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SPECTRUM GENERATING ON TWISTOR BUNDLE

THOMAS BRANSON AND DOOJIN HONG

Abstract. Spectrum generating technique introduced by Ólafsson, Ørsted,
and one of the authors in the paper [5] provides an efficient way to con-
struct certain intertwinors when K-types are of multiplicity at most one.
Intertwinors on the twistor bundle over S1

× Sn−1 have some K-types of
multiplicity 2. With some additional calculation along with the spectrum
generating technique, we give explicit formulas for these intertwinors of all
orders.

1. Introduction

It was shown in [5] that one can construct intertwining operators of princi-
pal series representations induced from maximal parabolic subgroups without too
much effort when K-types occur with multiplicity at most one. On the differential
form bundle over S1× Sn−1, a double cover of the compactified Minkowski space,
some K-types occur with multiplicity two. One of the authors showed that the
spectrum generating technique can also handle this multiplicity 2 case provided
that some extra computation is performed.

It is thus natural to do the same thing on general tensor-spinor bundle. In-
tertwinors on spinors like the Dirac operator have eigenspaces with multiplicity
one over S1 × Sn−1and explicit spectral function was given in [7]. On twistors,
however, the eigenspaces of the intertwinors including Rarita Schwinger operator
have multiplicity two on some K-types. In this paper, we present the spectral
function for these operators.

We briefly review conformal covariance and intertwining relation (for more de-
tails, see [2], [5]).

Let M be an n-dimensional spin manifold. We enlarge the structure group
Spin(n) to Spin(n) × R+ in conformal geometry. (V (λ), λr) are finite dimen-
sional Spin(n) × R+ representations, where (V (λ), λ) are finite dimensional rep-
resentations of Spin(n) and λr(h, α) = αrλ(h) for h ∈ Spin(n) and α ∈ R+.
The corresponding associated vector bundles are V(λ) = PSpin(n) ×λ V (λ) and
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V
r(λ) = PSpin(n)×R+

×λr V (λ) with structure groups Spin(n) and Spin(n) × R+.
r is called the conformal weight of V

r. Tangent bundle TM carries conformal
weight −1 and cotangent bundle T ∗M carries conformal weight +1. In general, if
V is a subbundle of (TM)⊗p ⊗ (T ∗M)⊗q ⊗ (ΣM)⊗r ⊗ (Σ∗M)⊗s, then V carries
conformal weight q − p, where ΣM is the contravariant spinor bundle.

A conformal covariant of bidegree (a, b) is a Spin(n)×R+-equivariant differential
operator D : V

r(λ)→ V
s(σ) which is a polynomial in the metric g, its inverse g−1,

the volume element E, and the fundamental tensor-spinor γ with a conformal
covariance law

ω ∈ C∞(M), g = e2ωg, E = enωE, γ = e−ωγ ⇒ D = e−bωDµ(eaω) ,

where µ(eaω) is multiplication of eaω.
Given a conformal covariant of bidegree (a, b), D : V

r(λ) → V
s(σ), we can

assign new conformal weights to get D : V
r′

(λ) → V
s′

(σ) whose bidegree is then
(a− r′ + r, b − s′ + s). Calling this D again is an abuse of notation. If r′ = r + a
and s′ = s + b, then D : V

r+a(λ) → V
s+b(σ) becomes conformally invariant and

we call (a + r, b + s) the reduced conformal bidegree of D. To see how conformal
covariants behave under a conformal transformation and a conformal vector field,
we recall followings.

A diffeomorphism h : M → M is called a conformal transformation if h ·
g = e2ωhg, where “·” is the natural action of h on tensor fields; in particular,
h· = (h−1)∗ on purely covariant tensors like g. A conformal vector field is a
vector field X with LXg = 2ωXg for some ωX ∈ C∞(M). A conformal covariant
D : V

0(λ)→ V
0(σ) of reduced bidegree (a, b) satisfies

D(eaωhh · ϕ) = ebωhh · (D(ϕ)) and D(LX + aωX)ϕ = (LX + bωX)Dϕ .

for all ϕ ∈ Γ(V0(λ)). Thus if D : V
r(λ)→ V

s(σ) of reduced bidegree (a, b), then

(1.1) D(LX + (a− r)ωX)ϕ = (LX + (b− s)ωX)Dϕ

for ϕ ∈ Γ(Vr(λ)) and Dϕ ∈ Γ(Vs(σ)).
Note that conformal vector fields form a Lie algebra c(M, g) and give rise to

the principal series representation

Uλ
a : c(M, g)→ EndΓ(V0(λ)) by X 7→ LX + aωX .

