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UNIFORMITY AND HOMOGENEITY OF ELASTIC RODS,
SHELLS AND COSSERAT THREE-DIMENSIONAL BODIES

MARCELO EPSTEIN AND MANUEL DE LEON

To Ivan Kold7, on the occasion of his 60th birthday.

ABSTRACT. We present a general geometrical theory of uniform bodies which
includes three-dimensional Cosserat bodies, rods and shells as particular
cases. Criteria of local homogeneity are given in terms on connections.

1. INTRODUCTION

An n-dimensional Cosserat medium B is represented by an n-dimensional man-
ifold B which can be embedded into RS, the embedded submanifold endowed at
each point with a deformable linearly independent basis of 3 vectors. The mechan-
ical response is supposed to depend on the deformations of the underlying n-body
as well as on the gradients of the attached deformable basis.

In this paper we present a general geometrical framework for arbitrary Cosserat
bodies. The geometrical picture consists of an n-dimensional body B which is
embedded into the Euclidean space R"*™. The geometry of the embedding (the

configuration) allows us to construct the principal bundle of linear frames of R
along the embedded submanifold. Thus, a deformation is nothing but a princi-
pal bundle isomorphism of two of these configuration bundles. The constitutive
equation states that the mechanical response depends on the 1-jet of the defor-
mation. We associate to the body a groupoid of material 1-jets in such a way
that the smooth uniformity is equivalent to this groupoid being a Lie groupoid. If
the Cosserat body enjoys smooth global uniformity we construct a non-holonomic
parallelism and, by prolongating it by means of the material symmetry group, a
non-holonomic G-structure. Its integrability (integrable prolongability, in fact) is
equivalent to the local homogeneity of the body. Finally, we consider the case of
rods, shells and three-dimensional Cosserat bodies as particular cases.
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Our theory is based on the original works of the Cosserat brothers [5] and is the
natural extension of the theory of inhomogeneities developed by Noll and Wang [43,
50, 48, 49] (see also [37, 38, 39, 40, 45]). Our approach generalizes several previous
papers on three-dimensional Cosserat bodies (including second grade materials)
[46,47,6,7,14, 8,15, 18,10, 11, 12, 13, 41] and shells [19, 20, 21]. A general setting
for continua with microstructure [2] was developed in [16, 17]. The homogeneity
conditions are obtained as integrability conditions of non-holonomic parallelisms.
It seems to us that non-holonomic G-structures deserve a careful study in order to
obtain nice homogeneity conditions for Cosserat bodies. So, the results discussed,
for instance, in [32, 33, 34, 35, 36, 44, 52, 25, 29, 42 4] should be extended to that

case.

2. BUNDLE CONFIGURATIONS

Let B be an n-dimensional manifold. Consider an embedding ® : B — R+

of Binto R"*™. Thus, ®(B) is an n-dimensional embedded submanifold in R,
At every point X in ®(B) we consider the set of linear frames {eq, -+ , e, €n41, -,

entm | of R™™ at X such that {e1,- -+ ,en} is a basis of the tangent space
Tx (®(B)). Consequently, {ent1, -, €ntm} is a set of linearly independent tan-
gent vectors in TXRn+m which are transverse to (). We denote by }A"E‘y the
collection of all these bases at all the points of ®(B). We define a canonical pro-

jection 7y : FBy — ®(B) which maps a basis at X onto X.

Proposition 2.1. ﬁ@ 15 a principal subbundle of the restriction of the linear
frame bundle FR*" of R 1o ®(B), and whose structural group is

B C
C Glln+m,R),

1) Gy = {(A 0)|A€Gl(n,R),CEGl(m,R),BeM(m,n)}

where M(m,n) is the real vector space of matrices of order m x n. ® will be

called a configuration and ﬁ@ the bundle configuration.
Given two configurations @, Py : B — Rn+m, we put K = P50 <I>1_1.

Definition 2.1. A deformation is a principal bundle isomorphism & : }TE‘I,I —

}TE% between the corresponding bundle configurations which induces the identity
map on the structure groups, and it covers K.

