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ON AN OBLIQUE DERIVATIVE PROBLEM
INVOLVING AN INDEFINITE WEIGHT

M. FAIERMAN

ABSTRACT. In this paper we derive results concerning the angular distrubition of
the eigenvalues and the completeness of the principal vectors in certain function
spaces for an oblique derivative problem involving an indefinite weight function for
a second order elliptic operator defined in a bounded region.

1. INTRODUCTION

Although there is a relatively large literature devoted to the spectral theory
for linear elliptic boundary value problems involving an indefinite weight function,
most of the work to date has been concerned with either selfadjoint problems or
non-selfadjoint problems arising from perturbations of selfadjoint ones. We refer
to [6], [10, 11], [17, 18], and [19-21] for further information. Thus, even for second
order operators, such investigations do not apply to such a typical non—selfadjoint
problem as the oblique derivative problem. With this in mind, the author [12,
13] has recently initiated an investigation into the spectral theory of quite general
non-selfadjoint problems, but only under the assumption that the weight function
and its reciprocal were essentially bounded in the set concerned. In this paper we
focus our attention upon an oblique derivative problem for a second order operator
and establish some basic facts concerning the spectral theory for such an operator
under much more general conditions on the weight function than considered in
[12, 13].

Accordingly, in this paper we shall be concerned with the spectral theory for
the boundary value problem

(1.1) Lu = dw(z)u in Q,
(1.2) Bu=0 on T,
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where L is a linear elliptic operator of the second order defined in a bounded
region 2 C R” n > 2, with boundary I', B is a linear differential operator of the
first order defined on I'; and w is a real-valued function in L°°(£2) which assumes
both positive and negative values. Our assumptions concerning the problem (1.1-
2) will be made precise in §§2 and 3; in particular we mention that, unlike [12, 13],
we no longer require that 1/w(x) € L (). Thus, since it is imperative for the
success of our method in developing the spectral theory for the problem (1.1-2)
to obtain local a priori estimates for solutions of (1.1) near boundary points of
thesets 2 € Q|w(x) >0, z€Q|w(x)<0 ,and 2 €Q|w(x) =0, this
means that the results of [12, 13] are in general no longer valid for the problem
under consideration here as they were based upon the usual a priori estimate
for the solution of a half-space elliptic problem (in the sense of [2, 5]) involving
operators with constant coefficients which depend upon a parameter that arises
from a local rectification of the boundary concerned. Consequently, we have had
to introduce new functions, the so—called generalized parabolic cylinder functions
studied in [15], as well as new techniques, in order to arrive at the required a priori
estimates. These estimates were established in part in [14, 16] and are further
extended in §4 of this paper. By means of these estimates, as well as under certain
assumptions concerning the problem (1.1-2) (e.g., we require that the resolvent
set of (1.1-2) not be empty — see Assumption 3.1 below), we are able to determine
the behaviour along various rays in the complex plane of the modified resolvent
of a certain compact operator KT introduced below whose characteristic values
and generalized characteristic vectors are precisely the eigenvalues and principal
vectors, respectively, of the problem (1.1-2). With this information we are then
able to apply the Phragmén—Lindelhof principle in order to obtain quite general
results concerning the angular distribution of the eigenvalues of the problem (1.1-
2) as well as the completeness of the principal vectors in certain function spaces.

Finally, in §2 of this paper we introduce some of our basic assumptions and
collect some known facts concerning the problem (1.1-2) which we require in the
sequel. In §3 we introduce the last of our basic assumptions, state our main the-
orem, Theorem 3.1, and then introduce the operator KT mentioned above. In §4
we establish some results concerning the growth of the modified resolvent of KT
along certain rays in the complex plane and these are used in §5 to prove Theorem

3.1.

2. PRELIMINARIES

In this section we are going to introduce some of our basic assumptions concern-
ing the problem (1.1-2) as well as collect some results from [12] which we require
in the sequel. We will also introduce some definitions and notation which will be

needed later on. Hence, to begin with, we let # = (¢ ,...,2,) = (', 2,) denote a
generic point in R”™ and use the notation D; = 0/dz;, D=(D ,...,D,), D* =
D% ... D2~ where @« = (o ,...,y) is a multi-index whose length ;l a;

is denoted by |«|. For G' an open set in R™ and k a non—negative integer, we
let H*(G) denote the usual Sobolev space of order k related to L (G) and let
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(, )& and || ||g,¢ denote the inner product and norm, respectively, in H*(G).
We shall at times in the sequel also consider the spaces H*(G), s > 0, s ¢ Z, and
H*(R"™ ), s € R, where, with [s] denoting the integer part of s, the first space is
defined to be that subspace of H * () consisting of vectors u for which

/
D%u(z) — D%u(y)

ey

lulls.e = lulls ¢ + ddy

lol s qa

is finite, while the second space is defined to be the completion of C*°(R"~ ) with
s /

respect to the norm ||u||; gn-1 = 1T+ "|Ful d¢ and F'u denotes the

Fourier transform of w. Lastly, we let ( , ) and || || denote the inner product and
norm, respectively, in H = L ().
Turning now to the problem (1.1-2), we henceforth suppose that:
Assumption 2.1.
1) Tisof class C' 7
2) L(z,D)= o< aq(x) D% is uniformly elliptic in  with a, real-valued
if || = 2 and complex—valued otherwise and such that a, € C1*1= > (Q)
for |a| > 1, aq € L™(Q) otherwise, where ~ denotes closure;
3) B(z,D) = o< bo(x) D%, with b, real-valued if |a| = 1 and complex—
valued otherwise, while b, € Cl2l: (T) for |a| > 0;
4) T is non—characteristic to B at each of its points.