So a conformal covariant D : V
r(λ)→ V

s(σ) of reduced bidegree (a, b) intertwines
the principal series representation

DUλ
a−rϕ = Uσ

b−sDϕ

for ϕ ∈ Γ(Vr(λ)) and Dϕ ∈ Γ(Vs(σ)).

2. Spinors and twistors

Let M = S1 × Sn−1, n even, be a manifold endowed with the Lorentz metric
−dt2 + gSn−1.
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To get a fundamental tensor-spinor α for M from the corresponding object γ
on Sn−1, let

αj =

(
γj 0

0 −γj

)

, j = 1, . . . , n− 1,

and

α0 =

(
0 1

1 0

)

.

Since M is even-dimensional, there is a chirality operator χM , equal to some
complex unit times α0χ̃S , where

χ̃S =

(
χS 0

0 −χS

)

,

χS being the chirality operator on S. The chirality operator is always normalized
to have square 1; thus (χS)2 and (χ̃S)2 are identity operators, and since α0α0 = 1,
we have (α0χ̃S)2 = −1. As a result, we may take

χM = ±
√
−1α0χ̃S .

A spinor on M can be viewed as a pair of time-dependent spinors on Sn−1,

i.e.,

(
ϕ

ψ

)

, where ϕ and ψ are t-dependent spinors on Sn−1. But by chirality

consideration ([6]), we get Ξ = ±1 spinors:
(
ϕ

ψ

)

=

(
Ξψ/
√
−1

ψ

)

.

Recall that twistors are spinor-one-forms Φλ with αλΦλ = 0. Given a chirality
Ξ, a twistor Ψ is determined by a t-dependent spinor-one-form ψj on Sn−1 via

Ψ = dt ∧
(
ϕ0

ψ0

)

+

(
ϕj

ψj

)

,

where
ϕj = −Ξ

√
−1ψj ,

ψ0 = Ξ
√
−1γkψk,

ϕ0 = γkψk .

Let θj be a spinor-one-form on Sn−1. Then, it can be written as

(2.2) θj = γj(−
1

n− 1
γiθi) + (θj +

1

n− 1
γjγ

iθi) =: γjθ + πj ,

where θ is a spinor and πj is a twistor on Sn−1 since γj(θj + 1
n−1γjγ

iθi) = 0. It

turned out ([6]) that we can Hodge decompose the twistor bundle over the sphere
so that a twistor πj can be written as

πj = Tjτ + (−∇iηij) ,

where Tjτ := ∇jτ + γjDτ (here D is the Dirac operator on the sphere) is the j-th
component of the twistor operator applied to a spinor τ and ηij is a spinor-two
form with γiηij = 0.
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Therefore, a twistor on M can be decomposed as follows:
( −(n− 1)θ −Ξ

√
−1γiθ

−(n− 1)Ξ
√
−1θ γiθ

)

+

(
0 −Ξ

√
−1Tiτ

0 Tiτ

)

+

(
0 −Ξ

√
−1∇jηji

0 ∇jηji

)

=: 〈θ〉+ {τ}+ [η] ,(2.3)

for some spinors θ, τ and some spinor-two form η.

3. Intertwining relation on twistors

Let us briefly review some standard materials on the conformal structure on
the manifold S1 × Sn−1. Let G = Spin0(2, n) and P the maximal parabolic
subgroup for which G/P is the 4-fold cover of the compactified Minkowski space
(S1 × Sn−1)/Z2, where the Z2 action comes from the product of antipodal maps

on S1 and on Sn−1. G
′

/P
′

, where G
′

= SO0(2, n) and P ′ its maximal parabolic
subgroup, is the double cover S1 × Sn−1 of (S1 × Sn−1)/Z2. Then G/P is the
double cover of S1 × Sn−1 obtained from the standard covering of S1 factor. The
Lie algebra g can be realized in homogeneous coordinates (ξ−1, . . . , ξn) ([1, 9]):

Lαβ = εαξα∂β − εβξβ∂α α, β = −1, . . . , n ,

where ∂α = ∂/∂ξα, and −ε−1 = −ε0 = ε1 = · · · = εn = 1. The L−1,0 generates
SO(2) group of isometries and the Lαβ for α, β = 1, . . . , n generate SO(n) group
of isometries. If g = k + s is a Cartan decomposition of g, then k corresponds to
the so(2)× so(n) and s corresponds to the proper conformal vector fields:

LLαβ
g = 2ωαβg, with ωαβ 6= 0 ,

where L denotes Lie derivative. So they are just the ones with mixed indices:
Lαβ for −1 ≤ α ≤ 0 < β ≤ n. Let t be the angular parameter on S1 so that
ξ−1 = cos t and ξ0 = sin t. And set ξn = cos ρ and complete a set of spherical
angular coordinates (ρ, θ1, . . . , θn−2) on Sn−1 so that ∂ρ is gSn−1-orthogonal to the
∂θi

. Then we get a typical conformal vector field T and its conformal factor ̟:

L−1,n = cos ρ sin t∂t + cos t sin ρ∂ρ := T

ω−1,n = cos t cos ρ := ̟ .