In other words, & maps a basis {Y1, -, Yn, Yot1, -, Yogm | at X € ®1(B) such
that {Y1,---,Y,}is a basis of Tx (®1(B)) and {Yn41, -+, Yaim } are transversal to
®,(B), into a basis {Y1, -+, Va, Yy, -+, Yuym} at x(X) of the same type, that
is, {Y1,---,¥,} is a basis of T(x)(®2(B)) and {Yoi1, -+, Ynim} are transversal
to ®3(B). With respect to these bases, £ is given by a tensor whose associated
matrix is as follows:

(2) H:(ﬁl }?3)
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where H; € Gl(n,R), Hs € Gl(m,R), Hy € M(m,n).

We fix an embedding ®¢ : B — R"*™ once and for all, and the corresponding
bundle configuration FBg, will be denoted by &, for brevity. We also put By =
Dy(B).

We assume that the elastic response depends on the 1-jet of the deformation so
that the constitutive equation reads as

with respect to the reference configuration ®.

Definition 2.2. By will be called a deformable body.

3. UNIFORMITY AND MATERIAL SYMMETRIES

Definition 3.1. Given a deformable body By we say that it is uniform if for
any two points X and Y in By there exists a local automorphism ® of principal
bundles of & from X to Y which induces the identity map between the structure
groups and such that

(4) Woliy & o ix®) = Wiy ) |
for all 1-jet of deformation j&. We will call j}(i) a material 1-jet.
We denote by ® the local diffeomorphism of By covered by ®.

Definition 3.2. A material symmetry al a point X € By 15 a I-jel j%(i) of a
local automorphism @ of principal bundles of &y at X which induces the identity
map between the structure groups and such that

(5) Wo(ix o jx®) = Wo(ixF)
for all 1-jet of deformation ji k.
The following result follows immediatly from the above definitions.

Proposition 3.1. (1) The collection Q(By) of all material 1-jets is a groupoid
over By with source and target projections given by a(]}(i)) = X and 6(]&@) =
O(X), respectively.

(2) The collection G(X) of all material symmetries at a point X € By has «a
structure of group. In fact, G(X) = (a, B)~HX, X), where (a, B) : Q(Bo) —
Bo x By is defined by (o, B)(j% @) = (X, ®(X)).

Definition 3.3. We say that By enjoys smooth uniformity if Q(By) is a Lie grou-
poid.

In such a case, there exist local smooth uniformities (i.e., local sections of («, 3) :
Q(By) — By x By). For the sake of simplicity we will assume, from now on, that
By enjoys global smooth uniformity or, in other words, the Lie groupoid Q(By) is
smoothly transitive.
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Proposition 3.2. Assume that By enjoys smooth uniformity and take a point
Xo € By. Then Qx,(Bo) = a=*(Xg) is a principal bundle over By with structure
group G(Xy) and canonical projection 3.

Proof: Tt follows the same lines that in Proposition 11.8 in [18]. d

4. REFERENCE CRYSTALS AND NON-HOLONOMIC PARALLELISMS

Consider the principal bundle & over R” consisting of all the linear frames
{e1, - en,engls »engm} at all the points of R" such that {ey,---,e,} is a
linear frame of R™. Tt is not hard to see that £ is a trivial bundle, say £ = R" x Gy.

Consider now the set F& of all 1-jets jé\if of local isomorphisms of principal
bundles from € into & with source at the origin in R”, such that ¥ induces the
identity map between the structure groups.

It follows that F& is a principal bundle over By with canonical projection
T F& — Bo, ﬁ(]é\i!) = ¥(0), where ¥ is the induced local diffeomorphism
between the base manifolds covered by ¥. We also have a canonical projection
710 F& — &, given by ﬁlyo(jé\i!) = \11(0, 1), where (0, 1) is the distinguished
element of £, i.e., 0 € R" and 1 is the identity matrix in Gi(n+m,R). (It should
be noticed that the functor F coincides with the one previously defined by I. Kolaf
[29, 31].)

