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ARCHIVUM MATHEMATICUM (BRNO)Tomus 30 (1994), 293 { 300OSCILLATION THEOREMS FOR NEUTRAL DIFFERENTIALEQUATIONS WITH THE QUASI {{ DERIVATIVESM. R�u�zi�ckov�a, E. �Sp�anikov�aAbstract. The authors study the n-th order nonlinear neutral di�erential equa-tions with the quasi { derivativesLn[x(t)+(�1)rP (t)x(g(t))]+�Q(t)f(x(h(t)))= 0;where n � 2; r 2 f1;2g; and � = �1: There are given su�cient conditions forsolutions to be either oscillatory or they converge to zero.1. IntroductionWe consider the neutral di�erential equation(Er) Ln[x(t) + (�1)rP (t)x(g(t)) ] + � Q(t) f(x(h(t))) = 0;where n � 2; r 2 f1; 2g; � = �1;L0x(t) = x(t); Lkx(t) = ak(t) [Lk�1x(t)]0; k = 1; 2; :::; n; an = 1;ai 2 C[ [t0;1); (0;1) ]; i = 1; 2; :::; n� 1; t0 � 0;P;Q; h; g 2 C[ [t0;1); [0;1) ]; P;Q 6� 0 on any half line [t;1);g(t)!1 and h(t)!1 as t!1; f 2 C[R;R]; x f(x) > 0 for x 6= 0:Every solution x(t) of (Er) considered here is nontrivial and de�ned on a halfline [Tx;1 ) Tx � t0.A solution of (Er) is called oscillatory if it has arbitrarily large zeros; otherwise,it is called nonoscillatory.We will use the following notation: 
(t) = sup f s � t0; g(s) � t g; g1(t) =g(t) , gk(t) = g(gk�1(t)) , k = 2; 3; :::; g�1(t) = g�1(t) , where g�1(t) is inversefunction to g(t) , g�k(t) = g�1(g�(k�1)(t)) , k = 2; 3; :::For any functions ai 2 C[ [t0;1); (0;1)]; i = 1; 2; :::; n , we de�neI0 = 1; Ii(s; t; ai; :::; a1) = Z st 1ai(u)Ii�1(u; t; ai�1; :::; a1) du; t0 � t � s:1991 Mathematics Subject Classi�cation : 34K40, 34K25.Key words and phrases: neutral di�erential equation, oscillatory (nonoscillatory) solution,quasi derivatives.Received January 3, 1994.



294 M. R�U�ZI�CKOV�A, E. �SP�ANIKOV�AFor each solution x(t) of (Er) we de�nez(t) = x(t) + (�1)rP (t)x(g(t)):Sometimes we will require the following conditions to be satis�ed:(1) Z 1 1ai(t)dt =1; i = 1; 2; :::; n� 1;There exist constants � > 0 and b > 0 such that(2) g(t) � t� �; and g(t) is increasing on [t0;1);(2a) g(t) � t; and g0(t) � b on [t0;1);(3) h(t) � t;the functions g and h commute, i.e.,(4) g(h(t)) = h(g(t));(5) f(u+ v) � f(u) + f(v); if u; v > 0;f(u+ v) � f(u) + f(v); if u; v < 0;(6) f(ku) � k f(u); if k � 0 and u > 0;f(ku) � kf (u); if k � 0 and u < 0;(7) f(u) is bounded away from zero if u is bounded away from zero;(8) Z 1Q(s)ds =1;and there exists positive constant M such that(9) P (h(t))Q(t) � MQ(g(t)):The following two lemmas will be needed in the proofs of our results.