Let A = A2r be an intertwinor of order 2r. That is, an operator satisfying the
intertwining relation ((1.1), [2, 3, 5])

(3.4) A
(

L̃T +
(n

2
− r
)

̟
)

=
(

L̃T +
(n

2
+ r
)

̟
)

A ,

where L̃T is the reduced Lie derivative. On a tensor-spinor with

(
p

q

)

tensor

content, this is

L̃T = LT + (p− q)̟ .

So here (with only 1-form content), it is LT − ̟. Note that we are using the
convention where spinors do not have an internal weight; otherwise the spinor
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content would influence the reduction.
Since intertwinors change chirality, we want to consider an exchange operator

E : = α0(ι(∂t)ε(dt)− ε(dt)ι(∂t))

= α0(1− 2ε(dt)ι(∂t)) ,

where ι is the interior multiplication and ε is the exterior multiplication. It is
immediate that E2 = Id. Because of the α0 factor, E reverses chirality. To see
that E takes twistors to twistors, note that, for a twistor Φ,

ι(∂t)ε(dt)− ε(dt)ι(∂t) : Φλ 7→ Φλ − 2δλ
0Φ0 .

Thus

αλ(EΦ)λ = αλα0(Φλ − 2δλ
0Φ0)

= −2gλ0(Φλ − 2δλ
0Φ0) + 2α0αλδλ

0Φ0

= −2Φ0

︸ ︷︷ ︸

2Φ0

+4 g00

︸︷︷︸

−1

Φ0 + 2α0α0
︸ ︷︷ ︸

1

Φ0

= 0,

as desired.
We want to convert the relation (3.4) for EA. So we will eventually need LTE.

We have:

LTE = LT {α(dt)(1 − 2ε(dt)ι(∂t))}
= {−̟α(dt) + α(d(T t))}(1 − 2ε0ι0)

− 2α0{ε(dt)ι([T, ∂t]) + ε(d(T t)ι(∂t)}.
But

T t = cos ρ sin t,

d(T t) = − sinρ sin t dρ+ cos ρ cos t dt,

[T, ∂t] = − cos ρ cos t ∂t + sin t sinρ ∂ρ .

This reduces the above to

(3.5)
LTE = sin tα(dω)(1 − 2ε0ι0)− 2 sin tα0(ε0ι(Y ) + ε(dω)ι0)

= sin t sin ρ{−α1(1 − 2ε0ι0)− 2α0(ε0ι1 − ε1ι0)}.
By Kosmann ([8], eq(16)), the Lie and covariant derivatives on spinors are related
by

LX −∇X = − 1
4∇[aXb]γ

aγb = − 1
8 (dX♭)abγ

aγb .

Note that

T♭ = − cosρ sin t dt+ cos t sin ρ dρ,

dT♭ = 2 sinρ sin t dρ ∧ dt .
and

d̟ = −T♭,R ,
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where ♭,R is the musical isomorphism in the “Riemannian” metric. According to
the above,

(3.6) LT −∇T = −1

2
sin ρ sin tα1α0

on spinors.
On a 1-form η,

〈(LT −∇T )η,X〉 = −〈η, (LT −∇T )X〉 ,
since LT−∇T kills scalar functions. But by the symmetry of the pseudo-Riemannian
connection,

[T,X ]−∇TX = −∇XT .

We conclude that
(LT −∇T )η = 〈η,∇T 〉 ,

where in the last expression, 〈·, ·〉 is the pairing of a 1-form with the contravariant

part of a

(
1

1

)

-tensor:

((LT −∇T )η)λ = ηµ∇λT
µ .

Combining this with what we derived above for spinors (3.6), for a spinor-1-form
Φλ, we have

((LT −∇T )Φ)λ = Φµ∇λT
µ − 1

2
sin ρ sin tα1α0Φλ .

But ∇T a priori has projections in 3 irreducible bundles, TFS2, Λ0, and Λ2 (after
using the musical isomorphisms). By conformality, the TFS2 part is gone. We
expect a Λ0 part, essentially ̟. We also found the Λ2 part above,

dT♭ = 2 sinρ sin t dρ ∧ dt .
More precisely, tracking the normalizations,

(∇T♭)λµ = (∇T♭)(λµ) + (∇T♭)[λµ] = (̟g +
1

2
dT♭)λµ .