The element jé\if will be called a non-holonomic frame at the point ¥(0) €
By. The structure group G(n, n+m)of 7: FE& — By, consists of the 1-jets jé\if
of local automorphisms of £ which induces the identity map between the structure
groups and with source and target at 0.

By a direct application of chain rule, we obtain that the structure group G(n, n+
m) may be described as follows. A generic element of G(n,n 4 m) is a triple

(A, B,C), where
A€Gy, BeGIn,R), ce Lin(R",g,),

where g, is the Lie algebra of Gy.
We will write

A=A, B=(B), c=(cl,),

where Latin indices run from 1 to n + m, Greek indices run from 1 to n. For
simplicity, we introduce new indices a, b, ¢, ... running from 1 to m.

We have

A =0 ifl<a<n,1<b<m,
Ch,=0,ifl<a<n,1<b<m,

Proposition 4.1. The group G(n,n + m) may be identified with the semidirect
product Go x Gl(n,R) x Lin (R",g,), the multiplication group given by

(6) (A1, B1,C1)( A2, B2, Co) = (A, B,C) ,
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where
AL = (ADFA)
BS = (B1)L(B.)Y,
Ch = (ADF(BS(Co)fs + (A2)p(C)E, -
Proof: It follows from a direct computation using the chain rule. d

Remark 4.1. It should be noted that dim G(n, n+m) = (n+1)[n>4+nm-+m?]4+n’.

Definition 4.1. The bundle F& will be called the non-holonomic frame bun-
dle of &. A global section P of F&y will be called a non-holonomic parallelism
on By. A non-holonomic frame at a point Xg € By will be called a reference
crystal at that point.

Suppose now that By enjoys smooth uniformity, and choose a crystal reference
Zy = jé\if at a point Xy. Given a smooth global uniformity on By, we can transport
the reference crystal at any point X in By by composing the uniformity from X
to X with the 1-jet j(loyl)\i!. Thus, we get a global section of the bundle F&, or,
in other words, a material non-holonomic parallelism P on 5.

The Lie group G(Xg) can be transported via Zy and we obtain a Lie subgroup
G of G(n,n+ m):

GIZ()_lOG(Xo)OZQ .

If we prolongate P by the action of G we obtain a G-reduction of F&;. Such a

reduction will be called a non-holonomic G-structure on 5y.

Remark 4.2. A classification of the subgroups of G(n,n + m) could be obtained
in a similar way to that in [6, 18]. The details of this classification as well as the
integrability conditions of the corresponding G-structures are matter of a future
research.

Let (2%) be a coordinate system on By and take local bundle coordinates
(z*, X]) for &. We obtain induced coordinates (x“,Xg,Yf,Z%) on F&. We
set

(7) ﬁ(xa):(xa’Pg’Qg’ng) :

From (7) it follows that there are n + m linearly independent vector fields
{P1, -, Pngm}on R ™ along By such that the first n vector fields {Py, -+, Py}

define a linear paralellism on By. These vector fields are locally given by

;0
b Oxd
The vector fields {P, 41, -, Potm} are transversal to By.
There are also n vector fields {Q1, -, Q,} yielding another linear parallelism

on By, and which come from the induced diffeomorphisms on the base manifolds.
Indeed, there is an underlying “uniformity” on By and an induced ordinary refer-
ence crystal jiW at X, which is transported to any arbitrary point of By.
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Moreover, there exists a connection I' in the principal bundle wy : & — By.
In fact, a non-holonomic frame at a point X € By just defines:

1 alinear frame of R"™™ at X such that its n first vectors are tangent to
By and the last m vectors are transversal;

2 a linear frame of By at X;

3 and, a horizontal subspace at X of the principal bundle 7y : & — By,
or, in other words, an infinitesimal piece of connection.

We introduce the following notation:
N1:Pn+1; Tty Nmzpn+m .