OSCILLATION THEOREMS FOR NEUTRAL DIFFERENTIAL EQUATIONS 295Lemma 1. ([4, Lemma 1]) Let the condition (1) be satis�ed and let z be eithera positive or a negative function on the interval [tx;1); tx � t0; such that Ln zexists on [tx;1); Ln z(t) � 0 or Ln z(t) � 0 for t � tx and is not identicallyzero on any interval of the form [t2;1); t2 � tx: Then there exists an integer l,0 � l � n ; with n+ l even for z(t)Ln z(t) � 0 or n+ l odd for z(t)Lnz(t) � 0;such that for every t � txl > 1 implies z(t)Liz(t) > 0; (i = 0; 1; :::l� 1)and l � n� 1 implies (�1)l+iz(t)Liz(t) > 0; (i = l; l + 1; :::; n� 1):Further, for every i = 0; 1; :::; n� 1; limt!1Li z(t) exists in the extended realline R� = R [ f�1;1g wherebyfor l � n� 1; limt!1 jLlz(t)j = cl � 0 is �nite,for l � n� 2; limt!1Liz(t) = 0 (i = l + 1; :::; n� 1);for l � 2; limt!1 jLiz(t)j = 1 (i = 0; 1; :::; l� 2):Lemma 2. ([5, Lemma3]) Let x; P; g : [t0;1)! R; z(t) = x(t)� P (t)x(g(t));t � tz = 
(t0): Suppose condition (2) holds and there exists a positive number p1such that 0 � P (t) � p1. Assume that x(t) > 0 for t � t0 , lim inft!1 x(t) = 0 andthat limt!1 z(t) = L 2 R exists. Then L = 0.2. Main resultsIn recent years there has been a growing interest in oscillation theory of func-tional di�erential equations of neutral type of the �rst and higher order; see, forexample, the papers [1�5] and the references cited therein.The purpose of this paper is to establish oscillation theorems for solutions of(Er). The results from the papers [1] and [5] we extend for neutral di�erentialequations with quasi-derivatives.Theorem 1. Let the conditions (1), (2) hold. Assume that there exist positivenumbers p1 and p such that P (t) satis�es 1 < p � P (t) � p1 <1. If(10) Z 1Q(s)In�1(s; t; an�1; :::; a1) ds =1;then i) every bounded solution x(t) of (E1) is oscillatory when (�1)n� = �1;ii) every bounded solution x(t) of (E1) is either oscillatory or limt!1x(t) = 0when (�1)n� = 1.



296 M. R�U�ZI�CKOV�A, E. �SP�ANIKOV�AProof. Let x(t) be a nonoscillatory bounded solution of (E1). We may assumethat x(t) is eventually positive. Let z(t) = x(t) � P (t)x(g(t)). It is easy to seethat z(t) is bounded. We �rst claim that z(t) is eventually negative; otherwise,x(t) � P (t)x(g(t)) � p x(g(t));so by induction we would have x(t) � pmx(gm(t));or x(g�m(t)) � pmx(t);for every positive integer m. But this last inequality implies that x(t) ! 1 ast!1, which contradicts to our assumption that x(t) is bounded.Now, from (E1) �Ln z(t) = �Q(t) f(x(h(t))) � 0:Since z(t) �Ln z(t) � 0 and z(t) is bounded, it follows from Lemma 1 that thereexist a t2 � t1 and a number l 2 f0; 1g with (�1)n+l � = 1; such that for all t � t2(11) (�1)i+lLiz(t) < 0; i = l; l + 1; :::; n� 1:Now, we integrate (E1) from t to r ( r � t � t2) and see that(12) ��Ln�1 z(t) + Z rt Q(s) f(x(h(s))) ds < 0:Integrating (12) after dividing by an�1(t) from t to r and interchanging the orderof integration, we get�Ln�2 z(t) + Z rt Q(s) f(x(h(s))) Z st 1an�1(u) du ds < 0:Repeting this method (n� 2) times, and denoting by z(1) = limt!1 z(t); we have(13) (�1)n�[z(t)� z(1)] + Z 1t Q(s) In�1(s; t; an�1; :::; a1) f(x(h(s))) ds � 0:In view of (10) and the fact that z(t) is bounded, one can conclude from (13) thatlim inft!1 f(x(t)) = 0 or(14) lim inft!1 x(t) = 0:Let (�1)n� = 1; i.e. l = 0: We shall now proceed to show that limt!1x(t) = 0: Inview of (11) and Lemma 1, z(t) approaches to a �nite limit L as t tends to in�nity.