Now note that

Φµ∇λT
µ = ̟gλ

µΦµ +
1

2
((dT♭)νµε

νιµΦ)λ

= ̟Φλ +
1

2
(((dT♭)01ε

0ι1 + (dT♭)10ε
1ι0)Φ)λ

= ̟Φλ +
1

2
((−2 sinρ sin tε0ι1 + 2 sinρ sin tε1ι0)Φ)λ

= ̟Φλ − sinρ sin t((ε0ι1 − ε1ι0)Φ)λ

= ̟Φλ − sinρ sin t((ε0ι1 + ε1ι0)Φ)λ .

As a result,

LT −∇T = ̟ − sin ρ sin t
(

1
2α

1α0 + ε0ι1 + ε1ι0
)

=: ̟ − sin ρ sin tP

=: ̟ − P ,
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and

L̃T −∇T = −P .
An explicit calculation using (3.5) gives

(LTE)E = −2P .
Since E2 = Id, we conclude that

LTE = −2PE .
With the above, the intertwining relation for EA becomes

(

L̃T +
(

n
2 + r

)
̟
)

EA = E
(

L̃T +
(

n
2 + r

)
̟
)

A+ (LTE)A

= EA
(

L̃T +
(

n
2 − r

)
̟
)

− 2PEA,

so that, with B = EA,

B
(

∇T +
(n

2
− r
)

̟ − P
)

=
(

∇T +
(n

2
+ r
)

̟ + P
)

B .

To see what P does, let us define two convenient operations.

ψj
expa7−→

(
u Ξψj/

√
−1

−Ξu/
√
−1 ψj

)

slot7−→ ψj ,

where u = γkψk.
Note that

ψj
expa7−→

(
u Ξψj/

√
−1

−Ξu/
√
−1 ψj

)
ι07−→
(

u

−Ξu/
√
−1

)

ε1

7−→
(

0 ε1u

0 −Ξε1u/
√
−1

)

slot7−→ −Ξε1u/
√
−1 .

As for the ε0ι1 term, anything in the range of ε0 has a slot of 0.
Finally,

ψj
expa7−→

(
u Ξψj/

√
−1

−Ξu/
√
−1 ψj

)

α0

7−→
(

0 1

1 0

)(
u Ξψj/

√
−1

−Ξu/
√
−1 ψj

)

=

( −Ξu/
√
−1 ψj

u Ξψj/
√
−1

)

α1

7−→
( −Ξγ1u/

√
−1 γ1ψj

−γ1u −Ξγ1ψj/
√
−1

)

.

So
slotP expa : ψj 7→ − 1

2Ξγ1ψj/
√
−1− Ξ(ε1u)j/

√
−1

= − Ξ√
−1

(1
2γ

1ψj + (ε1u)j) = − Ξ√
−1

(1
2γ

1ψj + δj
1u).

Up to a factor of a complex unit, slotP expa is

1

2
γ1ψj + δj

1γkψk .

We can also get this expression by successively taking the commutator of ̟ with
∂t and the operator D defined by

slotD expa : ψj 7→
1

2
γk∇kψj + γk∇jψk .
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That is,
P = Ξ

√
−1[∂t, [D, ̟]] .

Recall that P = sinρ sin tP .
After some straightforward computation, we get the block matrix for D relative
to the decomposition {〈θ〉, {τ}, [η]} (2.3) as follows.










n+ 1

2(n− 1)
Jθ

n− 2

4
− n− 2

(n− 1)2
J2

τ 0

−n n− 3

2(n− 1)
Jτ 0

0 0
1

2
L










,

where Jθ and Jτ are the Dirac eigenvalues of θ and τ on Sn−1, respectively and L
is the Rarita-Schwinger eigenvalue of [η] on Sn−1.

The spectrum generating relation takes the following form:

[N,̟] = 2
(

∇T +
n

2
̟
)

,

where ∇∗,R∇ := N is the Riemannian Bochner Laplacian. Therefore the relation
(3.4) becomes
(3.7)

B

(
1

2
[N,̟]− r̟ − Ξ

√
−1[∂t, [D, ̟]]

)

=

(
1

2
[N,̟] + r̟ + Ξ

√
−1[∂t, [D, ̟]]

)

B .

As explained in detail in ([3]), the recursive numerical spectral data come from
the compressed relation of the above.