Next, take local coordinates (z%, z%) on R*™ such that (x¥) are coordinates
on By and (z?) are transversal coordinates.
Thus, we have

(3) Q.= QU)o P = Z ,

- 0 i 0
_§ ’ B2 § ’ by
Na—ﬁzlpa(x )890@ +b:17?a(x )690’7 ’

where, for simplicity, we have written P, , = P and Pn+a =PL.
The parallelism {Py, ..., P,} defines a linear connection T'; on By whose Chris-
toffel components are given by

oPY
_ —1\o o
(T1)ys =—(P )ﬁﬁ? :

That is, the covariant derivative Vi associated with I'y is given by

d d

v
(vl) ax@ (Fl)aﬁ 81‘7 .

The parallelism {Q, ..., Q,} defines another linear connection I'y on By with
Christoffel components given by

_1,0 997
(Fz)aﬁ - _(Q 1)5 odre

In other words, the covariant derivative Vs associated with 'y is given by

o 0
(V2) o 55 = (F)ap -

Pjinally, let~us recall the definition of the induced connection I' in 7 : &g — By.
If P(X) = jiW¥, the horizontal subspace at P(X) is defined to be

Hpxy=To(ToR"),
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n . = . . . 0
where ¢ : R" — By is given by ¢(r) = ¥(r,1). Since the horizontal lift of e
z

1s

0 0 0

R

Oz ore 3)(]

we deduce that the Christoffel components of T' are the following [28, 9, 30]:
Iy = =Ry, (PTHEHQ )} -

A direct computation taking into account that P§ = 0 and Rgs = 0, shows
that

F’Zzﬁ = _RZN(P_l)g(Q_l)g )
Il = —RL(PHUQ 5 —RI(PHI(Q™H,
Lo = RS (P=HLQ7)S
Tis = —R5PHUQHE =R (P~HHQ™E -

Since there exists a left action of Gy on R"*™ we can construct an associated
vector bundle with & which becomes the Whitney sum T8y & N, where A is
the normal bundle generated by the vector fields {A7, -+, N, }. The connection
I' induces a connection in TBy & N whose tangent component defines a linear
connection I's with covariant derivative V3 given by

o ., 0

(V3) 2w 7 = Loa g -

Taking into account that
PLPTOE+PIPTE=0,

and putting

0 0 0
— Y c 7
Voeess = Dhage +lhags
0 0 0
— Y
_afcx 8xd - Fdoza y +Fdaa P

we compute the covariant derivative of A, with respect to I':

_{OP) oy o=ty ) O Py na i o=1ye | O
(9) V%Nb—<axa—7€be(9 Jo ) o7 T\ gge ~ R Q70 | 53

Next, we will introduce the notion of prolongability of non-holonomic paral-
lelisms. As we have seen, a material non-holonomic parallelism P induces a global
field of frames P along By, a linear parallelism @ on By, and a connection on
the principal bundle mg : & —— By. The global section P of my gives a new
flat connection I' by defining the horizontal lift of a tangent vector U € T'x By as
follows:

UM =TP(X)(U) € Tpix)éo -
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Thus, we have
o 5 O 0Pl 0
(31‘“) T Oz + Oz~ 3)(5 '

Definition 4.2. We say that P is a prolongation if both connections, I' and T,
coincide. If, moreover, Q 1is integrable, P 1s said to be an integrable prolongation.

The reason for the above terminology is that an integrable prolongation is a
non-holonomic parallelism which is obtained from P and Q. In fact, note that a
non-holonomic frame jé\i! at a point X = ¥(0) € By is a linear frame of & at
the point \i!(O) Thus, given a global section P of 7y : & — By and a linear
parallelism @ of By, we can construct a non-holonomic parallelism denoted by
PL(Q) as follows: PY(Q)(X) is defined to be the linear frame at P(X) which
consists of the tangent vectors {TP(X)(Q1), -, TP(X)(Q1)}, completed with a
suitable family of vertical tangent vectors. Of course, P1(Q) defines P, Q, and
the connection T'.

Proposition 4.2. A non-holonomic parallelism P is an integrable prolongation if
and only if the torsion tensor Ty of I's, the difference tensor D13 = V1 — V3, and
the m I-forms VN, 1 < a <m, simultaneously vanish.

