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GLOBAL GENERALIZED BIANCHI IDENTITIES FOR

INVARIANT VARIATIONAL PROBLEMS ON

GAUGE-NATURAL BUNDLES

MARCELLA PALESE AND EKKEHART WINTERROTH

Abstract. We derive both local and global generalized Bianchi identities for
classical Lagrangian field theories on gauge-natural bundles. We show that
globally defined generalized Bianchi identities can be found without the a pri-

ori introduction of a connection. The proof is based on a global decomposition
of the variational Lie derivative of the generalized Euler-Lagrange morphism
and the representation of the corresponding generalized Jacobi morphism on
gauge-natural bundles. In particular, we show that within a gauge-natural
invariant Lagrangian variational principle, the gauge-natural lift of infinites-
imal principal automorphism is not intrinsically arbitrary. As a consequence
the existence of canonical global superpotentials for gauge-natural Noether
conserved currents is proved without resorting to additional structures.

1. Introduction

Local generalized Bianchi identities for geometric field theories were introduced
[3, 5, 6, 19, 35] to get (after an integration by parts procedure) a consistent equation
between local divergences within the first variation formula. It was also stressed
that in the general theory of relativity these identities coincide with the contracted
Bianchi identities for the curvature tensor of the pseudo-Riemannian metric. We
recall that in the classical Lagrangian formulation of field theories the descrip-
tion of symmetries amounts to define suitable (vector) densities which generate
the conserved currents; in all relevant physical theories this densities are found to
be the divergence of skew-symmetric (tensor) densities, which are called superpo-

tentials for the conserved currents. It is also well known that the importance of
superpotentials relies on the fact that they can be integrated to provide conserved
quantities associated with the conserved currents via the Stokes Theorem (see e.g.
[11] and references quoted therein).

1991 Mathematics Subject Classification: 58A20, 58A32, 58E30, 58E40, 58J10, 58J70.
Key words and phrases: jets, gauge-natural bundles, variational principles, generalized

Bianchi identities, Jacobi morphisms, invariance and symmetry properties.
Dedicated to Hartwig in occasion of his first birthday.
Both authors were supported by GNFM of INdAM and University of Torino.

Received November 13, 2003.



290 M. PALESE, E. WINTERROTH

Subsequently, many attempts to “covariantize” such a derivation of Bianchi
identities and superpotentials have been made (see e.g. [4, 7, 9, 11, 12, 25, 26] and
the wide literature quoted therein) by resorting to background metrics or (fibered)
connections used to perform covariant integration by parts to get covariant (vari-
ations of) currents and superpotentials. In particular, in [10] such a covariant
derivation was implicitly assumed to hold true for any choice of gauge-natural
prolongations of principal connections equal to prolongations of principal connec-
tions with respect to a linear symmetric connection on the basis manifold in the
sense of [27, 28, 33].

In the present paper, we derive both local and global generalized Bianchi iden-
tities for classical field theories by resorting to the gauge-natural invariance of the
Lagrangian and via the application of the Noether Theorems [39]. In particular we
show that invariant generalized Bianchi identities can be found without the a pri-

ori introduction of a connection. The proof is based on a global decomposition of
the variational Lie derivative of the generalized Euler-Lagrange morphism involv-
ing the definition – and its representation – of a new morphism, the generalized
gauge-natural Jacobi morphisms. It is in fact known that the second variation of
a Lagrangian can be formulated in terms of Lie derivative of the corresponding
Euler-Lagrange morphism [13, 14, 17, 20, 40]. As a consequence the existence of
canonical, i.e. completely determined by the variational problem and its invariance

properties, global superpotentials for gauge-natural Noether conserved currents is
proved without resorting to additional structures.

Our general framework is the calculus of variations on finite order jet of fibered
bundles. Fibered bundles will be assumed to be gauge-natural bundles (i.e. jet
prolongations of fibered bundles associated to some gauge-natural prolongation of
a principal bundle P [8, 22, 23, 27, 28, 32]) and variations of sections are (vertical)
vector fields given by Lie derivatives of sections with respect to gauge-natural lifts
of infinitesimal principal automorphisms (see e.g. [8, 24, 32]).

In this general geometric framework we shall in particular consider finite order

variational sequences on gauge-natural bundles. The variational sequence on finite
order jet prolongations of fibered manifolds was introduced by Krupka as the quo-
tient of the de Rham sequence of differential forms (defined on the prolongation of
the fibered manifold) with respect to a natural exact contact subsequence, chosen
in such a way that the generalized Euler-Lagrange and Helmholtz-Sonin mappings
can be recognized as some of its quotient mappings [36, 37]. The representation
of the quotient sheaves of the variational sequence as sheaves of sections of ten-
sor bundles given in [46] and previous results on variational Lie derivatives and
Noether Theorems [10, 15] will be used. Furthermore, we relate the generalized
Bianchi morphism to the second variation of the Lagrangian. A very fundamental
abstract result due to Kolář concerning global decomposition formulae of vertical
morphisms, involved with the integration by parts procedure [21, 29, 30], will be a
key tool. In order to apply this results, we stress linearity properties of the Lie de-
rivative operator acting on sections of the gauge-natural bundle, which in turn rely
on properties of the gauge-natural lift of infinitesimal principal automorphisms.
The gauge-natural lift enables one to define the generalized gauge-natural Jacobi
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morphism (i.e. a generalized Jacobi morphism where the variation vector fields
– instead of general deformations – are Lie derivatives of sections of the gauge-
natural bundle with respect to gauge-natural lifts of infinitesimal automorphisms
of the underlying principal bundle), the kernel of which plays a very fundamental
role.

The paper is structured as follows. In Section 2 we state the geometric frame-
work by defining the variational sequence on gauge natural-bundles and by rep-
resenting the Lie derivative of fibered morphisms on its quotient sheaves; Section
3 is dedicated to the definition and the representation of the generalized gauge-
natural Jacobi morphism associated with a generalized gauge-natural Lagrangian.
We stress some linearity properties of this morphism as a consequence of the prop-
erties of the gauge-natural lift of infinitesimal right-invariant automorphisms of
the underlying structure bundle. In Section 4, by resorting to the Second Noether
Theorem, we relate the generalized Bianchi identities with the kernel of the gauge-
natural Jacobi morphism. We prove that the generalized Bianchi identities hold
true globally if and only if the vertical part of jet prolongations of gauge-natural
lifts of infinitesimal principal bundle automorphisms is in the kernel of the second
variation, i.e. of the generalized gauge-natural Jacobi morphism.

Here, manifolds and maps between manifolds are C∞. All morphisms of fibered
manifolds (and hence bundles) will be morphisms over the identity of the base
manifold, unless otherwise specified.

2. Variational sequences on gauge-natural bundles

2.1. Jets of fibered manifolds. In this subsection we recall some basic facts
about jet spaces. We introduce jet spaces of a fibered manifold and the sheaves
of forms on the s-th order jet space. Moreover, we recall the notion of horizontal
and vertical differential [32, 38, 42].

Our framework is a fibered manifold π : Y → X, with dimX = n and dim Y =
n+m.

For s ≥ q ≥ 0 integers we are concerned with the s-jet space JsY of s-jet
prolongations of (local) sections of π; in particular, we set J0Y ≡ Y . We recall
the natural fiberings πs

q : JsY → JqY , s ≥ q, πs : JsY → X, and, among these,
the affine fiberings πs

s−1. We denote with V Y the vector subbundle of the tangent
bundle TY of vectors on Y which are vertical with respect to the fibering π.