Remark 2.1. By employing a known extension procedure, we may suppose from
now on that B is defined in  with b, € Clol ().

Thus we see that apart from certain smoothness conditions, Assumption 2.1
ensures that the boundary value problem:

(2.1) Lu=f in €,

together with the boundary condition (1.2) is a regular elliptic problem in the
sense of [2, 24]. Note that if L* denotes the formal adjoint of L and C' denotes a
boundary operator adjoint to B with respect to the problem (2.1), (1.2) (see [24,
p.121], [26]), then the formal adjoint problem of (2.1), (1.2)

L*u=f in €,
(2.2) Cu=20 on T,

is also a regular elliptic problem (see [12, §2]).

In H we now introduce the operator A (resp. A’) with domain D(A) (resp.
D(A")) as follows: we let D(A) (resp. D(A’)) denote the closure in H () of the
class of functions in C' (Q) satisfying the boundary condition (1.2) (resp. (2.2))
and put Au = Lu for u € D(A) (resp. A'u = L*u for u € D(A’)). Then we know
from [2] that
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Theorem 2.1. Ifu € D(A), then ||u|| < ¢ [JAu|| + ||u|| , where the constant ¢
does not depend upon u.

It follows immediately that A is semi—Fredholm and dimker A < co. Analogous
results also hold for A’. Moreover, if A* denotes the Hilbert space adjoint of A, then
we know from [12] that A* = A’  and hence it follows that A and A* are actually
Fredholm operators, while we also know from [12] that index A = —index A* =
0. Lastly, we note from [12] that A and A* have non—empty resolvent sets and
compact resolvents.

Turning to our assumptions concerning w(z), let

Q = 2eQ|w)>0,0 = 2€6Qw@)<0 ,Q = z€Q|wx)=0 .

Assumption 2.2. In the sequel we suppose that:

1) |QF| > 0and |Q | > 0, where | | denotes n—dimensional Lebesgue measure;

2) |QF\ int Q| =0, where int = interior;

3) int Q (resp. int 27) is the union of a finite number of non—empty disjoint
regions, say {€, } (resp. {2 }), in each of which w(#) is continuous and
such that for at least one r, Q, (resp. 2,7) contains a closed ball in which
w(x) is Lipschitz continuous;

4) each component L, (resp. FT_]) of 99, (resp. 9, ), where = boundary,
is either a component of I' or is contained in 2 and is either a component
of 9, (resp. 082 ) for some s # r, or a component of 92 (resp. 98, )
for some s, or a component of 9Q if [Q | > 0, where @ = Q\Q and
Q = intQ U intQ—;

5) for each component Fri]» of O either (i) Fri]» is of class C' » and there is a
neighbourhood of Frij such that in the intersection of this neighbourhood
with QF w(z) is uniformly continuous and w(z) has a positive infimum
or (ii) Frij is of class C' » and there is a neighbourhood of Frij such that in

+
the intersection of this neighbourhood with QF, w(x) = wf} (2) dri](x) Ty

where wf} (z) is uniformly continuous and wf} (z) has a positive infimum,
dri](x) = dist l‘,F;t]» , and 'yf} > 2:
6) w(z) has been modified on a set of measure zero, if necessary, so that if
|2 ] > 0, then w(z) = 1 for z € Fri]» if Fri]» C Q\Q and w(z) = 0 for
v €Q , whileif | | =0, then w(z) = 1 for z € T} if Tf; C Q.
It is an immediate consequence of Assumption 2.2 that if [ | > 0, then
is the union of a finite number of non-empty disjoint regions, say {Q ;}, and
each component of 9 ; is either a component of I' or is contained in Q and is
either a component of 92, or a component of 927 for some s. Also fixing our
attention upon condition (5) of Assumption 2.2, we shall henceforth define 'yf} =0
if alternative (i) is valid and let v = max E, where E denotes the subset of R
consisting of all of the 'yf}.
In order to arrive at our main results and in order to use the results of [16] we
also require
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Assumption 2.3. It will henceforth be supposed that:
1) if I'; (resp. I';) coincides with a F;tk, then v, = 'ysik (resp. v,; = ’ysik);
2) if | > 0and Fri]» coincides with a component of 9§ |, then (i) Fri]» is of
class C™" o if 'yf} > 2 and of class C™" otherwise, where n* denotes the

integer part of n/2, and (ii) there is a neighbourhood of Frij such that in

the intersection Uri]» of this neighbourhood with Q | an(z) € C"" (U_Ti])
for || = 2, where we refer to [1, pp.9-10] for notation.