4. Projections into isotypic summands

Let us denote the K = Spin(2)× Spin(n)-type with highest weight as follows:

VΞ(f ; j, 1
2 + q, 1

2 , . . . ,
1
2 ,

ε
2 ) := (f)⊗ (j, 1

2 + q, 1
2 , . . . ,

1
2 ,

ε
2

︸ ︷︷ ︸

n/2 entries

) ,

where j ∈ 1
2 + q + N, ε = ±1, q = 0 or 1 , and (f) is a Spin(2)-type generated by

the function e
√
−1ft on S1 factor.

Proper conformal vector fields and corresponding conformal factors map such
a K-type to a sum of different K-types under the classical selection rule ([3]).

Consider a Ξ spinor

(
ϕ

ψ

)

. Since ϕ = Ξψ/
√
−1, we have

α0

( •
ψ

)

=

( •
Ξψ/
√
−1

)

.

Here • denotes a top entry that is computable from the bottom entry, but whose
value is not needed at the moment.
In addition,

sin t

( •
ψ

)

=

( •
sin tψ

)

=

( •
−[∂t, cos t]ψ

)

,
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Projff ′ sin t

( •
ψ

)

=

(

•
f ′−f√

−1
cos t|ff ′ψ

)

,

sinρα1

( •
ψ

)

=

( •
− sin ργ1ψ

)

=

( •
[D, cos ρ]ψ

)

,

Projab sin ρα1

( •
ψ

)

=

( •
−Projab sin ργ1ψ

)

=

( •
(Jb − Ja) cos ρ|ab ψ

)

,

where D = γi∇i is the Dirac operator on Sn−1, a and b (resp., f and f ′) are
abbreviated labels for the Spin(n)-types (resp., Spin(2)-types) in question and Ja

(resp., Jb) is the Dirac eigenvalue on a (resp., b).
For the compressed relations of ̟ = cos t cos ρ between Clifford range part, twistor
range part, and divergence part (2.3), we note that cos ρ is the conformal factor
corresponding to the conformal vector field sin ρ∂ρ on Sn−1. Clifford range piece
is essentially spinor on Sn−1 while twistor range piece and divergence piece are
twistors on Sn−1. So, for example, ̟〈θ〉 is a sum of Clifford pieces only. Thus we
have:

(4.8)

̟





〈θ〉
0

0



 =





〈|̟|θ〉
0

0




Proj7−→ :





〈θ̃〉
0

0



 ,

̟





0

{τ}
0



 =





0

|̟|{τ}
|̟|{τ}



 =





0

C{|̟|τ}
|̟|{τ}




Proj7−→ :





0

C{τ̃}
[η]



 ,

̟





0

0

[η]



 =





0

|̟|[η]
|̟|[η]




Proj7−→ :





0

{τ̄}
[η̃]



 ,

where C is a quantity we will compute in the following lemma.

Lemma 4.1. Let α = VΞ(f ; j, 1
2 , · · · , 1

2 ,
ε
2 ) and β = VΞ(f ′; j′, 1

2 , · · · , 1
2 ,

ε′

2 ), ε =
±1. Then we have

|β̟|α{τ} = Cba{|β̟|ατ} ,
where

Cba =
1

λb(T ∗T )

(
1

2
J2

b +
1

2
J2

a −
JbJa

n− 1
− n(n− 1)

4

)

,

Ja (resp., Jb) is the Dirac eigenvalue on Spin(n)-type at α (resp., Spin(n)-type at
β), λb(T ∗T ) is the eigenvalue of T ∗T on Spin(n)-type at β, and T is the twistor
operator (with adjoint T ∗) over Sn−1.

Proof. It suffices to show that

|bω|aT τ = Cba · T (|bω|aτ) ,
where ω = cos ρ. Let D be the Dirac operator on Sn−1. Then

[D2, ω]τ = [∇∗∇, ω]τ by Bochner identity

= (∇∗∇ω)τ − 2∇kω∇kτ = (n− 1)ωτ + 2 sinρ∇1τ ,
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Also

T ∗(ωT τ) = −∇j(ω∇jτ + 1
n−1ωγjDτ)

= sin ρ∇1τ + ω∇∗∇τ + 1
n−1 sin ργ1Dτ − 1

n−1ωD
2τ

= 1
2

(
[D2, ω]− (n− 1)ω

)
τ + ω

(

D2 − (n−1)(n−2)
4

)

τ + 1
n−1 [ω,D]Dτ

− 1
n−1ωD

2τ by the above and Bochner identity

= 1
2D

2(ωτ) + 1
2ωD

2τ − 1
n−1D(ωDτ) − n(n−1)

4 ωτ.