Charts on Y adapted to π are denoted by (xσ , yi). Greek indices σ, µ, . . .
run from 1 to n and they label basis coordinates, while Latin indices i, j, . . . run
from 1 to m and label fibre coordinates, unless otherwise specified. We denote by
(∂σ, ∂i) and (dσ , di) the local basis of vector fields and 1-forms on Y induced by an
adapted chart, respectively. We denote multi-indices of dimension n by boldface
Greek letters such as α = (α1, . . . , αn), with 0 ≤ αµ, µ = 1, . . . , n; by an abuse of
notation, we denote with σ the multi-index such that αµ = 0, if µ 6= σ, αµ = 1, if
µ = σ. We also set |α|:=α1 + · · ·+αn and α!:=α1! . . . αn!. The charts induced on
JsY are denoted by (xσ , yi

α), with 0 ≤ |α| ≤ s; in particular, we set yi
0
≡ yi. The

local vector fields and forms of JsY induced by the above coordinates are denoted
by (∂α

i ) and (di
α), respectively.
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In the theory of variational sequences a fundamental role is played by the contact

maps on jet spaces (see [36, 37, 38, 46]). Namely, for s ≥ 1, we consider the natural
complementary fibered morphisms over JsY → Js−1Y

D : JsY ×
X
TX → TJs−1Y , ϑ : JsY ×

Js−1Y
TJs−1Y → V Js−1Y ,

with coordinate expressions, for 0 ≤ |α| ≤ s− 1, given by

D = dλ⊗Dλ = dλ⊗(∂λ + yj
α+λ∂

α
j ) , ϑ = ϑj

α⊗∂α
j = (dj

α − yj
α+λd

λ)⊗∂α
j .

The morphisms above induce the following natural splitting (and its dual):

JsY ×
Js−1Y

T ∗Js−1Y =

(

JsY ×
Js−1Y

T ∗X

)

⊕ C∗
s−1[Y ] ,(1)

where C∗
s−1[Y ]:= imϑ∗s and ϑ∗s : JsY ×

Js−1Y
V ∗Js−1Y → JsY ×

Js−1Y
T ∗Js−1Y . We

have the isomorphism C∗
s−1[Y ] ≃ JsY ×

Js−1Y
V ∗Js−1Y . The role of the splitting

above will be fundamental in the present paper.
If f : JsY → R is a function, then we setDσf :=Dσf , Dα+σf :=DσDαf , where

Dσ is the standard formal derivative. Given a vector field Ξ : JsY → TJsY , the
splitting (1) yields Ξ ◦ πs+1

s = ΞH + ΞV where, if Ξ = Ξγ∂γ + Ξi
α∂

α
i , then we have

ΞH = ΞγDγ and ΞV = (Ξi
α−yi

α+γΞγ)∂α
i . We shall call ΞH and ΞV the horizontal

and the vertical part of Ξ, respectively.
The splitting (1) induces also a decomposition of the exterior differential on

Y , (πs
s−1)

∗ ◦ d = dH + dV , where dH and dV are defined to be the horizontal

and vertical differential . The action of dH and dV on functions and 1-forms on
JsY uniquely characterizes dH and dV (see, e.g., [42, 46] for more details). A
projectable vector field on Y is defined to be a pair (Ξ, ξ), where Ξ : Y → TY and
ξ : X → TX are vector fields and Ξ is a fibered morphism over ξ. If there is no
danger of confusion, we will denote simply by Ξ a projectable vector field (Ξ, ξ).
A projectable vector field (Ξ, ξ), with coordinate expression Ξ = ξσ∂σ + ξi∂i,
ξ = ξσ∂σ, can be conveniently prolonged to a projectable vector field (jsΞ, ξ),
whose coordinate expression turns out to be

jsΞ = ξσ∂σ + (Dαξ
i −

∑

β+γ=α

α!

β!γ!
Dβξ

µ yi
γ+µ) ∂α

i ,

where β 6= 0 and 0 ≤ |α| ≤ s (see e.g. [36, 38, 42, 46]); in particular, we have
the following expressions (jsΞ)H = ξσ Dσ, (jsΞ)V = Dα(ΞV )i ∂α

i , with (ΞV )i =
ξi − yi

σξ
σ, for the horizontal and the vertical part of jsΞ, respectively. From now

on, by an abuse of notation, we will write simply jsΞH and jsΞV . In particular,
jsΞV : Js+1Y ×

JsY
JsY → Js+1Y ×

JsY
JsV Y .

We are interested in the case in which physical fields are assumed to be sections
of a fibered bundle and the variations of sections are generated by suitable vector
fields. More precisely, fibered bundles will be assumed to be gauge-natural bundles

and variations of sections are (vertical) vector fields given by Lie derivatives of sec-
tions with respect to gauge-natural lifts of infinitesimal principal automorphisms.
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Such geometric structures have been widely recognized to suitably describe so-
called gauge-natural field theories, i.e. physical theories in which right-invariant
infinitesimal automorphisms of the structure bundle P uniquely define the trans-
formation laws of the fields themselves (see e.g. [8, 32]). In the following, we shall
develop a suitable geometrical setting which enables us to define and investigate
the fundamental concept of conserved quantity in gauge-natural Lagrangian field
theories.

2.2. Gauge-natural prolongations. First we shall recall some basic definitions
and properties concerning gauge-natural prolongations of (structure) principal
bundles (for an extensive exposition see e.g. [32] and references therein; in the
interesting paper [23] fundamental reduction theorems for general linear connec-
tions on vector bundles are provided in the gauge-natural framework).

Let P → X be a principal bundle with structure group G. Let r ≤ k be

integers and W (r,k)P := JrP ×
X
Lk(X), where Lk(X) is the bundle of k-frames in

X [8, 22, 32], W (r,k)G:=JrG⊙GLk(n) the semidirect product with respect to the
action of GLk(n) on JrG given by the jet composition and GLk(n) is the group
of k-frames in R

n. Here we denote by JrG the space of (r, n)-velocities on G.

Elements of W (r,k)P are given by (jx
r γ, j

0
kt), with γ : X → P a local section,

t : R
n → X locally invertible at zero, with t(0) = x, x ∈ X. Elements of W (r,k)G

are (j0r g, j
0
kα), where g : R

n → G, α : R
n → R

n locally invertible at zero, with
α(0) = 0.

Remark 1. The bundle W (r,k)P is a principal bundle over X with structure

group W (r,k)G. The right action of W (r,k)G on the fibers of W (r,k)P is defined
by the composition of jets (see, e.g., [22, 32]).

Definition 1. The principal bundle W (r,k)P (resp. the Lie group W (r,k)G) is
said to be the gauge-natural prolongation of order (r, k) of P (resp. of G).

Remark 2. Let (Φ, φ) be a principal automorphism of P [32]. It can be prolonged

in a natural way to a principal automorphism of W (r,k)P , defined by:

W (r,k)(Φ, φ) : (jx
r γ, j

0
kt) 7→ (jφ(x)

r (Φ ◦ γ ◦ φ−1), j0k(φ ◦ t)) .

The induced automorphism W (r,k)(Φ, φ) is an equivariant automorphism of

W (r,k)P with respect to the action of the structure group W (r,k)G. We shall
simply denote it by the same symbol Φ, if there is no danger of confusion.

Definition 2. We define the vector bundle over X of right-invariant infinitesimal
automorphisms of P by setting A = TP /G.

We also define the vector bundle over X of right invariant infinitesimal auto-

morphisms of W (r,k)P by setting A(r,k):=TW (r,k)P /W (r,k)G (r ≤ k).