In the following sections we will require some further terminology. Accordingly,
with this in mind we now introduce the following

Definition 2.1. Let X be a complex Hilbert space and S a linear operator in
X. Then the set of all non—zero complex numbers A for which 7 — AS has an
inverse in £(X) is called the modified resolvent set of S and denoted by ppm(S5).
For A € pn(S) we let Sy = S(I — AS)™ and call Sy the modified resolvent
of S. A complex number A is called a characteristic value of S if there exists a
u # 0 in D(S) such that (I — AS)u = 0; u is called a characteristic vector of S
corresponding to A. If A is a characteristic value of S, then a non-zero vector u
is called a generalized characteristic vector of S corresponding to A if for some
p € N, u € D(SP) and (I — AS)u = 0. The set consisting of all generalized
characteristic vectors of S corresponding to A together with the zero vector in X
is a subspace of X which we denote by G5 (S, X). Lastly, the ray arg A = ¢ in the
complex plane is said to be a ray of growth of S, of order 7 if for all A on the
ray, with |A| sufficiently large, we have A € p,, (S) and [|Sy]|x < ¢|A|”7 for some
7 satisfying 0 < 7 < 1, where ¢ denotes a positive constant and || ||x denotes the
norm in L(X).

Finally, let T" denote the operator of multiplication in H induced by w. Then we
observe that when H, considered only as a vector space, is equipped with the inner
product (, )p = (T.,.), it becomes an indefinite inner product space [8, p.4]; and
in the sequel we shall denote this latter space by Hrp in order to distinguish it from
the Hilbert space H. Let M and A denote any two subspaces of 7. Then we say
that M and N form a dual pair of subspaces of Hr if for each u # 0 in M there is
av € N such that (u,v)r # 0 and for each v # 0 in A there is a u € M such that
(u,v)r # 0[8, p.21]. We note from the definition and [8, Lemma 10.3, p.21] that if
M and N form a dual pair in Hp, then dim M = dim TM = dim N = dim TN,

where dimension is meant in the algebraic sense (see [8, p.2]).

3. THE MAIN THEOREM

In this section we are going to state the main results of this paper (see Theorem
3.1 below) as well as introduce the operator KT which will play a vital role in the
subsequent analysis. However, we must firstly introduce one further assumption. To
this end we are now going to give a precise meaning to the eigenvalue problem (1.1-
2). Accordingly, recalling the definition of 7" given in the last paragraph of §2, it is
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clear that the problem (1.1-2) can be formulated from a purely operator—theoretic
point of view, namely, as the spectral problem for the pencil S(A) = A-AT, A e C.
Observe that for each A, S(A) is a closed operator in H with domain D(A). Let
us recall from [25, pp.56-57 and 102] that a point u € C is called a regular point
of S(A) if S(x) has an inverse in L£(H). The set of all regular points of S(A) is
called the resolvent set of S(A) and is denoted by p(S), while the set C\p(S) is
called the spectrum of S(A) and is denoted by ¢(S). It follows from [23, Problem
5.32, p.242] that p(S) is open in C, and hence o(S5) is closed. A point gy € C
is called an eigenvalue of S(X) if there exists a vector u # 0 in D(A) such that
S(p)u = 0; such a vector u is called an eigenvector of S(A) corresponding to f.
If 4 is an eigenvalue of S(A) and N, denotes the set of all eigenvectors of S(A)
corresponding to yp together with the zero vector in H, then N, is a subspace
of H which we call the eigenspace of S(A) corresponding to g and dim N, is
called the geometric multiplicity of p. If u is an eigenvalue of S(A) and u a
corresponding eigenvector, then there may exist vectors {u;}” in D(A) such that
S(p)u; = Tu;— for j=1,...,r. Then the vectors {u;}" are said to be associated
with the eigenvector u and the set M, consisting of all eigenvectors of S(A)
corresponding to u together with their associated vectors and the zero vector in H
forms a subspace of H which we call the principal subspace of S(A) corresponding
to ¢ and dim M, is called the algebraic multiplicity of . Any vector u # 0 in M),
is called a principal vector for the eigenvalue p of S(X).

We have seen in §2 that A (as well as A*) is a Fredholm operator with index zero,
and hence it follows from Theorem 2.1, [23, Theorem 5.26, p.238], and Rellich’s
theorem [3, p.30] that S(A) is a Fredholm operator with index zero for every A € C.
Thus we conclude from [23, Theorem 5.31, p.241] that for A € C, nul S(A) = def
S(X) = constant, with the possible exception of certain isolated points. For our
purposes we require that this constant be zero, and hence this leads us to introduce

Assumption 3.1. We suppose from now on that p(.S) # 0.

Before stating the main results of this paper, let us introduce the following
Terminology. In the sequel, when we speak of regular points, resolvent set, spec-
trum, eigenvalues, eigenvectors, associated vectors, principal vectors, eigenspaces,
or principal subspaces of the problem (1.1-2), then this will always be meant with
respect to the pencil S(A).

The following theorem contains the main results of this paper (we refer to
Assumption 2.2 for terminology).