Proof: If 75 = 0, there exist local coordinates (%) on By such that

QL =41,
or, equivalently,
0
O = e

Thus, the non-holonomic parallelism P can be locally written as follows:
Px) = (%, P!, I,Rgﬁ) :
Moreover, the difference tensor i3 also vanishes. This implies that

aPY
Y _ @
Rip = 55

Now, we will use that the transversal vector fields A, are parallel, and we
deduce that
R — Py e _ apP;

WO gpB 0 TP 9ul

Finally, we know that

Thus, the result follows.

The converse is trivial. O

The tensors T, Di3 and VN, will be called the inhomogeneity tensors of
the given material non-holonomic parallelism P.
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Definition 4.3. A non-holonomic G-structure on By is said to be an integrable
prolongation if around each point of By there exists a local section which is an
integrable prolongation.

From Proposition 4.2 it follows the following

Proposition 4.3. A non-holonomic G-structure on By is an integrable prolonga-
teon if and only if it admaits local sections whose inhomogeneity tensors vanish.

5. HOMOGENEITY

Definition 5.1. B is said to be homogeneous if there exists a uniform configu-
ration ® : B — R"*™ such that:

(i) ®(B) is an open subset of R”, where R" is considered as a natural subspace
of R defined by the vanishing of the coordinates ™Y, z?1? and 2™t™. Here

(zt)- - an 2T et denote the standard coordinates in Rn+m,'

(i1) There ewists a global deformation & from ﬁ@ wmto £ covering a global
diffeomorphism & : ®(B) — R™ such that P = &~ defines a material non-
holonomic parallelism, 1.e.,

75(X) :jé(l%_l OFTK(X)) , VX € q)(B) ,

where T.(x) : R" — R" denotes the translation on R" by the vector k(X), and
Fryx) 1s the induced mapping between frame bundles.

B s said to be locally homogeneous if for every point X € B there exists an
open neighborhood which is homogeneous.

This definition s referred to a particular chosen reference crystal. More gen-
erally, we will say that B 1s homogeneous if 1t is homogeneous with respect to at
least one reference crystal.

We will obtain a geometrical characterization of the local homogeneity.
For the sake of simplicity, we first assume that the group of material symmetries
is trivial. So, we have the following

Theorem 5.1. B is locally homogeneous (with respect to a chosen reference crys-
tal) of and only if there exists a uniform configuration ® such that the associated
material non-holonomic parallelism P s an wntegrable prolongation.

Proof: If B is locally homogeneous, and & is as in the above definition, we obtain

op!

P(x*) = (x“,Pf, 1, 61‘“) )

Therefore, P is an integrable prolongation.

Assume now that the inhomogeneity tensors associated with a material non-
holonomic parallelism P identically vanish. We assume that P was obtained from
a configuration ¢ : B — R**™. Then, from Proposition 4.2, it is an integrable
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prolongation. This means that there exist local coordinates (z%) on ®(B) such
that

P! )
T Qxe’

Next, we define a principal bundle automorphism

75(1‘“) = (x“,Pf, 1

%:}TE‘@—M‘)

as follows:
Rle®, X1 = (2%, PEXT) .

% 1s the required deformation. a

To end this section, we will investigate what happens if a change of reference
crystal is performed. Notice that a change of reference crystal consists of com-
posing the material non-holonomic parallelism P = (P, Q,R) with an element
(A, B,C) in the Lie group G(n,n + m). The new material non-holonomic paral-
lelism is then given by P’ = (P’, Q',R'), where

(P = AFPL, (Q)5 = BLQ8 , (R)], = AFBIR], + Pick, .

So, the new connections I} and I'y coincide with the former ones, I'y and ['y. This
fact implies that, if the torsion tensor 7% of P vanishes, the same is true for P’.
Therefore, the first test in order to know if a material non-holonomic parallelism
is an integrable prolongation is to check the torsion tensor 75. If 75 does not
vanish, we can conclude that any P would be not an integrable prolongation. If
Ty vanishes, but the other tensors do not so, we can try for a change of reference
crystal. Consider the vector fields

Dap = (Vi)e.Ps = (V3)e. Py Dar = Vo Ny .
By the same argument that in [16], we conclude the following.