Remark 3. We have the following projections A(r,k) → A(r′,k′), r ≤ k, r′ ≤ k′,
with r ≥ r′, s ≥ s′.
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2.3. Gauge-natural bundles and lifts. Let F be any manifold and ζ : W (r,k)G×

F → F be a left action of W (r,k)G on F . There is a naturally defined right ac-

tion of W (r,k)G on W (r,k)P × F so that we can associate in a standard way to

W (r,k)P the bundle, on the given basis X, Y ζ :=W (r,k)P ×ζ F .

Definition 3. We say (Y ζ ,X, πζ ; F ,G) to be the gauge-natural bundle of order

(r, k) associated to the principal bundle W (r,k)P by means of the left action ζ of

the group W (r,k)G on the manifold F [8, 32].

Remark 4. A principal automorphism Φ of W (r,k)P induces an automorphism
of the gauge-natural bundle by:

Φζ : Y ζ → Y ζ : [(jx
r γ, j

0
kt), f̂ ]ζ 7→ [Φ(jx

r γ, j
0
kt), f̂ ]ζ ,(2)

where f̂ ∈ F and [·, ·]ζ is the equivalence class induced by the action ζ.

Denote by TX and A(r,k) the sheaf of vector fields on X and the sheaf of right

invariant vector fields on W (r,k)P , respectively. A functorial mapping G is defined
which lifts any right-invariant local automorphism (Φ, φ) of the principal bundle
W (r,k)P into a unique local automorphism (Φζ , φ) of the associated bundle Y ζ .

Its infinitesimal version associates to any Ξ̄ ∈ A(r,k), projectable over ξ ∈ TX , a
unique projectable vector field Ξ̂:=G(Ξ̄) on Y ζ in the following way:

G : Y ζ ×
X

A(r,k) → TY ζ : (y, Ξ̄) 7→ Ξ̂(y) ,(3)

where, for any y ∈ Y ζ , one sets: Ξ̂(y) = d
dt

[(Φζ t)(y)]t=0, and Φζ t denotes the
(local) flow corresponding to the gauge-natural lift of Φt.

This mapping fulfils the following properties:

(1) G is linear over idY ζ
;

(2) we have Tπζ ◦ G = idTX ◦π̄(r,k), where π̄(r,k) is the natural projection

Y ζ ×
X

A(r,k) → TX;

(3) for any pair (Λ̄, Ξ̄) of vector fields in A(r,k), we have

G([Λ̄, Ξ̄]) = [G(Λ̄),G(Ξ̄)] ;

(4) we have the coordinate expression of G

G = dµ⊗∂µ + dA
ν ⊗(Ziν

A ∂i) + dν
λ⊗(Ziλ

ν ∂i) ,(4)

with 0 < |ν| < k, 1 < |λ| < r and Ziν
A , Ziλ

ν ∈ C∞(Y ζ) are suitable
functions which depend on the bundle, precisely on the fibers (see [32]).

Definition 4. The map G is called the gauge-natural lifting functor. The pro-
jectable vector field (Ξ̂, ξ) ≡ G((Ξ̄, ξ)) is called the gauge-natural lift of (Ξ̄, ξ) to
the bundle Y ζ .
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2.4. Lie derivative of sections of gauge-natural bundles. Let γ be a (local)

section of Y ζ , Ξ̄ ∈ A(r,k) and Ξ̂ its gauge-natural lift. Following [32] we define a

(local) section £Ξ̄γ : X → V Y ζ , by setting: £Ξ̄γ = Tγ ◦ ξ − Ξ̂ ◦ γ.

Definition 5. The (local) section £Ξ̄γ is called the generalized Lie derivative of

γ along the vector field Ξ̂.

Remark 5. This section is a vertical prolongation of γ, i.e. it satisfies the property:
νY ζ

◦ £Ξγ = γ, where νY ζ
is the projection νY ζ

: V Y ζ → Y ζ . Its coordinate

expression is given by (£Ξ̄γ)
i = ξσ∂σγ

i − Ξ̂i(γ).

Remark 6. The Lie derivative operator acting on sections of gauge-natural bun-
dles satisfies the following properties:

(1) for any vector field Ξ̄ ∈ A(r,k), the mapping γ 7→ £Ξ̄γ is a first-order
quasilinear differential operator;

(2) for any local section γ of Y ζ , the mapping Ξ̄ 7→ £Ξ̄γ is a linear differential
operator;

(3) by using the canonical isomorphism V JsY ζ ≃ JsV Y ζ , we have £Ξ̄[jrγ] =
js[£Ξ̄γ], for any (local) section γ of Y ζ and for any (local) vector field

Ξ̄ ∈ A(r,k).
We can regard £Ξ̄ : J1Y ζ → V Y ζ as a morphism over the basis X.

In this case it is meaningful to consider the (standard) jet prolongation
of £Ξ̄, denoted by js£Ξ̄ : Js+1Y ζ → V JsY ζ . Furthermore, we have

jsΞ̂V (γ) = −£jsΞ̄γ.
(4) we can consider £ as a bundle morphism:

£ : Js+1(Y ζ ×
X

A(r,k)) → Js+1Y ζ ×
JsY ζ

V JsY ζ .(5)

2.5. Variational sequences. For the sake of simplifying notation, sometimes,
we will omit the subscript ζ, so that all our considerations shall refer to Y as a
gauge-natural bundle as defined above.

We shall be here concerned with some distinguished sheaves of forms on jet
spaces [36, 37, 42, 46]. Due to the topological triviality of the fibre of JsY → Y ,
we will consider sheaves on JsY with respect to the topology generated by open

sets of the kind (πs
0)

−1
(U), with U ⊂ Y open in Y .

i. For s ≥ 0, we consider the standard sheaves Λp
s of p-forms on JsY .

ii. For 0 ≤ q ≤ s, we consider the sheaves Hp

(s,q) and Hp
s of horizontal forms ,

i.e. of local fibered morphisms (following the well known correspondence between
forms and fibered morphisms over the basis manifold, see e.g. [32]) over πs

q and πs

of the type α : JsY →
p
∧T ∗JqY and β : JsY →

p
∧T ∗X, respectively.

iii. For 0 ≤ q < s, we consider the subsheaf Cp

(s,q) ⊂ Hp

(s,q) of contact forms ,

i.e. of sections α ∈ Hp

(s,q) with values into
p
∧(C∗

q [Y ]). We have the distinguished

subsheaf Cp
s ⊂ Cp

(s+1,s) of local fibered morphisms α ∈ Cp

(s+1,s) such that α =
p
∧ϑ∗s+1 ◦ α̃, where α̃ is a section of the fibration Js+1Y ×

JsY

p
∧V ∗JsY → Js+1Y

which projects down onto JsY .
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Remark 7. Notice that according to [36, 37, 46], the fibered splitting (1) yields

the sheaf splitting Hp

(s+1,s) =
⊕p

t=0 Cp−t

(s+1,s) ∧H
t
s+1, which restricts to the inclusion

Λp
s ⊂

⊕p
t=0 Cp−t

s∧H
t,h

s+1, where Hp,h
s+1 := h(Λp

s) for 0 < p ≤ n and the surjective
map h is defined to be the restriction to Λp

s of the projection of the above splitting
onto the non-trivial summand with the highest value of t.

The induced sheaf splitting above plays here a fundamental role. We stress again
that, for any jet order s, it is induced by the natural contact structure on the affine
bundle πs+1

s . Since a variational problem (described by the corresponding action
integral) is insensitive to the addition of any piece containing contact factors,
such an affine structure has been pointed out in [36] to be fundamental for the
description of the geometric structure of the Calculus of Variations on finite order
jets of fibered manifolds. This property reflects on the intrinsic structure of all
objects defined and represented in the variational sequence of a given order which
we are just going to introduce. In particular this holds true for the generalized
Jacobi morphism we will define and represent in Section 3.