Theorem 3.1. The spectrum of the problem (1.1-2) consists solely of eigenvalues
of finite algebraic multiplicity which form a denumerably infinite subset of C having
no finite points of accumulation. Moreover, for any ¢ satisfying 0 < ¢ < 7/2, there
are infinitely many eigenvalues in each of the sectors | arg A| < ¢ and |arg A — 7| <
€, while there are at most a finite number of eigenvalues in each of the sectors
e<arg A< wm—e¢€and —7m+ € < arg A < —e. Finally the principal vectors of
the problem (1.1-2) are complete in each of the function spaces L (2 US™) and
L Q uQ;|w(x)|de .
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Of course when we speak of the completeness of the principal vectors of (1.1-2)
in the spaces just cited, we mean that the restrictions of the principal vectors to
the set Q@ UQ™ are complete (in this vein see Proposition 3.2 below as well as the
remarks following Assumption 3.2.).

Since the proof of the theorem depends upon the results of §4, it will be deferred
until §5. However, for our purposes we have to analyse Assumption 3.1 in greater
detail. To this end let us firstly observe that 0 € ¢(5) (and hence 0 must be an
eigenvalue of S(X)) if and only if 0 € o(A), and if 0 € ¢(S), then N = ker A.

Now let us fix our attention upon the boundary value problem
(3.1) Lu=dw(z)u in Q

together with the boundary condition (2.2). We define the eigenvalues, eigenspaces,
principal subspaces, spectrum, et cetera of the problem (3.1), (2.2) in an analogous
manner to those for the problem (1.1-2) (see Terminology above, where now we
are to replace S(A) by its adjoint S*(A)); and for A an eigenvalue, we let N¥
and M} denote the eigenspace and principal subspace, respectively, of (3.1), (2.2)
corresponding to A. It is clear that 0 € ¢(S*) (and hence 0 must be an eigenvalue
of S*(A)) if and only if 0 € o(A*), and if 0 € ¢(S*), then N* = ker A*. Referring

to the last paragraph of §2 for terminology, we have next.

Proposition 3.1. In order that p(S) # ¢, it is necessary and sufficient that either
0 € p(A) or 0 € o(A) and: either (i) N and N* form a dual pair of subspaces of
Hr or (ii) N and N* do not form a dual pair in Hp, but dim M < co.

Proof. To begin with, let us prove the sufficiency part of the proposition. Ac-
cordingly, suppose firstly that 0 € o(A4) and that N and N* form a dual pair
in Hp. Then we know from [12] that N = M , N* = M*, and we have the
decomposition H = M +(T'M*)*, where + denotes the direct sum of subspaces
of H and X' denotes the orthogonal complement of the subspace X of H. Sup-
pose next that 0 € o(A4), that N and N* do not form a dual pair in Hp, and
that dim M < oo. Then we assert that M and M* form a dual pair in Hy and
H = M +(TM*)L. Indeed, this assertion was proved in [12, Theorem 3.3] under
the hypothesis that 0 € p(T) and this hypothesis was only used in proving the
linear independence of certain sets of vectors in H. It follows from a scrutiny of
the proof just cited that the assertion remains perfectly valid for the problem un-
der consideration here provided that |2 | = 0. In order to indicate how the proof
given in [12] is to be modified in order to prove the assertion when |2 | > 0, it is
enough to demonstrate that if {p; }* is a sequence of non-negative integers satisfy-
ingl<p >p >--->pe>0and{z;}, j=1,...,¢ i=0,..., pj, is a sequence
of vectors in D(A) satisfying Azj; = Tz ;— (z;— = 0) and such that {z; }* is a
basis of NV , then the z;; form a linearly independent set in H. Indeed, if this is not
the case, then there is a non—trivial linear combination of these vectors, say u
such that « = 0. Hence it follows that there is a non—trivial linear combination of
the z;;, ¢ < p;, say u , such that ¥ = 0 almost everywhere in a non-empty open
subset € of Q. If u is a linear combination of only the z; , then, since L has
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the unique continuation property [22, Theorem 2.4], we arrive at the contradiction
that u is the zero vector in H. If u is not a linear combination of only the z; |
then there is a non—trivial linear combination of the z;;, ¢ < p; — 1, say u , such
that © = 0 almost everywhere in 2 . By arguing with v as we did with » , and
by repeating the steps indicated if necessary, we finally arrive at the contradiction
that there is a non-trivial linear combination of the z; which is equal to zero
almost everywhere in

If 0 € o(A), then let H = (ITM*)L and A = A[H . Then it is clear that
DA)=DAYNH , D(A) =M +D(A ),and A : D(A)CH — R(A) (=
range of A ) is densely defined in H and closed, with ker A = 0. Moreover,
as in [12] we can show that: (1) AM and R(A ) are closed, linearly indepen-
dent subspaces of M such that R(A) = AM +R(A ), (2) H =TM +R(A ) and
R(A ) = (M*)1 and (3) the mapping A~ : R(A ) — H is compact. It follows
from these results that if 77 = T|H , then T"H C R(A ), and hence in H we may
now introduce the compact operator K = A~ T . If 0 € p(A4), then let us write
H for H, A for A, T for T, and in ‘H let us introduce the compact operator
K = A~ T . Now it was shown in [12] that A is a non—zero eigenvalue of the prob-
lem (1.1-2) if and only if A is a characteristic value of K (see Definition 2.1 for
terminology), and if A is a non—zero eigenvalue of (1.1-2), then My = GA\(K,H ).
In light of this last result, the proof of the sufficiency part of the proposition is
complete.