Therefore

|bω|aT τ = T
(

1

λb(T ∗T )
T ∗(|bω|aT τ)

)

= T
(

1

λb(T ∗T )

(
1

2
J2

b +
1

2
J2

a −
1

n− 1
JbJa −

n(n− 1)

4

)

|bω|aτ
)

.

�

Remark 1. Eigenvalues of D and T ∗T on Sn−1 are known due to Branson ([4]).

With the above (4.8) at hand, we get
(4.9)

|β [D, ̟]|α〈θ〉 =






(Dβ
11 −Dα

11)〈θ̃〉
(Dβ

21 − CbaDα
21){θ̃}

−Dα
21[η]




 , where

{ 〈θ̃〉 = |β̟|α〈θ〉
[η] = |β̟|α{θ}

,

|β [D, ̟]|α{τ} =






(CbaDβ
12 −Dα

12)〈τ̃ 〉
Cba(Dβ

22 −Dα
22){τ̃}

(Dβ
33 −Dα

22)[η]




 , where

{ {τ̃} = |β̟|α{τ}
[η] = |β̟|α{τ}

, and

|β [D, ̟]|α[η] =






Dβ
12〈τ̄ 〉

(Dβ
22 −Dα

33){τ̄}
(Dβ

33 −Dα
33)[η̃]




 , where

{ {τ̄} = |β̟|α[η]

[η̃] = |β̟|α[η]
.

Here we use subscripts to refer to the specific entries of the D and superscripts to
indicate where these entries are computed.

Let us now consider the compressed relation of (3.7) between K-types related
by the selection rule.

Case 1: Multiplicity 2 ↔ 1

α = VΞ(f ; j,
1

2
, · · · , 1

2
,
ε

2
)↔ β = VΞ(f ′; j,

3

2
,
1

2
, · · · , 1

2
,
ε

2
) .

Note that the operator B in block form looks

B =





B11 B12 0

B21 B22 0

0 0 B33



 .

With

|αN |β = f2 − f ′2 − (n− 2)
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and (4.9), we get α→ β transition quantities

β → α :

(
Bα

11 Bα
12

Bα
21 Bα

22

)(
A1

E−

)

= Bβ
33

( −A1

E+

)

and

α→ β :
(
A2 −E−

)
(
Bα

11 Bα
12

Bα
21 Bα

22

)

= Bβ
33

(
−A2 −E+

)
,

where

A1 := Ξ(f − f ′)Dα
12 ,

A2 := −Ξ(f − f ′)Dα
21 ,

E− :=
1

2
(f2 − f ′2)− n− 2

2
− r + Ξ(f − f ′)(Dα

22 −Dβ
33) ,

E+ :=
1

2
(f2 − f ′2)− n− 2

2
+ r − Ξ(f − f ′)(Dα

22 −Dβ
33) .

In particular, we can write all 2× 2 entries of Bα in terms of Bα
21 and Bβ

33:

(4.10)

Bα
11 = (E−Bα

21 −A2B
β
33)/A2 ,

Bα
12 = −A1B

α
21/A2 , and

Bα
22 = (−A1B

α
21 + E+Bβ

33)/E
− .

Thus if we can express Bα
21 in terms of Bβ

33, we can completely determine all entries
in the 2× 2 block.

Case 2: Multiplicity 2 ↔ 2

α = VΞ(f ; j,
1

2
, · · · , 1

2
,
ε

2
)→ β = VΞ(f ′; j′

1

2
, · · · , 1

2
,
ε′

2
) .

Here we have

|βN |α = f ′2 − f2 + J2
b − J2

a .

So using (4.9), we get the transition quantities

(4.11)

(

Bβ
11 Bβ

12

Bβ
21 Bβ

22

)(
F−

1 G2

G1 CbaF
−
2

)

=

(
F+

1 −G2

−G1 CbaF
+
2

)(
Bα

11 Bα
12

Bα
21 Bα

22

)

,

where

F−
1 :=

1

2
(f ′2 − f2) +

1

2
(J2

b − J2
a)− r + Ξ(f ′ − f)(Dβ

11 −Dα
11) ,

F+
1 :=

1

2
(f ′2 − f2) +

1

2
(J2

b − J2
a) + r − Ξ(f ′ − f)(Dβ

11 −Dα
11) ,

F−
2 :=

1

2
(f ′2 − f2) +

1

2
(J2

b − J2
a)− r + Ξ(f ′ − f)(Dβ

22 −Dα
22) ,

F+
2 :=

1

2
(f ′2 − f2) +

1

2
(J2

b − J2
a) + r − Ξ(f ′ − f)(Dβ

22 −Dα
22) ,

G1 := Ξ(f ′ − f)(Dβ
21 − CbaDα

21) , and

G2 := Ξ(f ′ − f)(CbaDβ
12 −Dα

12) .
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Therefore we get determinant quotients of B on multiplicity 2 part.
Note the following diagram of reachable multiplicity 2 isotypic summands from
VΞ(f ; j, 1