We shortly recall now the theory of variational sequences on finite order jet
spaces, as it was developed by D. Krupka in [36].

By an abuse of notation, let us denote by d kerh the sheaf generated by the
presheaf d kerh in the standard way. We set Θ∗

s := kerh + d kerh.
In [36] it was proved that the following sequence is an exact resolution of the

constant sheaf RY over Y :

0 - RY
- Λ0

s

E0
- Λ1

s/Θ
1
s

E1
- Λ2

s/Θ
2
s

E2
- . . .

EI−1
- ΛI

s/Θ
I
s

EI
- ΛI+1

s

d
- 0

Definition 6. The above sequence, where the highest integer I depends on the
dimension of the fibers of JsY → X (see, in particular, [36]), is said to be the s-th
order variational sequence associated with the fibered manifold Y → X .

For practical purposes, specifically to deal with morphisms which have a well
known interpretation within the Calculus of Variations, we shall limit ourselves to
consider the truncated variational sequence:

0 - RY
- V0

s

E0
- V1

s

E1
- . . .

En
- Vn+1

s

En+1
- En+1(V

n+1
s )

En+2
- 0 ,

where, following [46], the sheaves Vp
s :=Cp−n

s ∧Hn,h
s+1/h(d kerh) with 0 ≤ p ≤ n+2

are suitable representations of the corresponding quotient sheaves in the variational
sequence by means of sheaves of sections of vector bundles. We notice that in
the following, to avoid confusion, sometimes (when the interpretation could be
dubious) we shall denote with a subscript the relevant fibered bundle on which the
variational sequence is defined; e.g. in the case above, we would write (Vp

s )Y .
Let α ∈ C1

s ∧ Hn,h
s+1 ⊂ Vn+1

s+1 . Then there is a unique pair of sheaf morphisms
([29, 34, 46])

Eα ∈ C1
(2s,0) ∧Hn,h

2s+1 , Fα ∈ C1
(2s,s) ∧Hn,h

2s+1 ,(6)

such that (π2s+1
s+1 )∗α = Eα − Fα, and Fα is locally of the form Fα = dHpα, with

pα ∈ C1
(2s−1,s−1) ∧Hn−1

2s.
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Definition 7. Let γ ∈ Λn+1
s . The morphism Eh(γ) ∈ Vn+1

s is called the generalized

Euler-Lagrange morphism associated with γ and the operator En is called the gen-

eralized Euler-Lagrange operator. Furthermore ph(γ) is a generalized momentum
associated with Eh(γ).

Let η ∈ C1
s ∧ C1

(s,0) ∧Hn,h
s+1 ⊂ Vn+2

s+1 , then there is a unique morphism

Kη ∈ C1
(2s,s) ⊗ C1

(2s,0) ∧Hn,h
2s+1

such that, for all Ξ : Y → V Y , EjsΞ⌋η = C1
1 (j2sΞ⊗Kη), where C1

1 stands for
tensor contraction on the first factor and ⌋ denotes inner product (see [34, 46]).
Furthermore, there is a unique pair of sheaf morphisms

Hη ∈ C1
(2s,s) ∧ C1

(2s,0) ∧Hn,h
2s+1 , Gη ∈ C2

(2s,s) ∧Hn,h
2s+1 ,(7)

such that (π2s+1
s+1 )

∗
η = Hη − Gη and Hη = 1

2 A(Kη), where A stands for anti-
symmetrisation. Moreover, Gη is locally of the type Gη = dHqη, where qη ∈
C2
(2s−1,s−1) ∧Hn−1

2s, hence [η] = [Hη] [34, 46].

Definition 8. Let γ ∈ Λn+1
s . The morphism Hhdγ ≡ H[En+1(γ)], where square

brackets denote equivalence class, is called the generalized Helmholtz morphism and
the operator En+1 is called the generalized Helmholtz operator. Furthermore qhdγ ≡
q[En+1(γ)] is a generalized momentum associated with the Helmholtz morphism.

Remark 8. A section λ ∈ Vn
s is just a Lagrangian of order (s+1) of the standard

literature. Furthermore, En(λ) ∈ Vn+1
s coincides with the standard higher order

Euler-Lagrange morphism associated with λ.

Remark 9. It is well known that it is always possible to find global morphisms
ph(γ) and qhdγ satisfying decomposition formulae above; however, this possibility
depends in general on the choice of a linear symmetric connection on the basis
manifold (see [1, 2, 31]). In the present paper, we shall avoid to perform such a
choice a priori, with the explicit intention of performing an invariant derivation of
generalized Bianchi identities, which does not relay on an invariant decomposition
involving (local) divergences; that is in fact possible when resorting to the repre-
sentation of the Second Noether Theorem in the variational sequence, as shown
by Theorem 3 below. Indeed, contact forms and horizontal differentials of contact
forms of higher degree are factored out in the quotient sheaves of the variational
sequence. It is also clear that this will give, at least, prescriptions on the meaning-
ful (within a fully gauge-natural invariant variational problem) possible choices of
connections to be used to derive covariantly generalized Bianchi identities in the
classical way.

2.6. Variational Lie derivative. In this subsection, following essentially [15],
we give a representation in the variational sequence of the standard Lie derivative
operator acting on fibered morphisms. We consider a projectable vector field (Ξ, ξ)
on Y and take into account the Lie derivative operator LjsΞ with respect to the
jet prolongation jsΞ of Ξ. In fact, as well known, such a prolonged vector field
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preserves the fiberings πs
q , π

s; hence it preserves the splitting (1). Thus we have

LjsΞ : Vp
s → Vp

s : [α] 7→ LjsΞ([α]) = [LjsΞα] .

Definition 9. Let (Ξ, ξ) be a projectable vector field. We call the map LjsΞ

defined above the variational Lie derivative.

Variational Lie derivatives allow us to calculate infinitesimal symmetries of
forms in the variational sequence. In particular, we are interested in symmetries
of generalized Lagrangians and Euler-Lagrange morphisms which will enable us to
represent in this framework Noether Theorems as well as known results stated in
the framework of geometric bundles (see e.g. the fundamental papers by Trautman
[43, 44, 45]).

Remark 10. Let s ≤ q. Then the inclusions Λp
s ⊂ Λp

q and Θp
s ⊂ Θp

q yield the

injective sheaf morphisms (see [36]) χq
s : (Λp

s/Θ
p
s) →

(

Λp
q/Θ

p
q

)

: [α] 7→ [(πq
s)∗α],

hence the inclusions κq
s : Vp

s → Vp
q for s ≤ q.

The inclusions κq
s of the variational sequence of order s in the variational se-

quence of order q give rise to new representations of LjsΞ on Vp
q . In particular,

the following two results hold true [15].

Theorem 1. Let [α] = h(α) ∈ Vn
s . Then we have locally

κ2s+1
s ◦LjsΞ(h(α)) = ΞV ⌋En(h(α)) + dH(j2sΞV ⌋pdV h(α) + ξ⌋h(α)) .

Proof. We have

κ2s+1
s ◦LjsΞ(h(α)) = h(Ljs+1Ξh(α)))

= dH(js+1ΞH⌋h(α)) + h(js+2ΞV ⌋dV h(α))

= dH(ξ⌋h(α)) + h(j2s+1ΞV ⌋(EdV h(α) + FdV h(α))) .

Since FdV h(α) = dHpdV h(α) locally, then

κ2s+1
s ◦LjsΞ(h(α)) = ΞV ⌋En(h(α)) + dH(j2sΞV ⌋pdV h(α) + ξ⌋h(α)) .

�

Theorem 2. Let α ∈ Λn+1
s . Then we have globally

κ2s+1
s ◦LjsΞ[α] = En(js+1ΞV ⌋h(α)) + C1

1 (jsΞV ⊗Khdα) .