Finally, if p(S) # ¢, then by introducing a shift in the spectral parameter A,
if necessary, there is no loss of generality in assuming that 0 € p(S), and hence
that 0 € p(A). Putting K = A~ T, the necessity part of the proposition is an
immediate consequence of the properties of K cited in the previous paragraph.

O
In the course of proving Proposition 3.1 it was shown that

Corollary 3.1. The spectrum of the problem (1.1-2) consists of at most isolated
eigenvalues of finite algebraic multiplicity.

In light of Corollary 3.1., we see that there is no loss of generality in supposing
that 0 € p(.S), and hence that 0 € p(A), since this situation can always be achieved,
if necessary, by means of a shift in the spectral parameter A.

Assumption 3.2. Tt will henceforth be supposed that 0 € p(A).

For the remainder of this paper we let K = A~ T, so that K is a compact
operator in ‘H. We recall from the proof of Proposition 3.1 that X is an eigenvalue
of the problem (1.1-2) if and only if A is a characteristic value of K, and if A is an
eigenvalue of (1.1-2), then M, = G,(K,H).

Suppose next that [Q | > 0 and let Qf = Q\Q | H! = L (QF), where we refer
to Assumption 2.2 for terminology. Then let us introduce the extension operator
£ 1 H' — H by putting (£f)(z) = f(z) in QF, (£f)(z) = 0 in Q\QT for f € HT.
Let us also introduce the restriction operator R mapping H onto H' by putting
Rf = f|Qf for f € H and in H' introduce the compact operator KT = RKE.
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Proposition 3.2. Suppose that |2 | > 0. Then X is a characteristic value of K
if and only if A is a characteristic value of KT. Moreover, if A is a characteristic
value of K, then R maps G»(K,H) onto G»(K1,’HT) injectively.

Proof. Before the beginning the proof let us observe that Tu = TERu for v € H,
and hence Ku = KERwu for u € H. Now suppose firstly that A is a characteristic
value of K. If u # 0 and (I —AK)u = 0, then it follows that A\AKTRu = Ru # 0, and
so A is a characteristic value of KT and Ru a corresponding characteristic vector.
Suppose next that « € Gy\(K,H) and that for some integer p > 1, (I — AK)Pu =
0, (I = AK)P~ u # 0. Then there exist the vectors {u;}'~ in G\(K,H), where
u,- =uwandu # 0,suchthat (K—A~ Iu; = uj_ ,whereu_ =0.Hence (K-
A~ DRu; = Ru;— ,andso (KT =X~ I)PRu =0, (KT =X~ I)’~ Ru # 0. Thus it
follows that R maps G (K, H) into G5 (KT, HT), and since a simple argument shows
that this mapping is injective, we also have dim G, (K, H) < dim G, (KT, HT).
Suppose next that A is a characteristic value of KT.If u # 0 and (I-AKT)u = 0,
then ARKEu = u = REu, T(AKEu — Eu) = 0, and hence AK(KEu) = K&u #
0. Thus X is a characteristic value of K and K&u a corresponding character-
istic vector. Now let u € Gx(KT,H!) and assume that for some integer p >
1, (I = AKYu =0, (I = AKT)P~ u # 0. Then there exist the vectors {u; }¥'~
in Gy(KT, M), where u,— = u and u # 0, such that (KT — A~ DNu; = u;_ ,
where u_ = 0. Hence (K — A~ INK&u; = K&uj_ ,and so (K — A~ )P K&u =
0, (K =X~ I?~ K&u # 0. Thus K& maps Gy(KT, H) into G, (K, H), and since
it is easy to show that this mapping is injective, we also have dim G, (KT, HT) <
dim G, (K, H). Thus we conclude from these results that R maps G5(K,H) onto
GA(KT,’HT) injectively, which completes the proof of the proposition. a

If |2 | = 0, then we will henceforth write QT for Q, HT for X, KT for K, and
put E=R =1.

Proposition 3.3. The range of KT is dense in HT.

Proof. Let f € HT and let € be an arbitrary positive number. Then there exists
a ¢ € C°°(Q) such that supp ¢ C Q@ and ||¢ — £f|| < ¢, where supp = support
and where we refer to Assumption 2.2 for terminology. Let ¢ denote the element
of HT defined by g(z) = w(z)~ (L¢)(z) for x € Q and g(x) = 0 otherwise. Then
Ap=TEg, u=Re¢ = K'g, and ||lu— f||  + < e. Since ¢ is arbitrary, the proof is
complete. a

4. THE MODIFIED RESOLVENT ofF K1

In this section we are going to investigate the growth of the modified resol-
vent (see Definition 2.1) of the operator KT introduced in §3 along certain rays
emanating from the origin in C and the results so obtained will then be used in
§5 to prove Theorem 3.1. Accordingly, referring to Assumption 2.2 and to the
ensuing statements for terminology, let us henceforth put 0'7:5» = ('yf} +2)/2 and
o = (y +2)/2. Then the main result of this section is contained in the following
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Proposition 4.1. If 0 € R and 6 # kn for k € Z, then the ray arg A = 0 is a ray
of growth of K;r\ of order 1/o .

