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ARCHIVUM MATHEMATICUM (BRNO)Tomus 32 (1996), 267 { 280UNIFORMITY AND HOMOGENEITY OF ELASTIC RODS,SHELLS AND COSSERAT THREE-DIMENSIONAL BODIESMarcelo Epstein and Manuel de Le�onTo Ivan Kol�a�r, on the occasion of his 60th birthday.Abstract. We present a general geometrical theory of uniform bodies whichincludes three-dimensional Cosserat bodies, rods and shells as particularcases. Criteria of local homogeneity are given in terms on connections.1. IntroductionAn n-dimensional Cosserat medium B is represented by an n-dimensional man-ifold B which can be embedded into R3, the embedded submanifold endowed ateach point with a deformable linearly independent basis of 3 vectors. The mechan-ical response is supposed to depend on the deformations of the underlying n-bodyas well as on the gradients of the attached deformable basis.In this paper we present a general geometrical framework for arbitrary Cosseratbodies. The geometrical picture consists of an n-dimensional body B which isembedded into the Euclidean space Rn+m. The geometry of the embedding (thecon�guration) allows us to construct the principal bundle of linear frames ofRn+malong the embedded submanifold. Thus, a deformation is nothing but a princi-pal bundle isomorphism of two of these con�guration bundles. The constitutiveequation states that the mechanical response depends on the 1-jet of the defor-mation. We associate to the body a groupoid of material 1-jets in such a waythat the smooth uniformity is equivalent to this groupoid being a Lie groupoid. Ifthe Cosserat body enjoys smooth global uniformity we construct a non-holonomicparallelism and, by prolongating it by means of the material symmetry group, anon-holonomic �G-structure. Its integrability (integrable prolongability, in fact) isequivalent to the local homogeneity of the body. Finally, we consider the case ofrods, shells and three-dimensional Cosserat bodies as particular cases.1991 Mathematics Subject Classi�cation: 73B25, 73B10, 73B05, 53C10.Key words and phrases: Cosserat media, rods, shells, uniformity, homogeneity, non-holonomicframe bundles, non-holonomic G-structures, connections.This research was supported in part by DGICYT (Spain), Project PB94-0106, NSERC(Canada) and NATO (CRG 950833).



268 M. EPSTEIN AND M. DE LE�ONOur theory is based on the original works of the Cosserat brothers [5] and is thenatural extension of the theory of inhomogeneities developed by Noll andWang [43,50, 48, 49] (see also [37, 38, 39, 40, 45]). Our approach generalizes several previouspapers on three-dimensional Cosserat bodies (including second grade materials)[46, 47, 6, 7, 14, 8, 15, 18, 10, 11, 12, 13, 41] and shells [19, 20, 21]. A general settingfor continua with microstructure [2] was developed in [16, 17]. The homogeneityconditions are obtained as integrability conditions of non-holonomic parallelisms.It seems to us that non-holonomic �G-structures deserve a careful study in order toobtain nice homogeneity conditions for Cosserat bodies. So, the results discussed,for instance, in [32, 33, 34, 35, 36, 44, 52, 25, 29, 42, 4] should be extended to thatcase. 