Proof. We have

κ2s+1
s ◦LjsΞ[α] = [En(js+1ΞV ⌋h(α)) + js+1ΞV ⌋dV h(α)]

= En(js+1ΞV ⌋h(α)) + C1
1 (jsΞV ⊗Khdα) .

�
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3. Variations and generalized Jacobi morphisms

To proceed further, we now need to recall some previous results concerning the
representation of generalized Jacobi morphisms in variational sequences and their
relation with the second variation of a generalized Lagrangian ([13, 14, 17, 40], see
also the fundamental paper [20]). In [14] the relation between the classical varia-
tions and Lie derivatives of a Lagrangian with respect to (vertical) variation vector
fields was worked out and the variational vertical derivative was introduced as an
operator acting on sections of sheaves of variational sequences, by showing that
this operator is in fact a natural transformation, being a functor on the category
of variational sequences. We shall here introduce formal variations of a morphism
as multiparameter deformations showing that this is equivalent to take iterated
variational Lie derivatives with respect to (vertical) variation vector fields. Our
aim is to relate, on the basis of relations provided by Corollary 1 and Proposition
1 below, the second variation of the Lagrangian λ to the Lie derivative of the
associated Euler-Lagrange morphism and to the generalized Bianchi morphism,
defined by Eq. (21) in Subsection 4.1 below.

We recall (see [13, 14, 17]) a Lemma which relates the i-th variation with the
iterated Lie derivative of the morphism itself. Furthermore, following [29], we
recall the relation between the variation of the morphism and the vertical exterior
differential.

Definition 10. Let α : JsY →
p
∧T ∗JsY . Let ψk

tk
, with 1 ≤ k ≤ i, be the flows

generated by an i-tuple (Ξ1, . . . ,Ξi) of (vertical, although actually it is enough that
they are projectable) vector fields on Y and let Γi be the i-th formal variation

generated by the Ξk’s (to which we shall refer as variation vector fields) and
defined, for each y ∈ Y , by Γi(t1, . . . , ti)(y) = ψi

ti
◦ . . . ◦ ψ1

t1
(y). We define the

i-th formal variation of the morphism α to be

δiα:=
∂i

∂t1 . . . ∂ti

∣

∣

t1,...,ti=0
(α ◦ jsΓi(t1, . . . , ti)(y)) .(8)

The following two Lemmas state the relation between the i-th formal variation
of a morphism and its iterated Lie derivative [13, 14, 17, 20].

Lemma 1. Let α : JsY →
p
∧T ∗JsY and LjsΞk

be the Lie derivative operator

acting on differential fibered morphism.

Let Γi be the i-th formal variation generated by variation vector fields Ξk, 1 ≤
k ≤ i on Y . Then we have

δiα = LjsΞ1
. . . LjsΞi

α .(9)

Lemma 2. Let Ξ be a variation vector field on Y and λ ∈ Λn
s . Then we have

δλ = jsΞ⌋dV λ [29].

Remark 11. Owing to the linearity properties of dV λ, we can think of the opera-
tor δ as a linear morphism with respect to the vector bundle structure JsV Y → X,

so that we can write δα : JsY → JsV
∗Y ∧

n
∧T ∗X. This property can be obviously
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iterated for each integer i, so that one can analogously define an i-linear morphism

δi. In particular, we have δ2α : JsY ×
X
JsV Y → JsV

∗Y ⊗JsV
∗Y ∧

n
∧T ∗X.

For notational convenience and by an abuse of notation, in the sequel we shall
denote with the same symbol an object defined on the vertical prolongation V Y as
well as the corresponding one defined on the iterated vertical prolongation V (V Y ),
whenever there is no danger of confusion.

Corollary 1. Let λ ∈ (Λn
s )Y . Let Ξ1, Ξ2 be two variation vector fields on Y

generating the formal variation Γ2. Then we have

δ2λ = j2sΞ2⌋En(δλ) + dH(j2sΞ2⌋pdV δλ)(10)

= δ(j2sΞ1⌋En(λ) + dH(j2sΞ1⌋pdV λ))(11)

= j2sΞ2⌋En((j2sΞ1⌋En(λ)) + dH(j2s+1Ξ2⌋pdV (Ξ1⌋En(λ))(12)

+ δ(j2sΞ1⌋pdV λ)) .(13)

Proof. We apply Lemma 2 and decomposition provided by Theorem 1. Further-
more, dHδ = δdH , which follows directly from the analogous naturality property
of the Lie derivative operator. �

Remark 12. From the relations above we also infer, of course, that

j2sΞ2⌋En((j2sΞ1⌋En(λ)) + dH(j2s+1Ξ2⌋pdV (Ξ1⌋En(λ))) = δ(j2sΞ1⌋En(λ)) = δ2λ ,

j2sΞ2⌋En((j2sΞ1⌋En(λ)) + dH(δ(j2sΞ1⌋pdV λ)) = j2sΞ2⌋En(δλ) .

3.1. Variational vertical derivatives and generalized Jacobi morphisms.

In this section we restrict our attention to morphisms which are (identified with)
sections of sheaves in the variational sequence. We shall recall some results of ours
[13, 14] by defining the i-th variational vertical derivative of morphisms.

Let α ∈ (Vn
s )Y . We have

δi[α]:=[δiα] = [LΞi
. . . LΞ1

α] = LΞi
. . .LΞ1

[α] .

Definition 11. We call the operator δi the i-th variational vertical derivative.

In [14] the variational vertical derivative was introduced as an operator acting
on sections of sheaves of variational sequences, by showing that this operator is
in fact a natural transformation, being a functor on the category of variational
sequences as it can be summarized by the following commutative diagram.

. . .
dH

- (Vn
s )Y

En
- (Vn+1

s )Y

En+1
- En+1(V

n+1
s )Y

En+2
- 0

. . .
dH

- (Vn
s )Y ×

X

V Y

δ
? En

- (Vn+1
s )Y ×

X

V Y

δ ?
En+1

- En+1((V
n+1
s )Y ×

X

V Y )

δ ?
En+2

- 0

. . .
dH
- (Vn

s )Y ×
X

V (V Y )

δ
? En

- (Vn+1
s )Y ×

X

V (V Y )

δ ?
En+1

- En+1((V
n+1
s )Y ×

X

V (V Y ))

δ ?
En+2

- 0

. . . . . . . . .

δ
? . . . . . .

δ
? . . . . . .

δ
? . . . . . .
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As a straightforward consequence we have the following characterization of the
second variation of a generalized Lagrangian in the variational sequence.

Proposition 1. Let λ ∈ (Vn
s )Y and let Ξ be a variation vector field; then we have

δ2λ = [En(j2sΞ⌋hδλ) + C1
1 (j2sΞ⊗Khdδλ)] .(14)

Proof. Since δλ ∈ (Vn
s )V Y , by Remark 11 we have that δλ ∈ (Vn+1

s )Y and then
hdδλ ∈ En+1(V

n+1
s )Y ⊂ (Vn+2

s )Y ; thus the assertion follows by a straightforward
application of Theorem 2. Notice that here C1

1 (j2sΞ⊗Khdδλ) : J2sY ×
X
J2sV Y →

V ∗Y ∧
n
∧T ∗X. �

Remark 13. Let l ≥ 0 and let F be any vector bundle over X. Let α : Jl(Y ×
X

F )

→
p
∧T ∗X be a linear morphism with respect to the fibering JlY ×

X
JlF → JlY

and let D̂H be the horizontal differential on Y ×
X

F . We can uniquely write α as

α ≡ α : JlY → C∗
l [F ] ∧ (

p
∧T ∗X) .