The proof of the proposition will depend upon certain lemmas which will be
presented below, and in order to state these lemmas we require the following defi-
nitions. Accordingly, let # € Fri]». Then by hypothesis there 1s an open set U C R”
and a real-valued function ¢ of n — 1 variables such that the following conditions
hold: (1) there is a Cartesian coordinate system (y ,...,4,) (in short (¢, yn)) in
R™ about @ , where the y,—axis is directed along the inward normal to I';; at «
(i.e., pointing into Qri) and the y —, ... y,— — axes lie in the tangent plane to
Frij at x such that U = (¢, )|y €U, lyn—¢(y')| < p , where U’ is the open
ball |y/| < p and p ,p are positive constants, (2) ¢ € C » (U’) (see [1, pp.9 and
10] for notation), and (3) U N QE = (¥, ys) € Ulyn > ¢(¥') , UN Fri]» =

(' 9n) € Ulyn = 6(¢/) , and UN (R\QF) = (v vn) € Ulgn < 6(¥)}.
We call U a neighbourhood and (¥, y,) a system of coordinates connected with
the point z ; and by choosing p sufficiently small, if necessary, we shall assume
henceforth that U is contained in that neighbourhood of Fri]» whose existence is
asserted in alternatives (i), (ii) of condition (5) of Assumption 2.2. Moreover,
if welet U = nlnp = (n,...;ma) = (' ym) € R W[ < p, |l <p
then U can be mapped onto I/ by means of the mapping 1, = y; for j =
L,...,(n=1), 9y = yn — &(¥), and we refer to (1, n,) as local coordinates of
ordinary type of Fri]» at the point . When 'yf} > 2, 1t will however be more
convenient for us to work with local coordinates of a different kind than that
just defined, and which we introduce in the following way. Let us relabel the
Y ,...,Yn— coordinates by n ,... n,_ , respectively, let ' = ( ,..., 9o ), de-
note that portion offrij described by o/, é(y) , [¥'|<p by 9,0 , 9| <p,
and let v(n') denote the interior unit normal to Frij at ', ¢(n') . If we now let

U= nln=(,....m) =" n) €R™ [ <p /2, || <p , where p < 1/4
is sufficiently small, then U is diffeomorphic to a subset U  of U under the map-
ping y = (y ,...,¥n) = 7, 90(0) + nav(y'). We henceforth refer to (9, 7,), as

just defined, as local coordinates of normal type of Fri]» at the point x . Note that
if we let e denote the unit vector in R”™ parallel to and pointing in the direc-
tion of the positive y;—axis, then in terms of the local coordinates at x we have
Di= 4 exi(Dp+ T cps(n)Ds), where Dy = 8/0ny, ey is the i—th compo-
nent of e with respect to the standard basis of R and ¢j(0) = 0. Hence if we
pass to local coordinates at & and restrict ourselves to the set n € Uln, > 0 |
then in this set (1.1) becomes

(4.1) L(n,D)v— Aw(n)v =0
where D = (D ,...,Dy), L(n,D) = o< al, (D%, w(n) = w z(n) if 'yf} =
+

+
0, w(n) = wy; =(n) o if 'yf} > 2, and v(n) = w x(n) , while if Fri]» is also a

component of T', then, still restricting ourselves to the set U, (1.2) becomes

(4.2) B(n,D)v =0 on n, =0,
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where B(n,D) = o< b (n)D™. Lastly, let us note that similar definitions and
results hold for the case where = 1is a point of I' which does not belong to any of
the Frij (this situation could arise when |2 | > 0).

In proving Proposition 4.1 we wish to make use of the results of [14] and to this
end we require some further terminology. Accordingly, for § € R let =(#) denote
the ray in the complex plane emanating from the origin which makes an angle
6 with the positive real axis and suppose that x € Frij with 'yf} > 2. Then in
terms of the local coordinates of normal type at @ , (1.1) goes over into (4.1) for
n €U, n, > 0, while (1.2) goes over into (4.2) if Fri]» is a component of I'. Assuming
now that 0 # A € Z(f) and that ¢ satisfies the hypothesis of Proposition 4.1, let
us fix our attention upon the equation

(4.3) L (0,D)=q x(n) v=0 for 5, >0,

where £ (0,D) = ||
QF of wf} (z), and putting 9, = t, x(¢) is a real-valued function defined in ¢ > 0
which satisfies the following conditions: (i) x(¢) is of class €' in 0 <t < 1 and of
class C' in 0 <t < oo, (il) x(¢t) > 0for ¢t >0, x(t) =1 fort > 1, and x(¢) =7
for 0 <t < 1/2, where v = ’yf}. If in (4.3) we make a Fourier transformation with

al (0)D¥, ¢ = Aw , w denotes the limitasz — x , © €

respect to ' ' — & = (& ,...,&,— ) and replace n, by ¢, then we arrive at the
differential equation