2. Bundle configurationsLet B be an n-dimensional manifold. Consider an embedding � : B �!Rn+mof B intoRn+m. Thus, �(B) is an n-dimensional embedded submanifold inRn+m.At every pointX in �(B) we consider the set of linear frames fe1; � � � ; en; en+1; � � � ;en+mg of Rn+m at X such that fe1; � � � ; eng is a basis of the tangent spaceTX (�(B)). Consequently, fen+1; � � � ; en+mg is a set of linearly independent tan-gent vectors in TXRn+m which are transverse to �(B). We denote by gFB� thecollection of all these bases at all the points of �(B). We de�ne a canonical pro-jection �� :gFB� �! �(B) which maps a basis at X onto X.Proposition 2.1. gFB� is a principal subbundle of the restriction of the linearframe bundle FRn+m of Rn+m to �(B), and whose structural group isG0 = �� A 0B C � j A 2 Gl(n;R); C 2 Gl(m;R); B 2 M(m;n)�(1) � Gl(n+m;R) ;where M(m;n) is the real vector space of matrices of order m � n. � will becalled a con�guration and gFB� the bundle con�guration.Given two con�gurations �1;�2 : B �!Rn+m, we put � = �2 ���11 .De�nition 2.1. A deformation is a principal bundle isomorphism ~� :gFB�1 �!gFB�2 between the corresponding bundle con�gurations which induces the identitymap on the structure groups, and it covers �.In other words, ~�maps a basis fY1; � � � ; Yn; Yn+1; � � � ; Yn+mg atX 2 �1(B) suchthat fY1; � � � ; Yng is a basis of TX (�1(B)) and fYn+1; � � � ; Yn+mg are transversal to�1(B), into a basis f�Y1; � � � ; �Yn; �Yn+1; � � � ; �Yn+mg at �(X) of the same type, thatis, f�Y1; � � � ; �Yng is a basis of T�(X)(�2(B)) and f�Yn+1; � � � ; �Yn+mg are transversalto �2(B). With respect to these bases, ~� is given by a tensor whose associatedmatrix is as follows: H = � H1 0H2 H3 � :(2)



UNIFORMITY AND HOMOGENEITY 269where H1 2 Gl(n;R);H3 2 Gl(m;R);H2 2M(m;n).We �x an embedding �0 : B �!Rn+m once and for all, and the correspondingbundle con�guration gFB�0 will be denoted by E0, for brevity. We also put B0 =�0(B).We assume that the elastic response depends on the 1-jet of the deformation sothat the constitutive equation reads asW =W0(j1X ~�) ;(3)with respect to the reference con�guration �0.De�nition 2.2. B0 will be called a deformable body.3. Uniformity and material symmetriesDe�nition 3.1. Given a deformable body B0 we say that it is uniform if forany two points X and Y in B0 there exists a local automorphism ~� of principalbundles of E0 from X to Y which induces the identity map between the structuregroups and such that W0(j1Y ~� � j1X ~�) = W0(j1Y ~�) ;(4)for all 1-jet of deformation j1Y ~�. We will call j1X ~� a material 1-jet.We denote by � the local di�eomorphism of B0 covered by ~�.De�nition 3.2. A material symmetry at a point X 2 B0 is a 1-jet j1X ~� of alocal automorphism ~� of principal bundles of E0 at X which induces the identitymap between the structure groups and such thatW0(j1X ~� � j1X ~�) = W0(j1X~�) ;(5)for all 1-jet of deformation j1Y ~�.The following result follows immediatly from the above de�nitions.Proposition 3.1. (1) The collection 
(B0) of all material 1-jets is a groupoidover B0 with source and target projections given by �(j1X ~�) = X and �(j1X ~�) =�(X), respectively.(2) The collection G(X) of all material symmetries at a point X 2 B0 has astructure of group. In fact, G(X) = (�; �)�1(X;X), where (�; �) : 
(B0) �!B0 � B0 is de�ned by (�; �)(j1X ~�) = (X;�(X)).De�nition 3.3. We say that B0 enjoys smooth uniformity if 
(B0) is a Lie grou-poid.In such a case, there exist local smooth uniformities (i.e., local sections of (�; �) :
(B0) �! B0 � B0). For the sake of simplicity we will assume, from now on, thatB0 enjoys global smooth uniformity or, in other words, the Lie groupoid 
(B0) issmoothly transitive.