Then D̂Hα = D̂Hα (this property was pointed out in [16]).

Lemma 3. Let Ξ be a variation vector field. Let χ(λ,Ξ):=C1
1 (j2sΞ⊗Khdδλ) ≡

EjsΞ⌋h(dδλ) and let D̃H be the horizontal differential on Y ×
X
V Y . We can see

χ(λ,Ξ) as an extended morphism χ(λ,Ξ) : J2s(Y ×
X
V Y ) → J2sV

∗(Y ×
X
V Y )⊗

V ∗Y ∧ (
n
∧T ∗X) satisfying D̃Hχ(λ,Ξ) = 0.

Proof. The morphism χ(λ,Ξ) : J2s(Y ×
X
V Y ) → V ∗Y ∧ (

n
∧T ∗X) is a linear

morphism with respect to the projection J2s(Y ×
X
V Y ) → J2sY (see Remark 11),

then we can apply the Remark above, so that χ(λ,Ξ) : J2sY → J2sV
∗(V Y )⊗

V ∗Y ∧ (
n
∧T ∗X) ≃ J2sV

∗Y ⊗J2sV
∗Y ⊗V ∗Y ∧ (

n
∧T ∗X) and again by linearity we

get χ(λ,Ξ) : J2s(Y ×
X
V Y ) → J2sV

∗Y ⊗V ∗Y ∧ (
n
∧T ∗X). �

The following Lemma is an application of an abstract result, due to Horák
and Kolář [21, 29, 30], concerning a global decomposition formula for vertical
morphisms.

Lemma 4. Let Ξ be a variation vector field.

Let χ(λ,Ξ) as in the above Lemma. Then we have (π4s+1
2s+1)∗χ(λ,Ξ) = Eχ(λ,Ξ) +

Fχ(λ,Ξ), where

Eχ(λ,Ξ) : J4s(Y ×
X
V Y ) → C∗

0 [Y ]⊗C∗
0 [Y ] ∧

n
∧T ∗X ,(15)

and locally, Fχ(λ,Ξ) = D̃HMχ(λ,Ξ), with

Mχ(λ,Ξ) : J4s−1(Y ×
X
V Y ) → C∗

2s−1[Y ]⊗C∗
0 [Y ] ∧

n−1
∧ T ∗X .
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Proof. Following e.g. [29, 30, 46], the global morphisms Eχ(λ,Ξ) and Fχ(λ,Ξ) can
be evaluated by means of a backwards procedure. �

Definition 12. We call the morphism J (λ,Ξ):=Eχ(λ,Ξ) the generalized Jacobi

morphism associated with the Lagrangian λ.

Example 1. Let us write explicitly the coordinate expression of J (λ,Ξ). By
functoriality of δ, we have h(dδλ) = h(δdλ). Let now locally λ = Lω, where L
is a function of JsY and ω a volume form on X, then dλ = ∂α

i (L)di
α ∧ ω and

δdλ = ∂σ
j (∂α

i L)dj
σ⊗di

α ∧ ω, thus finally h(δdλ) = h(dδλ) = ∂j(∂
α
i L)dj

α⊗di ∧ ω.

As a consequence we have, with 0 ≤ |µ|, |α|, |σ| ≤ 2s+ 1:

χ(λ,Ξ) = DσΞl
V

(

∂j(∂
µ
i L) −

s−|µ|
∑

|α|=0

(−1)|µ+α| (µ + α)!

µ!α!
Dα∂

α
j (∂µ

i L)
)

∂σ
l ⊗ϑj

µ⊗ϑ
i ∧ ω

.
= χlµ

σji∂
σ
l ⊗ϑj

µ⊗ϑ
i ∧ ω ;

and by the Lemma above, we get (up to divergences):

J (λ,Ξ) = (−1)|α|Dα χ
lα
σji∂

σ
l ⊗ϑj⊗ϑi ∧ ω .(16)

3.2. Generalized gauge-natural Jacobi morphisms. We intend now to spec-
ify the just mentioned results and definitions concerning the Jacobi morphism by
considering as variation vector fields the vertical parts of prolongations of gauge-
natural lifts of infinitesimal principal automorphisms to the gauge-natural bundle
Y ζ . Owing to linearity properties of the Lie derivative of sections and taking into

account the fact that, as we already recalled, jsΞ̂V = −£jsΞ̄, we can state the
following important results.

Recall (see [32], Proposition 15.5) that the jet prolongation of order s of Y ζ is
a gauge-natural bundle itself associated to some principal prolongation of order
(r + s, k + s) of the underling principal bundle P . Let Ξ̄ ∈ A(r,k) and Ξ̂:=G(Ξ̄)

the corresponding gauge-natural lift to Y ζ . Let jsΞ̂ be the s-jet prolongation of Ξ̂
which is a vector field on JsY ζ . It turns out then that it is a gauge natural lift of

Ξ̄ too, i.e. jsG(Ξ̄) = G(jsΞ̄). Let us consider jsΞ̂V , i.e. the vertical part according
to the splitting (1). We shall denote by jsΞ̄V the induced section of the vector
bundle A(r+s,k+s). The set of all sections of this kind defines a vector subbundle of
JsA

(r,k) which we shall denote, by a slight abuse of notation (since we are speaking
about vertical parts with respect to the splitting (1)), by V JsA

(r,k).

Lemma 5. Let χ(λ,G(Ξ̄)V ):=C1
1 (j2sΞ̂⊗KhdLj2sΞ̄V

λ) ≡ EjsΞ̂⌋hdLj2s+1Ξ̄V
λ. Let DH

be the horizontal differential on Y ζ ×
X
VA(r,k). Then we have:

(π4s+1
2s+1)∗χ(λ,G(Ξ̄)V ) = Eχ(λ,G(Ξ̄)V ) + Fχ(λ,G(Ξ̄)V ) ,

where

Eχ(λ,G(Ξ̄)V
: J4sY ζ ×

X
V J4sA

(r,k) → C∗
0 [A(r,k)]⊗C∗

0 [A(r,k)] ∧ (
n
∧T ∗X) ,(17)
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and locally, Fχ(λ,G(Ξ̄)V ) = DHMχ(λ,G(Ξ̄)V ), with

Mχ(λ,G(Ξ̄)V ) : J4sY ζ ×
X
V J4sA

(r,k) → C∗
2s−1[A

(r,k)]⊗C∗
0 [A(r,k)] ∧ (

n−1
∧ T ∗X) .

Proof. Notice that, since χ(λ,G(Ξ̄)V ) ≡ E(−£jsΞV
⌋hdLj2s+1Ξ̄V

λ), as a consequence

of the linearity properties of χ(λ,Ξ) and of linearity properties of the Lie deriv-
ative operator £ (see Subsections 2.3 and 2.4) we have χ(λ,G(Ξ̄)V ) : J2sY ζ ×

X

V J2sA
(r,k) → C∗

2s[Y ζ ×
X
VA(r,k)]⊗C∗

0 [A(r,k)] ∧ (
n
∧T ∗X) and DHχ(λ,G(Ξ̄)V ) = 0.

Thus the decomposition Lemma 4 can be applied. �

Definition 13. Let Ξ̄ ∈ A(r,k).
We call the morphism J (λ,G(Ξ̄)V ) := Eχ(λ,G(Ξ̄)V ) the gauge-natural general-

ized Jacobi morphism associated with the Lagrangian λ and the gauge-natural
lift G(Ξ̄)V .

We have the following:

Proposition 2. The morphism J (λ,G(Ξ̄)V ) is a linear morphism with respect to

the projection J4sY ζ ×
X
V J4sA

(r,k) → J4sY ζ .

We are now able to provide an important specialization of Theorem 2.