(4.4) £ (0, d/dt)—q x(t) V

=pV"+ip (&YW — p(&)+qxt) V=0
0<t<oco, '=d/dt,

where p # 0 and p (&) (resp. p (£¢')) is a homogeneous polynomial of degree
1 (resp. 2) in the &;. Let v = ’yf}, o= 0';5», w =q/p, al&)y = pE) —
dpp (&) 4p, v+ =7 u 7a(¢), and T = (1 ,...,To_ ), where 7, =
Eep~ 17 fork=1,.. .y(n —1) and where here and in the sequel we always assign
to arg p its principal value when p # 0 and adopt the convention that z® =
exp a(log|z|+iarg z) fora,z € C, z # 0, and for which arg z has been specified.
Then we know from [14] that there exists the constant k(x ,#) > 1 such that when
|A| exceeds a certain positive number not depending upon &', then a fundamental
set of solutions of (4.4) in the interval 0 <t < 1/2 is given by

(4.5) v (t,7,p) =exp —itp (§)/2p D, (v /
v_(t, 7, pu) =exp —itp (£)/2p Dlyv(’y /

),
)

UﬂUt
UﬂUt

for 0 < |7| < &(z ,6), where D, -(z) and D;ﬂﬁ(z) are the generalized parabolic
cylinder functions defined in [15] if v > 2, while D, (z) and Dl, (z) are the
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parabolic cylinder functions D, (z) and D_,_ (iz), respectively, defined in [27],
and by

t

(4.6) ve(t) =Gt)™ / exp i Ax(s)ds 14 ug(t)

for || > k(x ,0), where G(t) = G(t,&,A) = a(&')—p (1), Ax(s) = Ax(s, &, A) =

—p (€)/2p £G(t, &0/, ux(t) < 1independently of ¢,¢’, and A, and where
0 < arg G(t) < 2w, ImA (s) > 0, and ImA_(s) < 0. Finally, if Fri]» is also a
component of I', then we let

(4.7) B (0,D) = v

(a4

||

We are now in a position to deal with the proof of Proposition 4.1. Accordingly,
for 0 # A € (), where 6 is the angle of the proposition, and for s > 0, ¢ > 0,
let ||ullls,c,c = |lulls,e + |/\|s/ ‘Ilu]] ¢ for every open set G C R” and vector
u € H*(G). Suppose next that the component Frij of 9QF is also a component
of ', that = € Fri]», and that U is a neighbourhood connected with the point z .
Then for v € H (), with supp v C U if 'yf} =0 and supp u C U otherwise, let
us put

(48)  IBulllyc = A *7 /Bl y wns + AT Bl e,

where in terms of the local coordinates n of # (we henceforth suppose, unless
otherwise stated, that the local coordinates are of ordinary type if 'yf} = 0 and
of normal type if 'yf} > 2, whether Frij is a component of T' or not), v(n) =
uw z(n) , B(n,D) is defined in the statement following (4.2), and Bv is to be
interpreted in the sense of trace on the hyperplane 5, = 0. For the case where
z 1s a point of I' which does not belong to any of the Fri]» (a situation which could
arise when |2 | > 0) and U is a neighbourhood connected with the point « , we
put ||Bul|" = [|Bv|| ; gr-1 for w € H () with supp u C U, where all terms are
defined just as before and the local coordinates are taken to be of ordinary type.
Hence referring to Assumption 2.2 and §3 for terminology, we now have

Lemma 4.1. Suppose that the hypothesis of Proposition 4.1 is satisfied. Then
for each point © € Q there exists a neighbourhood X CC € of this point and
positive numbers ¢ ,¢ such that for A € Z(0) and [A| > ¢,

(4.9) el + < e 100 =Aw)ull |+,
(4.10) alll ;v <e AT = 2ol s
for every w € H () with supp v C X.

Proof. That part of the lemma concerning (4.9) has been proved in [12, Lemma
4.1], while (4.10) follows from (4.9) by interpolation [24, Proposition 2.3, p.19].0
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Lemma 4.2. Suppose that the hypothesis of Proposition 4.1 is satisfied and that
Frij is a component of I'. Then for each point x € Frij there exists a neighbourhood
X of this point, with XNQ C QT and positive numbers ¢ , ¢ such that for A\ € Z(0)
and |A] > ¢

2

(4.11) ulll o=+ <e NL=dwpull + +{I1Bulll” =+

— o-iv
(4.12) lll ;o2 ¢ <e I/ 7B = dw)ul| |+ + (|| Bulll ox

for every w € H () with supp v C X.
Proof. If 'yf} = 0, then that part of the lemma concerning (4.11) has been proved

in [12, Lemma 4.1], while (4.12) follows from (4.11) by interpolation. Hence we
suppose from now on that 'yf} > 2; and to simplify the proof we shall also sup-

pose that we are dealing with the case # € I',;. Now let U be a neighbourhood

connected with the point z |, let X CC U be a neighbourhood of = ;| and let
u € H () such that supp v C X. Then passing to local coordinates at z , we
know from [14] that there exist positive constants k& ,k such that for |A| > k |

