for left monotone increasing multi-valued operators with appropriate
modifications. As mentioned earlier, we do not need the multi-valued operators
to be continuous and to have convex values in any of the hybrid fixed point theo-
rems of section 3. Therefore, the results of this paper are the improvement upon
the hybrid fixed point theorems for multi-valued operators obtained in Dhage [10]
under weaker conditions. Thus, our hybrid fixed point theorems of this paper are
useful in the study of nonconvex differential inclusions involving the discontinuous
multi-valued functions for existence of the solutions. In this paper, we have dealt
with some quite general forms of the neutral functional differential inclusions and
so the results of section 4 include some known results in the literature as special
cases under weaker continuity and convexness conditions. Again, we remark that
the hypotheses (G4) and (H3) are somewhat new to the literature in the existence
theory for differential inclusions and the sufficient condition guaranteeing these
conditions, so far we know, are that the multi-valued functions G and H should
be strictly monotone increasing in the state variable (see Agarwal et al. [1]). Fi-
nally, we mention that the study of such sufficient conditions for the validity of
the assumptions (G4) and (H3) is again a problem and the further study in this
direction forms a scope for the future research work and while concluding, we
conjecture that the possible answers to this question are the hypotheses (G3) and
(H2) under suitable conditions.
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