270 M. EPSTEIN AND M. DE LE�ONProposition 3.2. Assume that B0 enjoys smooth uniformity and take a pointX0 2 B0. Then 
X0(B0) = ��1(X0) is a principal bundle over B0 with structuregroup G(X0) and canonical projection �.Proof: It follows the same lines that in Proposition 11.8 in [18]. �4. Reference crystals and non-holonomic parallelismsConsider the principal bundle E over Rn consisting of all the linear framesfe1; � � � ; en; en+1; � � � ; en+mg at all the points of Rn such that fe1; � � � ; eng is alinear frame ofRn. It is not hard to see that E is a trivial bundle, say E = Rn�G0.Consider now the set �FE0 of all 1-jets j10 ~	 of local isomorphisms of principalbundles from E into E0 with source at the origin in Rn, such that ~	 induces theidentity map between the structure groups.It follows that �FE0 is a principal bundle over B0 with canonical projection�� : �FE0 �! B0, ��(j10 ~	) = 	(0), where 	 is the induced local di�eomorphismbetween the base manifolds covered by ~	. We also have a canonical projection��1;0 : �FE0 �! E0, given by ��1;0(j10 ~	) = ~	(0; 1), where (0; 1) is the distinguishedelement of E , i.e., 0 2Rn and 1 is the identity matrix in Gl(n+m;R). (It shouldbe noticed that the functor F coincides with the one previously de�ned by I. Kol�a�r[29, 31].)The element j10 ~	 will be called a non-holonomic frame at the point 	(0) 2B0. The structure group �G(n; n+m) of �� : �FE0 �! B0, consists of the 1-jets j10 ~	of local automorphisms of E which induces the identity map between the structuregroups and with source and target at 0.By a direct application of chain rule, we obtain that the structure group �G(n; n+m) may be described as follows. A generic element of �G(n; n + m) is a triple(A;B; C), where A 2 G0 ; B 2 Gl(n;R) ; C 2 Lin (Rn;g0) ;where g0 is the Lie algebra of G0.We will write A = (Aji ) ; B = (B��) ; C = (Cji
) ;where Latin indices run from 1 to n + m, Greek indices run from 1 to n. Forsimplicity, we introduce new indices a; b; c; : : : running from 1 to m.We have An+b� = 0 ; if 1 � � � n ; 1 � b � m ;Cb�
 = 0 ; if 1 � � � n ; 1 � b � m ;Proposition 4.1. The group �G(n; n + m) may be identi�ed with the semidirectproduct G0 �Gl(n;R) � Lin (Rn;g0), the multiplication group given by(A1;B1; C1)(A2;B2; C2) = (A;B; C) ;(6)



UNIFORMITY AND HOMOGENEITY 271where Aji = (A1)ki (A2)jk ;B�� = (B1)
�(B2)�
 ;Cji
 = (A1)ki (B1)�
 (C2)jk� + (A2)jk(C1)ki
 :Proof: It follows from a direct computation using the chain rule. �Remark 4.1. It should be noted that dim �G(n; n+m) = (n+1)[n2+nm+m2]+n2.De�nition 4.1. The bundle �FE0 will be called the non-holonomic frame bun-dle of E0. A global section �P of �FE0 will be called a non-holonomic parallelismon B0. A non-holonomic frame at a point X0 2 B0 will be called a referencecrystal at that point.Suppose now that B0 enjoys smooth uniformity, and choose a crystal reference~Z0 = j10 ~	 at a pointX0. Given a smooth global uniformity on B0, we can transportthe reference crystal at any point X in B0 by composing the uniformity from X0to X with the 1-jet j1(0;1) ~	. Thus, we get a global section of the bundle �FE0, or,in other words, a material non-holonomic parallelism �P on B0.The Lie group G(X0) can be transported via ~Z0 and we obtain a Lie subgroup�G of �G(n; n+m): �G = ~Z�10 �G(X0) � ~Z0 :If we prolongate �P by the action of �G we obtain a �G-reduction of �FE0. Such areduction will be called a non-holonomic �G-structure on B0.Remark 4.2. A classi�cation of the subgroups of �G(n; n+m) could be obtainedin a similar way to that in [6, 18]. The details of this classi�cation as well as theintegrability conditions of the corresponding �G-structures are matter of a futureresearch.Let (x�) be a coordinate system on B0 and take local bundle coordinates(x�; Xji ) for E0. We obtain induced coordinates (x�; Xji ; Y �� ; Zji
) on �FE0. Weset �P(x�) = (x�;Pji ;Q��;Rji
) :(7)From (7) it follows that there are n + m linearly independent vector �eldsfP1; � � � ;Pn+mg onRn+m along B0 such that the �rst n vector �elds fP1; � � � ;Pngde�ne a linear paralellism on B0. These vector �elds are locally given byPi = Pji @@xj :The vector �elds fPn+1; � � � ; Pn+mg are transversal to B0.There are also n vector �elds fQ1; � � � ;Qng yielding another linear parallelismon B0, and which come from the induced di�eomorphisms on the base manifolds.Indeed, there is an underlying \uniformity" on B0 and an induced ordinary refer-ence crystal j10	 at X0 which is transported to any arbitrary point of B0.