OSCILLATION THEOREMS FOR NEUTRAL DIFFERENTIAL EQUATIONS 297Then by Lemma 2, L=0. Since z(t) < 0 and z(t) ! 0 as t ! 1; for any " > 0there exists a T such that z(t) > �"; for all t � T:So, x(t) > �" + p x(g(t))p x(t) < " + x(g�1(t))p2x(t) < " + p " + x(g�2(t))...(15) pmx(t) < " + p " + � � �+ pm�1" + x(g�m(t)):Because x(t) is bounded, there exists a constant A such that x(t) � A: From(15) we obtain(16) x(t) < " p�m � 11� p + Ap�m:Because p�m goes to zero as m tends to in�nity, and " is arbitrary, from (16) wehave x(t)! 0 as t!1 as desired.Suppose that (�1)n� = �1: Because z(t) is bounded and l = 1, limt!1 z(t) exists.In view of (14), it follows from Lemma 2 that z(t) ! 0, as t ! 1: But thiscontradicts to the fact that z(t) is negative and decreasing, and hence proves thatx(t) is oscillatory. The case when x(t) is eventually negative is similar. The proofof Theorem 1 is complete. �The following examples are ilustrative.Example 1. Consider the neutral di�erential equation(17) (e�t(e�t(x(t)� (2 + e�t)x(t� 1))0)0)0 � (24 e1�t + 12 e� 6)x(3t) = 0for t � 1: All conditions of Theorem 1 are satis�ed, � = �1; n = 3 and henceevery bounded solution x(t) of (17) is either oscillatory or limt!1x(t) = 0: Onesuch solution is x(t) = e�t:Example 2. Consider the neutral di�erential equation(18) (e�t(e�t(x(t)� 2x(t� 2�))0)0)0 + � (2 e2� � 1) 10e 3�2 e�2t � x � t� 32 � � = 0for t � 2�: All conditions of Theorem 1 are satis�ed, � = 1; n = 3 and hence everybounded solution x(t) of (18) is oscillatory. One such solution is x(t) = e�t sin t:



298 M. R�U�ZI�CKOV�A, E. �SP�ANIKOV�ATheorem 2. Suppose � = 1 and conditions (1), (2a), (3)�(9) hold. Theni) if n is even, every solution of (E2) is oscillatory;ii) if n is odd, any solution x(t) of (E2) is either oscillatory or satis�esx(t)! 0 as t!1:Proof. Suppose that (E2) has an eventually positive solution x(t); say x(t) > 0;x(g(t)) > 0; x(h(t)) > 0 and x(g(h(t))) > 0 for t � t1; for some t1 � t0: It thenfollows from (5), (6) and (4) thatf(z(h(t))) = f(x(h(t))) + P (h(t))x(g(h(t))) � f(x(h(t))) + P (h(t)) f(x(h(g(t)))):Hence(19) Ln z(t) +Q(t) f(z(h(t))) � Q(t)P (h(t)) f(x(h(g(t)))):Since z(t) > 0; Ln z(t) � 0 for t � t1; it follows from Lemma 1 that there exist at2 � t1 and an integer l; 0 � l � n with n+ l odd such that for every t � t2(20) Li z(t) > 0 for i = 0; 1; :::; l� 1;(�1)l+iLi z(t) > 0 for i = l; l + 1; :::; n� 1:And hence Ln�1 z(t) > 0 andlimt!1Ln�1 z(t) is �nite:From (E2) we haveLn z(g(t)) g0(t) +Q(g(t)) f(x(h(g(t)))) g0 (t) = 0;and itegrating shows that
Z 1t2 Q(g(s)) f(x(h(g(s)))) g0 (s) ds <1:This, together with (2a) and (9), implies that

Z 1t2 Q(s)P (h(s)) f(x(h(g(s)))) ds <1:An integration of (19) shows that
Z 1t2 Q(s) f(z(h(s))) ds <1;which, in view of (7) and (8), implies thatlim inft!1 z(t) = 0:



OSCILLATION THEOREMS FOR NEUTRAL DIFFERENTIAL EQUATIONS 299Therefore z(t) ! 0 as t ! 1 since z(t) is positive and monotonic. Clearly,z0(t) < 0; and from (20) we have l = 0 and n is odd. Because P (t) � 0 ,weget x(t) � z(t)! 0 as t!1 . This completes the proof of the Theorem 2 in thecase x(t) > 0: The proof when x(t) < 0 is similar and will be omitted. �The following example is illustrative.Example 3. Consider the neutral di�erential equation
" t � 1t [x(t) + 2x(t� 1)]0 � 0 # 0 + 1 + 2 ee2 � 1 + 1t + 1t2 � x(t� 2) = 0; t � 2:All conditions of Theorem 2 are satis�ed and any solution of this equation is eitheroscillatory or limt!1 x(t) = 0: One such solution is x(t) = e�t:Theorem 3. Suppose � = �1; conditions (1), (2a), (3)�(9) hold and P(t) isbounded. Theni) if n is even, any bounded solution x(t) of (E2) is either oscillatory orsatis�es x(t)! 0 as t!1;ii) if n is odd, every bounded solution of (E2) is oscillatory.Proof. Let x(t) be a bounded and eventually positive solution of (E2); say x(t) >0; x(g(t)) > 0; x(h(t)) > 0; x(g(h(t))) > 0 for t � t1: Also, note that z(t) ispositive and bounded since P (t) is bounded. Since Ln z(t) � 0 for t � t1, itfollows from Lemma 1 that there exist a t2 � t1 and an integer l; l 2 f0; 1g withn+ l even such that for every t � t2(21) (�1)l+iLi z(t) > 0 for i = 1; 2; :::; n� 1:Conditions (5), (6), (4) and (9) yield(22) Ln z(t) +M Q(g(t)) f(x(h(g(t)))) � Q(t) f(z(h(t))):As in the proof of Theorem 2, it follows from (E2) that

Z 1t2 Q(g(s)) f(x(h(g(s)))) g0 (s) ds <1:Hence by (2a) and an integration of (22) we see that
Z 1t2 Q(s) f(z(h(s))) ds <1:Conditions (7) and (8) then implylim inft!1 z(t) = 0;



300 M. R�U�ZI�CKOV�A, E. �SP�ANIKOV�Aand in view of the monotonicity of z we get z(t) ! 0 as t !1 : From (21) weget l = 0 and n is even. Then x(t) � z(t)! 0 as t!1:If x(t) is eventually negative, the proof can be done in a similar way. The proofof Theorem 3 is complete. �Example 4. Consider the neutral di�erential equation
� 1t (x(t) + 3x(t� 1))0 � 0 � e�4 (1 + 3 e) � 1t + 1t2 � x(t� 4) = 0; t � 4:All conditions of Theorem 3 are satis�ed and any solution of this equation is eitheroscillatory or limt!1x(t) = 0: One such solution is x(t) = e�t:References[1] Graef, J. R., Spikes, P. W., On the oscillation of an nth-order nonlinear neutral delaydi�erential equation, J. Comp. Appl. Math. 41 (1992), 35-40.[2] Jaro�s, J., Kusano, T., Oscillation properties of �rst order nonlinear functional di�erentialequations of neutral type, Di�. and Int. Equat. (1991), 425-436.[3] Maru�siak, P., Oscillatory properties of functional di�erential systems of neutral type, Czech.Math. J. 43 (1993), 649-662.[4] �Seda, V., Nonoscillatory solutions of di�erential equations with deviating argument, Czech.Math. J. 36 (111) (1986), 93-107.[5] Zafer, A., Dahiya, R. S., Oscillation of bounded solutions of neutral di�erential equations,Appl. Math. Lett. 2 (1993), 43-46.M. R�u�zi�ckov�a and E. �Sp�anikov�aDepartment of MathematicsUniversity of Transport and CommunicationsJ.M.Hurbana 15010 26 �Zilina, SLOVAKIA
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