2 , · · · , 1
2 ,

ε
2 ) under the selection rule:

VΞ(f − 1; j + 1, 1
2 , · · · , 1

2 ,
ε
2 ) VΞ(f + 1; j + 1, 1

2 , · · · , 1
2 ,

ε
2 )

տ ր
VΞ(f − 1; j, 1

2 , · · · , 1
2 ,− ε

2 ) ← • → VΞ(f + 1; j, 1
2 , · · · , 1

2 ,− ε
2 )

ւ ց
VΞ(f − 1; j − 1, 1

2 , · · · , 1
2 ,

ε
2 ) VΞ(f + 1; j − 1, 1

2 , · · · , 1
2 ,

ε
2 ).

The determinant quotients corresponding to the above diagram are:
(4.12)













(−f+J+1−Ξ+r+ ε
2
Ξ)(−f+J+1+Ξ+r+ ε

2
Ξ)

(−f+J+1−Ξ−r− ε
2
Ξ)(−f+J+1+Ξ−r− ε

2
Ξ)

(f+J+1−Ξ+r− ε
2
Ξ)(f+J+1+Ξ+r− ε

2
Ξ)

(f+J+1−Ξ−r+ ε
2
Ξ)(f+J+1+Ξ−r+ ε

2
Ξ)

(−f+ 1
2
−Ξ+r−εΞJ)(−f+ 1

2
+Ξ+r−εΞJ)

(−f+ 1
2
−Ξ−r+εΞJ)(−f+ 1

2
+Ξ−r+εΞJ)

(f+ 1
2
−Ξ+r+εΞJ)(f+ 1

2
+Ξ+r+εΞJ)

(f+ 1
2
−Ξ−r−εΞJ)(f+ 1

2
+Ξ−r−ΞJ)

(−f−J+1−Ξ+r− ε
2
Ξ)(−f−J+1+Ξ+r− ε

2
Ξ)

(−f−J+1−Ξ−r+ ε
2
Ξ)(−f−J+1+Ξ−r+ ε

2
Ξ)

(f−J+1−Ξ+r+ ε
2
Ξ)(f−J+1+Ξ+r+ ε

2
Ξ)

(f−J+1−Ξ−r− ε
2
Ξ)(f−J+1+Ξ−r− ε

2
Ξ)














,

where J = εJa.
And these data can be put into the following Gamma function expression:

1

4
• Γ

(
1
2 (f + J + r − ε

2Ξ)
)
Γ
(

1
2 (−f + J + r + ε

2Ξ)
)

Γ
(

1
2 (f + J − r + ε

2Ξ)
)
Γ
(

1
2 (−f + J − r − ε

2Ξ)
)

•Γ
(

1
2 (f + J + 2 + r − ε

2Ξ)
)
Γ
(

1
2 (−f + J + 2 + r + ε

2Ξ)
)

Γ
(

1
2 (f + J + 2− r + ε

2Ξ)
)
Γ
(

1
2 (−f + J + 2− r − ε

2Ξ)
) .

Case 3: Multiplicity 1 ↔ 1

α = VΞ(f ; j,
3

2
,
1

2
, · · · , 1

2
,
ε

2
)← β = VΞ(f ′; j′

3

2
,
1

2
, · · · , 1

2
,
ε′

2
) .

Again we have

|αN |β = f2 − f ′2 + J2
a − J2

b .

And the transition quantities are

(4.13) Bα
33P

− = P+Bβ
33 ,

where

P− := 1
2 (f2 − f ′2) + 1

2 (J2
a − J2

b )− r + Ξ(f − f ′)(Dα
33 −Dβ

33) and

P+ := 1
2 (f2 − f ′2) + 1

2 (J2
a − J2

b ) + r − Ξ(f − f ′)(Dα
33 −Dβ

33) .

The diagram of reachable multiplicity 1 isotypic summands from

VΞ(f ; j,
3

2
,
1

2
, · · · , 1

2
,
ε

2
)
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under the selection rule looks:

VΞ(f − 1; j + 1, 3
2 ,

1
2 , · · · , 1

2 ,
ε
2 ) VΞ(f + 1; j + 1, 3

2 ,
1
2 , · · · , 1

2 ,
ε
2 )

տ ր
VΞ(f − 1; j, 3

2 ,
1
2 , · · · , 1

2 ,− ε
2 ) ← • → VΞ(f + 1; j, 3

2 ,
1
2 , · · · , 1

2 ,− ε
2 )

ւ ց
VΞ(f − 1; j − 1, 3

2 ,
1
2 , · · · , 1

2 ,
ε
2 ) VΞ(f + 1; j − 1, 3

2 ,
1
2 , · · · , 1

2 ,
ε
2 ) .