272 M. EPSTEIN AND M. DE LE�ONMoreover, there exists a connection � in the principal bundle �0 : E0 �! B0.In fact, a non-holonomic frame at a point X 2 B0 just de�nes:1 a linear frame of Rn+m at X such that its n �rst vectors are tangent toB0 and the last m vectors are transversal;2 a linear frame of B0 at X;3 and, a horizontal subspace at X of the principal bundle �0 : E0 �! B0,or, in other words, an in�nitesimal piece of connection.We introduce the following notation:N1 = Pn+1 ; � � � ; Nm = Pn+m :Next, take local coordinates (x�; xa) on Rn+m such that (x�) are coordinateson B0 and (xa) are transversal coordinates.Thus, we have Q� = Q��(x
) @@x� ; P� = nX�=1P��(x
) @@x� ;(8) Na = nX�=1P�a (x
) @@x� + mXb=1Pba(x
) @@xb ;where, for simplicity, we have written P�n+a = P�a and Pbn+a = Pba.The parallelism fP1; : : : ;Png de�nes a linear connection �1 on B0 whose Chris-to�el components are given by(�1)
�� = �(P�1)�� @P
�@x� :That is, the covariant derivative r1 associated with �1 is given by(r1) @@x� @@x� = (�1)
�� @@x
 :The parallelism fQ1; : : : ;Qng de�nes another linear connection �2 on B0 withChristo�el components given by(�2)
�� = �(Q�1)�� @Q
�@x� :In other words, the covariant derivative r2 associated with �2 is given by(r2) @@x� @@x� = (�2)
�� @@x
 :Finally, let us recall the de�nition of the induced connection � in �0 : E0 �! B0.If �P(X) = j10 ~	, the horizontal subspace at P(X) is de�ned to beHP(X) = T'(T0Rn) ;



UNIFORMITY AND HOMOGENEITY 273where ' : Rn �! B0 is given by '(r) = ~	(r; 1). Since the horizontal lift of @@x�is ( @@x� )H = @@x� � �jk�Pki @@Xjiwe deduce that the Christo�el components of � are the following [28, 9, 30]:�ji� = �Rjk
 (P�1)ki (Q�1)
� :A direct computation taking into account that Pa� = 0 and Ra�� = 0, showsthat �
�� = �R
��(P�1)��(Q�1)�� ;�
a� = �R
c�(P�1)ca(Q�1)�� �R
��(P�1)�a (Q�1)�� ;�c�� = �Rc
�(P�1)
�(Q�1)�� ;�ca� = �Rc
�(P�1)
a(Q�1)�� �Rcd�(P�1)da(Q�1)�� : 9>>=>>;Since there exists a left action of G0 on Rn+m we can construct an associatedvector bundle with E0 which becomes the Whitney sum TB0 � N , where N isthe normal bundle generated by the vector �elds fN1; � � � ;Nmg. The connection� induces a connection in TB0 � N whose tangent component de�nes a linearconnection �3 with covariant derivative r3 given by(r3) @@x� @@x� = �
�� @@x
 :Taking into account thatP�b (P�1)�� + Pcb (P�1)�c = 0 ;and putting r @@x� @@x� = �
�� @@x
 + �c�� @@xc ;r @@x� @@xd = �
d� @@x
 + �cd� @@xc ;we compute the covariant derivative of Na with respect to �:r @@x�Nb = �@P
b@x� �R
b�(Q�1)��� @@x
 + �@Pdb@x� �Rdb�(Q�1)��� @@xd :(9)Next, we will introduce the notion of prolongability of non-holonomic paral-lelisms. As we have seen, a material non-holonomic parallelism �P induces a global�eld of frames P along B0, a linear parallelism Q on B0, and a connection onthe principal bundle �0 : E0 �! B0. The global section P of �0 gives a new
at connection �� by de�ning the horizontal lift of a tangent vector U 2 TXB0 asfollows: U �H = TP(X)(U ) 2 TP(X)E0 :



274 M. EPSTEIN AND M. DE LE�ONThus, we have ( @@x� ) �H = @@x� + @Pji@x� @@Xji :De�nition 4.2. We say that �P is a prolongation if both connections, � and ��,coincide. If, moreover, Q is integrable, �P is said to be an integrable prolongation.The reason for the above terminology is that an integrable prolongation is anon-holonomic parallelism which is obtained from P and Q. In fact, note that anon-holonomic frame j10 ~	 at a point X = 	(0) 2 B0 is a linear frame of E0 atthe point ~	(0). Thus, given a global section P of �0 : E0 �! B0 and a linearparallelism Q of B0, we can construct a non-holonomic parallelism denoted byP1(Q) as follows: P1(Q)(X) is de�ned to be the linear frame at P(X) whichconsists of the tangent vectors fTP(X)(Q1); � � � ; TP(X)(Q1)g, completed with asuitable family of vertical tangent vectors. Of course, P1(Q) de�nes P, Q, andthe connection ��.Proposition 4.2. A non-holonomic parallelism �P is an integrable prolongation ifand only if the torsion tensor T2 of �2, the di�erence tensor D13 = r1�r3, andthe m 1-forms rNa, 1 � a � m, simultaneously vanish.Proof: If T2 = 0, there exist local coordinates (x�) on B0 such thatQ�� = ��� ;or, equivalently, Q� = @@x� :Thus, the non-holonomic parallelism �P can be locally written as follows:�P(x�) = (x�;Pji ; 1;Rji�) :Moreover, the di�erence tensor D13 also vanishes. This implies thatR
�� = @P
�@x� :Now, we will use that the transversal vector �elds Na are parallel, and wededuce that R
b� = @P
b@x� ; Rcb� = @Pcb@x� :Finally, we know that Rc�� = 0 ; Pc� = 0 :Thus, the result follows.The converse is trivial. �The tensors T2, D13 and rNa will be called the inhomogeneity tensors ofthe given material non-holonomic parallelism �P.