Proposition 3. Let [Ljs+1Ξ̄V
λ] ∈ (Vn+1

s )Y . Then we have

κ4s+1
s+1 ◦LjsΞ̄[Ljs+1Ξ̄V

λ] = En(jsΞ̄V ⌋h(Ljs+1Ξ̄V
λ)) + J (λ,G(Ξ̄)V ) .

Proof. By Theorem 2 and the Lemma above we have:

κ4s+1
s+1 ◦LjsΞ̄[Ljs+1Ξ̄V

λ] = En(jsΞ̄V ⌋h(Ljs+1Ξ̄V
λ)) + [C1

1 (j2sΞ̄⊗KhdLj2sΞ̄V
λ)]

= En(jsΞ̄V ⌋h(Ljs+1Ξ̄V
λ)) + En(jsΞ̄V ⌋h(dLjs+1Ξ̄V

λ))

= En(jsΞ̄V ⌋h(Ljs+1Ξ̄V
λ)) + J (λ,G(Ξ̄)V ) . �

Remark 14. Theorem 1 in Subsection 2.6 provides an invariant decomposition,
where both pieces are globally defined. However, the second one is only locally

a divergence, unless some further geometric structures such as linear symmetric
connections on the basis manifold or suitable gauge-natural principal (or prolon-
gations with respect to linear symmetric connections of principal) connections are
introduced [29, 30, 46]. Proposition 3 above, instead, provides an invariant decom-
position into two pieces which are globally defined and no one of them, seen as a

section of (Vn+1
s )Y , is a (local) divergence. As we shall see, this fact has very im-

portant consequences concerning conserved quantities in gauge-natural Lagrangian
field theories.

A simple comparison of Remark 12, Proposition 1 and the Proposition above
gives us the following.
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Corollary 2. Let δ2
G
λ be the variation of λ with respect to vertical parts of gauge-

natural lifts of infinitesimal principal automorphisms. We have:

G(Ξ̄)V ⌋En(G(Ξ̄)V ⌋En(λ)) = δ2
G
λ = En(G(Ξ̄)V ⌋h(dδλ)) .(18)

The reader should notice that, seen as a section of (Vn
s )Y ×

X

V Y , the equivalence

class [En(jsΞ̄V ⌋h(δλ))] vanishes being a local divergence of higher degree contact
forms. This result can also be compared with [17].

4. Noether Theorems and conserved currents for gauge-natural

invariant Lagrangians

In the following we assume that the field equations are generated by means
of a variational principle from a Lagrangian which is gauge-natural invariant, i.e.
invariant with respect to any gauge-natural lift of infinitesimal right invariant
vector fields. We consider now a projectable vector field (Ξ̂, ξ) on Y ζ and take

into account the Lie derivative with respect to its prolongation jsΞ̂.

Definition 14. Let (Ξ̂, ξ) be a projectable vector field on Y ζ . Let λ ∈ Vn
s be a

generalized Lagrangian. We say Ξ̂ to be a symmetry of λ if Ljs+1Ξ̂ λ = 0.

We say λ to be a gauge-natural invariant Lagrangian if the gauge-natural lift
(Ξ̂, ξ) of any vector field Ξ̄ ∈ A(r,k) is a symmetry for λ, i.e. if Ljs+1Ξ̄ λ = 0. In

this case the projectable vector field Ξ̂ ≡ G(Ξ̄) is called a gauge-natural symmetry

of λ.

Remark 15. Due to EnLjsΞ̄ = LjsΞ̄En, a symmetry of a Lagrangian λ is also a
symmetry of its Euler-Lagrange morphism Eλ (but the converse is not true, see
e.g. [44]).

Symmetries of a Lagrangian λ are calculated by means of Noether Theorems,
which takes a particularly interesting form in the case of gauge-natural Lagrangians.

Proposition 4. Let λ ∈ Vn
s be a gauge-natural Lagrangian and (Ξ̂, ξ) a gauge-

natural symmetry of λ. Then we have

0 = −£Ξ̄⌋En(λ) + dH(−js£Ξ̄⌋pdV λ + ξ⌋λ) .(19)

Suppose that the section σ fulfills the condition (j2s+1σ)∗(−£Ξ̄⌋En(λ)) = 0. Then,

the (n− 1)-form

ǫ = −js£Ξ̄⌋pdV λ + ξ⌋λ ,(20)

fulfills the equation d((j2sσ)∗(ǫ)) = 0.

Remark 16. If σ is a critical section for En(λ), i.e. (j2s+1σ)∗En(λ) = 0, the above
equation admits a physical interpretation as a so-called weak conservation law for
the density associated with ǫ.

Definition 15. Let λ ∈ Vn
s be a gauge-natural Lagrangian and Ξ̄ ∈ A(r,k). Then

the sheaf morphism ǫ : J2sY ζ ×
X
V J2sA

(r,k) → C∗
0 [A(r,k)]∧ (

n−1
∧ T ∗X) is said to be

a gauge-natural weakly conserved current .
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Remark 17. In general, this conserved current is not uniquely defined. In fact, it
depends on the choice of pdV λ, which is not unique (see [46] and references quoted
therein). Moreover, we could add to the conserved current any form µ ∈ Vn−1

2s

which is variationally closed, i.e. such that En−1(µ) = 0 holds. The form µ is
locally of the type µ = dHγ, where γ ∈ Vn−2

2s−1.

Corollary 3. Let ǫ : J2sY ζ ×
X
V J2sA

(r,k) → C∗
0 [A(r,k)]∧ (

n−1
∧ T ∗X) be a conserved

current. As an immediate consequence of Remark 13 we can regard ǫ as the equiv-

alent morphism ǫ ≡ ǫ : J2sY ζ ×
X
V J2sA

(r,k) → C∗
2s[A

(r,k)]⊗C∗
0 [A(r,k)] ∧ (

n−1
∧ T ∗X).

Remark 18. Let η ∈ Vn+1
s and let Ξ be a symmetry of η. Then, as a special

case of Theorem 2, we have 0 = En(ΞV ⌋η) + [C1
1 (j2s+1Ξ̄V ⊗Khdη)]. Suppose that

Khdη = 0; then we have En(Ξ̄V ⌋η) = 0. This implies that Ξ̄V ⌋η is variationally

trivial, i.e. it is locally of the type Ξ̄V ⌋η = dHµ, where µ ∈ Vn−1
s−1 .

Suppose that the section σ : X → Y ζ fulfils (j2s+1σ)∗(Ξ̄V ⌋η) = 0. Then we
have d((j2sσ)∗µ) = 0 so that, as in the case of symmetries of Lagrangians, µ is a
conserved current along σ.

As in the case of Lagrangians, a conserved current for an Euler-Lagrange type
morphism is not uniquely defined. In fact, we could add to ΞV ⌋η any variation-
ally trivial Lagrangian, obtaining different conserved currents. Moreover, such
conserved currents are defined up to variationally trivial (n− 1)-forms.

4.1. The Bianchi morphism. In gauge-natural Lagrangian theories it is a well
known procedure to perform suitable integrations by parts to decompose the con-
served current ǫ into the sum of a conserved current vanishing along solutions of
the Euler-Lagrange equations, the so-called reduced current, and the formal diver-
gence of a skew-symmetric (tensor) density called a superpotential (which is defined
modulo a divergence). Within such a procedure, the generalized Bianchi identities
play a very fundamental role: they are in fact necessary and (locally) sufficient
conditions for the conserved current ǫ to be not only closed but also the diver-
gence of a skew-symmetric (tensor) density along solutions of the Euler-Lagrange
equations.

In the following we shall perform such an integration by part of the conserved
current by resorting to Kolář’s invariant decomposition formula of vertical mor-
phisms we already used to define the Jacobi morphism. We will also make an
extensive use of Remark 13.