And the eigenvalue quotients are:















−f + J + 1 + r + ε
2Ξ

−f + J + 1− r − ε
2Ξ

f + J + 1 + r − ε
2Ξ

f + J + 1− r + ε
2Ξ

−f + 1
2 + r − εΞJ

−f + 1
2 − r + εΞJ

f + 1
2 + r + εΞJ

f + 1
2 − r − εΞJ

−f − J + 1 + r − ε
2Ξ

−f − J + 1− r + ε
2Ξ

f − J + 1 + r + ε
2Ξ

f − J + 1− r − ε
2Ξ
















,

where J = εJa.
Thus, following the normalization on the multiplicity 2 part, we get the spectral

function on the multiplicity 1 part:
(4.14)

Z(r; f, J,Ξε) =
ε

2
Ξ

Γ
(

1
2 (f + J + 1 + r − ε

2Ξ)
)
Γ
(

1
2 (−f + J + 1 + r + ε

2Ξ)
)

Γ
(

1
2 (f + J + 1− r + ε

2Ξ)
)
Γ
(

1
2 (−f + J + 1− r − ε

2Ξ)
) .

In particular,

Z(
1

2
, f, J,Ξε) = −1

4
(f − ΞεJ) =

1

4

√
−1 eig(ER; f, J,Ξε) ,

where ER is the exchanged Rarita-Schwinger operator.

5. Interface between multiplicity 1 and 2 parts

Consider the following diagram:

α1 = VΞ(f ; j, 1
2 , · · · , 1

2 ,
ε
2 ) → α2 = VΞ(f + 1; j + 1, 1

2 , · · · , 1
2 ,

ε
2 )

l l

β1 = VΞ(f + 1; j, 3
2 ,

1
2 , · · · , 1

2 ,
ε
2 ) ← β2 = VΞ(f ; j + 1, 3

2 ,
1
2 , · · · , 1

2 ,
ε
2 ) .

Then (4.11) reads

Bα2M1 = M2B
α1 .

So

detBα2 =
detM2

detM1
detBα1 .
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Note that
detM2

detM1
is a determinant quotient computed in (4.12).

From (4.10), we get a relation between B12 and B33:

det

(
B11 B12

B21 B22

)

= B11B22 −B12B22

= − 1

A2E−B33

(
B33A2E

+ − (E−E+ +A1A2)B21

)
.

We can also compare (2, 1) entries of both sides in (4.11). Applying (4.10) and
(4.13) to the both relations, we can finally write B21 in terms of B33 with a “big”
help from computer algebra package.

2× 2 block on

VΞ(f ; j,
1

2
, · · · , 1

2
,
ε

2
)

in terms of (3, 3)

VΞ(f + 1; j,
3

2
,
1

2
, · · · , 1

2
,
ε

2
)

is:

(5.15)






4C1C2

(n− 1)C3C4
− 1

−2(n− 2)ΞC5C2

(n− 1)2C3C4
8nΞC2

C3C4

−4C5C2

(n− 1)C1C3C4
+
C6

C1




 • Z(r; f + 1, J,Ξε) ,

where

C1 = 2fn− 2f − 2n+ 1 + n2 + 2rn− 2r − 2ΞJa ,

C2 = 2fr + ΞJa ,

C3 = n− 1 + 2r ,

C4 = (2f + 2r − Ξ + 2Ja)(2f + 2r + Ξ− 2Ja) ,

C5 = (n− 1 + 2Ja)(n− 1− 2Ja) , and

C6 = 2fn− 2f − 2n+ 1 + n2 − 2rn+ 2r + 2ΞJa .

Remark 2. In particular, if r = 1
2 and (3, 3) entry

√
−1f −

√
−1ΞεJ

of the exchanged Rarita-Schwinger operator is put into the above formula, we
recover the other 2× 2 entries





−n− 2

n

√
−1

(

f +
n+ 1

n− 1
ΞεJ

)

− 2
√
−1Ξ

n(n− 1)

(
(n− 1)(n− 2)

4
− n− 2

n− 1
J2

)

2
√
−1Ξ

√
−1f − n− 3

n− 1

√
−1ΞεJ






of the operator ([7]).
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