UNIFORMITY AND HOMOGENEITY 275De�nition 4.3. A non-holonomic �G-structure on B0 is said to be an integrableprolongation if around each point of B0 there exists a local section which is anintegrable prolongation.From Proposition 4.2 it follows the followingProposition 4.3. A non-holonomic �G-structure on B0 is an integrable prolonga-tion if and only if it admits local sections whose inhomogeneity tensors vanish.5. HomogeneityDe�nition 5.1. B is said to be homogeneous if there exists a uniform con�gu-ration � : B �!Rn+m such that:(i) �(B) is an open subset of Rn, where Rn is considered as a natural subspaceof Rn+m de�ned by the vanishing of the coordinates xn+1, xn+2 and xn+m. Here(x1; � � � ; xn; xn+1; � � � ; xn+m) denote the standard coordinates in Rn+m;(ii) There exists a global deformation ~� from gFB� into E covering a globaldi�eomorphism � : �(B) �! Rn such that �P = ~��1 de�nes a material non-holonomic parallelism, i.e.,�P(X) = j10(~��1 � F��(X)) ; 8X 2 �(B) ;where ��(X) : Rn �! Rn denotes the translation on Rn by the vector �(X), andF��(X) is the induced mapping between frame bundles.B is said to be locally homogeneous if for every point X 2 B there exists anopen neighborhood which is homogeneous.This de�nition is referred to a particular chosen reference crystal. More gen-erally, we will say that B is homogeneous if it is homogeneous with respect to atleast one reference crystal.We will obtain a geometrical characterization of the local homogeneity.For the sake of simplicity, we �rst assume that the group of material symmetriesis trivial. So, we have the followingTheorem 5.1. B is locally homogeneous (with respect to a chosen reference crys-tal) if and only if there exists a uniform con�guration � such that the associatedmaterial non-holonomic parallelism �P is an integrable prolongation.Proof: If B is locally homogeneous, and ~� is as in the above de�nition, we obtain�P(x�) = (x�;Pji ; 1; @Pji@x� ) :Therefore, �P is an integrable prolongation.Assume now that the inhomogeneity tensors associated with a material non-holonomic parallelism �P identically vanish. We assume that �P was obtained froma con�guration � : B �! Rn+m. Then, from Proposition 4.2, it is an integrable



276 M. EPSTEIN AND M. DE LE�ONprolongation. This means that there exist local coordinates (x�) on �(B) suchthat �P(x�) = (x�;Pji ; 1; @Pji@x� ) :Next, we de�ne a principal bundle automorphism~� :gFB� �! Eas follows: ~�(x�; Xji ) = (x�;Pki Xjk) :~� is the required deformation. �To end this section, we will investigate what happens if a change of referencecrystal is performed. Notice that a change of reference crystal consists of com-posing the material non-holonomic parallelism �P = (P;Q;R) with an element(A;B; C) in the Lie group �G(n; n + m). The new material non-holonomic paral-lelism is then given by �P0 = (P0;Q0;R0), where(P0)ji = Aki Pjk ; (Q0)�� = B
�Q�
 ; (R0)ji
 = Aki B�
Rjk� + PjkCki
 :So, the new connections �01 and �02 coincide with the former ones, �1 and �2. Thisfact implies that, if the torsion tensor T2 of �P vanishes, the same is true for �P0.Therefore, the �rst test in order to know if a material non-holonomic parallelismis an integrable prolongation is to check the torsion tensor T2. If T2 does notvanish, we can conclude that any �P would be not an integrable prolongation. IfT2 vanishes, but the other tensors do not so, we can try for a change of referencecrystal. Consider the vector �eldsD�� = (r1)Q�P� � (r3)Q�P� ; D�b = rQ�Nb :By the same argument that in [16], we conclude the following.Theorem 5.2. B is locally homogeneous if and only if there exists a uniformcon�guration � such that the associated material non-holonomic parallelism �Phave T2 = 0 and D�� = D�b = 0.6. Particular cases6.1. Elastic rods. (see [1, 5])In this case, n = 1, m = 2. That is, B0 is a curve in R3. Since n = 1, weallways have that the linear parallelism fQg is integrable, so that T2 identicallyvanishes. Proposition 4.2 becomes as follows.Proposition 6.1. �P is an integrable prolongation if and only if the di�erencetensor D13 = r1 �r3, and the 1-forms rN1 and rN2 simultaneously vanish.



UNIFORMITY AND HOMOGENEITY 277If the group of material symmetries is continuous, we obtain a �G-structure onthe curve B0, where �G is a Lie subgroup of �G(1; 3).A particular case is obtained when we consider principal bundle isomorphisms~� : F(�1(B)) �! F((�2(B)) such that the tangent part is precisely given by thetangent map of the induced di�eomorphisms � : �1(B) �! �2(B). In this case,P1 = Q1, and, then, �1 = �2.6.2. Elastic shells. (see [1, 3, 5, 19, 20, 21, 22, 26, 27, 51])In this case, n = 2, m = 1. That is, B0 is a surface in R3. Thus, the non-holonomic parallelism �P de�nes two linear parallelisms fP1;P2g and fQ1;Q2g onthe surface B0, and a normal vector �eld N .Proposition 4.2 becomes as follows.Proposition 6.2. �P is an integrable prolongation if and only if the tensor torsionT2, the di�erence tensor D13 = r1 � r3, and the 1-form rN simultaneouslyvanish.If the group of material symmetries is continuous, we obtain a �G-structure onthe surface B0, where �G is a Lie subgroup of �G(2; 3).A particular case is obtained when we consider principal bundle isomorphisms~� : F(�1(B)) �! F(�2(B)) such that the tangent part is precisely given by thetangent map of the induced di�eomorphisms � : �1(B) �! �2(B). In this case,P� = Q�, � = 1; 2, and, then, �1 = �2.6.3. Cosserat media. (see [5, 14, 15, 17, 24])Assume that n = 3, m = 0. In this case, a bundle con�gurationgFB� is just thelinear frame bundle F(�(B)) of �(B), that is, the collection of all bases at all thepoints of �(B). Thus, the Lie group G0 is Gl(n;R). A deformation is a principalbundle isomorphism ~� : F(�1(B)) �! F(�2(B)) covering a di�eomorphism � :�1(B) �! �2(B). Chosen an uniform con�guration �0 : B �! Rn, we obtaina non-holonomic parallelism �P : B0 �! �FE0 (we follow the notations introducedin the precedent sections). It should be noted that �FE0 is just the so-called non-holonomic second order frame bundle of B0, and, hence, �P is a non-holonomicsecond order parallelism. Thus, we have two linear parallelisms P and Q, and alinear connection � on B0. There are no transversal vector �elds, and Proposition4.2 becomes as follows.Proposition 6.3. �P is an integrable prolongation if and only if the torsion tensorT2 of �2 and the di�erence tensor D13 = r1 �r3 simultaneously vanish.If the group of material symmetries is continuous, we obtain a material non-holonomic second order �G-structure, where �G is a Lie subgroup of the second ordernon-holonomic group �G(n) = �G(3; 3).Particular cases are obtained if we only consider deformations such that theyare the natural prolongation of the di�eomorphisms between the bases, that is,~� = F�. This occurs for second grade material bodies [6, 7, 8, 10, 11, 12, 13]. Inthis case, P� = Q� and, hence, �1 = �2. So, we have the following.
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