Theorem 5.2. B is locally homogeneous if and only if there exists a uniform
configuration ® such that the associated material non-holonomic parallelism P
have To = 0 and Dyops = Doy = 0.

6. PARTICULAR CASES

6.1. Elastic rods. (see [1, 5])

In this case, n = 1, m = 2. That is, By is a curve in R’. Since n = 1, we
allways have that the linear parallelism {Q} is integrable, so that T, identically
vanishes. Proposition 4.2 becomes as follows.

Proposition 6.1. P is an integrable prolongation if and only if the difference
tensor D13 = V1 — V3, and the 1-forms VN, and VN5 simultaneously vanish.
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If the group of material symmetries is continuous, we obtain a G-structure on
the curve By, where G is a Lie subgroup of G(1,3).

A particular case is obtained when we consider principal bundle isomorphisms
R F(®1(B)) — F((®2(B)) such that the tangent part is precisely given by the
tangent map of the induced diffeomorphisms & : ®1(B) — ®3(B). In this case,
Py = Qy, and, then, I'1 = I's.

6.2. Elastic shells. (see [1, 3, 5, 19, 20, 21, 22, 26, 27, 51])

In this case, n = 2, m = 1. That is, By 1s a surface in R®. Thus, the non-
holonomic parallelism P defines two linear parallelisms {P;, P2} and {Q;, @} on
the surface By, and a normal vector field N

Proposition 4.2 becomes as follows.

Proposition 6.2. P is an integrable prolongation if and only if the tensor torsion
Ts, the difference tensor D1z = Vi — Vs, and the I-form VN simultaneously
vanish.

If the group of material symmetries is continuous, we obtain a G-structure on
the surface By, where G is a Lie subgroup of G(2,3).

A particular case is obtained when we consider principal bundle isomorphisms
R F(®1(B)) — F(P2(B)) such that the tangent part is precisely given by the
tangent map of the induced diffeomorphisms & : ®1(B) — ®3(B). In this case,
Po = Qq, «=1,2, and, then, I'; =T'5.

6.3. Cosserat media. (see [5, 14, 15, 17, 24])

Assume that n = 3, m = 0. In this case, a bundle configuration %@ is just the
linear frame bundle F(®(B)) of ®(B), that is, the collection of all bases at all the
points of ®(B). Thus, the Lie group Gy is Gi(n,R). A deformation is a principal
bundle isomorphism & : F(®1(B)) — F(P2(B)) covering a diffecomorphism « :
®,(B) — ®3(B). Chosen an uniform configuration &y : B — R", we obtain
a non-holonomic parallelism P By — F& (we follow the notations introduced
in the precedent sections). It should be noted that F& is just the so-called non-
holonomic second order frame bundle of By, and, hence, P is a non-holonomic
second order parallelism. Thus, we have two linear parallelisms P and @, and a
linear connection I' on By. There are no transversal vector fields, and Proposition
4.2 becomes as follows.

Proposition 6.3. P is an integrable prolongation if and only if the torsion tensor
Ty of I's and the difference tensor D13 = V1 — V3 simultaneously vanish.

If the group of material symmetries is continuous, we obtain a material non-
holonomic second order G-structure, where G is a Lie subgroup of the second order
non-holonomic group G(n) = G(3,3).

Particular cases are obtained if we only consider deformations such that they
are the natural prolongation of the diffeomorphisms between the bases, that is,
® = F®. This occurs for second grade material bodies [6, 7, 8, 10, 11, 12, 13]. In
this case, P, = @, and, hence, I'y = I';. So, we have the following.
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Proposition 6.4. The following statements are equivalent:

(1) P is an integrable prolongation;

(2) it is an integrable parallelism of second order;

(3) the torsion tensor To of Ty and the difference tensor Diz = Vi — V3
simultaneously vanish.
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