Remark 19. Let λ be a gauge-natural Lagrangian. By the linearity of £ we have

ω(λ,G(Ξ̄)V ) = £Ξ̄⌋En(λ) : J2sY ζ → C∗
2s[A

(r,k)]⊗C∗
0 [A(r,k)] ∧ (

n
∧T ∗X) .

We have DHω(λ,G(Ξ̄)V ) = 0. We can regard ω(λ,G(Ξ̄)V ) as the extended mor-
phism ω(λ,G(Ξ̄)V ) : J2sY ζ ×

X
V J2sA

(r,k) → C∗
2s[A

(r,k)]⊗C∗
2s[A

(r,k)]⊗C∗
0 [A(r,k)] ∧

(
n
∧T ∗X). Thus we can state the following.
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Lemma 6. Let ω(λ,G(Ξ̄)V ) be as in the above Remark. Then we have globally

(π4s+1
s+1 )∗ω(λ,G(Ξ̄)V ) = β(λ,G(Ξ̄)V ) + Fω(λ,G(Ξ̄)V ) ,

where

β(λ,G(Ξ̄)V ) ≡ Eω(λ,G(Ξ̄)V ) :(21)

: J4sY ζ ×
X
V J4sA

(r,k) → C∗
2s[A

(r,k)]⊗C∗
0 [A(r,k)]⊗C∗

0 [A(r,k)] ∧ (
n
∧T ∗X)(22)

and locally, Fω(λ,G(Ξ̄)V ) = DHMω(λ,G(Ξ̄)V ), with

Mω(λ,G(Ξ̄)V ) : J4s−1Y ζ ×
X
V J4s−1A

(r,k) →(23)

→ C∗
2s[A

(r,k)]⊗C∗
2s−1[A

(r,k)]⊗C∗
0 [A(r,k)] ∧ (

n−1
∧ T ∗X) .(24)

In particular, we get the following local decomposition of ω(λ,G(Ξ̄)V ):

ω(λ,G(Ξ̄)V ) = β(λ,G(Ξ̄)V ) +DH ǫ̃(λ,G(Ξ̄)V ) ,(25)

Proof. We take into account that DHω(λ,G(Ξ̄)V ) is obviously vanishing, then
the result is a straightforward consequence of Lemma 4. �

Definition 16. We call the global morphism β(λ,G(Ξ̄)V ):=Eω(λ,G(Ξ̄)V ) the gen-

eralized Bianchi morphism associated with the Lagrangian λ.

Remark 20. For any (Ξ̄, ξ) ∈ A(r,k), as a consequence of the gauge-natural invari-
ance of the Lagrangian, the morphism β(λ,G(Ξ̄)V ) ≡ En(ω(λ,G(Ξ̄)V )) is locally

identically vanishing. We stress that these are just local generalized Bianchi identi-

ties. In particular, we have ω(λ,G(Ξ̄)V ) = DH ǫ̃(λ,G(Ξ̄)V ) locally [3, 5, 6, 19, 35].

Definition 17. The form ǫ̃(λ,G(Ξ̄)V ) is called a local reduced current.

4.2. Global generalized Bianchi identities. We are now able to state our
main result providing necessary and sufficient conditions on the gauge-natural lift
of infinitesimal right-invariant automorphisms of the principal bundle P in order
to get globally defined generalized Bianchi identities. Let K:=KerJ (λ,G(Ξ̄)V ) be the

kernel of the generalized gauge-natural morphism J (λ,G(Ξ̄)V ). As a consequence
of the considerations above, we have the following important result.

Theorem 3. The generalized Bianchi morphism is globally vanishing if and only

if δ2
G
λ ≡ J (λ,G(Ξ̄)V ) = 0, i.e. if and only if G(Ξ̄)V ∈ K.

Proof. By Corollary 2 we get

G(Ξ̄)V ⌋β(λ,G(Ξ̄)V ) = δ2Gλ ≡ J (λ,G(Ξ̄)V ) .

Now, if G(Ξ̄)V ∈ K then β(λ,G(Ξ̄)V ) ≡ 0, which are global generalized Bianchi

identities. Vice versa, if G(Ξ̄)V is such that β(λ,G(Ξ̄)V ) = 0, then J (λ,G(Ξ̄)V )
= 0 and G(Ξ̄)V ∈ K. Notice that G(Ξ̄)V ⌋β(λ,G(Ξ̄)V ) is nothing but the Hessian

morphism associated with λ (see [17]). �
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Remark 21. We recall that given a vector field jsΞ̂ : JsY ζ → TJsY ζ , the

splitting (1) yields jsΞ̂ ◦ πs+1
s = jsΞ̂H + jsΞ̂V where, if jsΞ̂ = Ξ̂γ∂γ + Ξ̂i

α∂
α
i , then

we have jsΞ̂H = Ξ̂γDγ and jsΞ̂V = Dα(Ξ̂i − yi
γΞ̂γ)∂α

i . Analogous considerations

hold true of course also for the unique corresponding invariant vector field jsΞ̄
on W (r,k)P . In particular, the condition jsΞ̄V ∈ K implies, of course, that the
components Ξ̄i

α and Ξ̄γ are not independent, but they are related in such a way
that jsΞ̄V must be a solution of generalized gauge-natural Jacobi equations for
the Lagrangian λ (see coordinate expression (16)). The geometric interpretation
of this condition will be the subject of a separate paper [41]. Our results are quite
evidently related to the theory of G-reductive Lie derivatives developed in [18]. It
is in fact our opinion that the Kosmann lift (the kind of gauge-natural lift used to
correctly define the Lie derivative of spinors, in [18] interpreted as a special kind
of reductive lift) can be recognized as a kind of gauge-natural Jacobi vector field.
Even more, we believe that the kernel of the generalized gauge-natural Jacobi
morphism induces a canonical reductive pair on W (r,k)P . We also remark that,
for each Ξ̄ ∈ A(r,k) such that Ξ̄V ∈ K, we have LjsΞ̄H

ω(λ,K) = 0. Here it is enough
to stress that, within a gauge-natural invariant Lagrangian variational principle

the gauge-natural lift of infinitesimal principal automorphism is not intrinsically
arbitrary. It would be also interesting to compare such results with reduction
theorems stated in [23].

In the following we shall refer to canonical globally defined objects (such as
currents or corresponding superpotentials) by their explicit dependence on K.

Corollary 4. Let λ ∈ Vn
s be a gauge-natural Lagrangian and jsΞ̂V ∈ K a gauge-

natural symmetry of λ. Being β(λ,K) ≡ 0, we have, globally, ω(λ,K) = DHǫ(λ,K),
then the following holds:

DH(ǫ(λ,K) − ǫ̃(λ,K) = 0 .(26)

Eq. (26) is referred as a gauge-natural ‘strong’ conservation law for the global

density ǫ(λ,K) − ǫ̃(λ,K).
We can now state the following fundamental result about the existence and glob-

ality of gauge-natural superpotentials in the framework of variational sequences.

Theorem 4. Let λ ∈ Vn
s be a gauge-natural Lagrangian and (jsΞ̂, ξ) a gauge-

natural symmetry of λ. Then there exists a global sheaf morphism ν(λ,K) ∈
(

Vn−2
2s−1

)

Y ζ×
X

K
such that

DHν(λ,K) = ǫ(λ,K) − ǫ̃(λ,K) .

Definition 18. We define the sheaf morphism ν(λ,K) to be a canonical gauge-

natural superpotential associated with λ.

Acknowledgments. The authors wish to thank Prof. I. Kolář for many interest-
ing and useful discussions.
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