(4.13) ol oy <k L =g )0l g + 1B wlll’,

where k does not depend upon X, A, nor u, v(n) = u z(n) , 0 = 0,;, R" =

(n',mn) € Ry >0, |||B ul||" , is given by the right side of (4.8) with B(n, D)
replaced by B (0,D) (see (4.7)), s by 2, and € by o, and all remaining terms
are defined above (see (4.3) in particular). Note that in Theorem 2.1 of [14] an
estimate similar to (4.13) was given and which differed only from (4.13) in that
the term ||| B ul||" , was replaced by [||B ul||" . However, in view of the equations
(8.3-4), (8.7-8), (9.7) of [14] and the fact that the right side of (9.5) of [14] can be
replaced by C' ||| f]]],_ o T (L] P—— / Rn-1 5 We see that (4.13) is actually a
sharper version of the estimate established in [14]. A standard argument involving
an extension of v to R™ and the use of the Poincaré inequality [3, p.73] shows that

(£ =g )0 gy SO kllol zg+ Dol zg + (E=w)o 4,

where d denotes the diameter of X, ®(d) — 0 and d — 0 and the constant k& does
not depend upon X, A, nor u, while we can argue as in [5, §4] to show that

1B wll’ , <k @)+ "7 (ol ory + Bl
where the constant & does not depend upon X, A nor u. Since
el g <& Il sy (€ =4 00 .

where the constant & does not depend upon X, A, nor u, it follows that we can
choose d sufficiently small and |A| sufficiently large to complete the proof of that
part of the lemma concerning (4.11). Finally, (4.12) follows from (4.11) by inter-
polation. a
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Lemma 4.3. Suppose that the hypothesis of Proposition 4.1 is satisfied and that
Frij is contained in 2. Suppose also that Frij coincides with a F;tk. Then for each
point © € Frij there exists a neighbourhood X CC QF of this point and positive
numbers ¢ ¢ such that for A € £(0) and |A| > ¢,

(4.14) Mulll 2 v <e (L=do)u

(4.15) lelll ) oe + <e N7/ (L=dwyu

)

for every w € H () with supp v C X.

Proof. If 'yf} = 0, then that part of the proof concerning (4.14) has been proved
in [12, Lemma 4.1], while (4.15) follows from (4.14) by interpolation. Hence we
suppose from now on that 'yf} > 2; and to simplify the proof we shall also suppose
that we are dealing with the case & € T',;. Furthermore, fixing our attention upon
the terms x(t), w , ¢t , and k(x ,0) defined in the statements following (4.3) and
(4.4) for the case . € Fri]», we shall now denote these terms by Xri]» (1), wirj, (uri]) ,
and K?;,t](l‘ ,6), respectively, in order to demonstrate the dependence of their defi-

nitions on the Fri]». Then without loss of generality we can henceforth suppose that

£ (x,0)|p,] o = K;tk(l‘ ,9)|ﬂ§tk| /7 where ¢ = 0,;, since we know from [14]
that K?T]»(l‘ ,6) or I{;tk(l‘ ,6) can always be increased if necessary to achieve this
end.

Next let U be a neighbourhood and (¢, y,) a system of coordinates connected

with the point @ (with respect to FT]»). It is clear that there is no loss of generality
in assuming henceforth that (3, y.) € Ulyn < ¢(¢/) = UNQE and that UNQT is
contained in that neighbourhood of F;tk whose existence is asserted in condition (5)
of Assumption 2.2. Now let X CC U be aneighbourhood of # and let u € C*°(Q)
such that supp v C X. Then passing to local coordinates at # and assuming
henceforth that A € Z(0) with |A| > 0, let us put v(n) = v z(n) , x (g) =

X () X=(m2) = x5 ) 2 0), w =w o wo =w® = (), g =

(/’L;tk) y K= K:rj(x ’9)’ K- = K;tk(x ’9)’ and
(4.16) L (D,Nv (n)=f (n,A) for neR”,
(4.17) Lo(DN) () = f-(n,A) for n R,

where £ (D,A) = L (0,D) —Aw x (9n), L_(D,A) =L (0,D) — dw_x—(—nn),
R™ = (9,n,) €R"|ny < 0 , and we refer to (4.3-4) for the remaining definitions.

We are now going to use (4.16-17) to establish a priori bounds for v. To this
end, let us suppose firstly that v € C'*°(U) and that the fi are defined according
to (4.16-17). Writing ¢ for n, and letting V(&',t) = (Fuv)(€',t), Fe(&' t,N) =
(Ffe)(€ 1, A), where F denotes the Fourier transformation introduced in (4.4), it
follows immediately from (4.16-17) that V(&’,t) is the unique solution of each of
the initial-value problems,

(4.18) Lo d/dt,xy=F (¢,t,)) in 0<t<1/4,
y" (1/4)=0 for r=0,1,
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and

(4.19) L_ &' d/dt, A y=F_(¢,t,\) in —1/4<¢<0,
y" (=1/4) =0 for r=0,1,

where y * = d"y/di". Then, not showing explicitly the dependence of the functions
concerned on & and A, we already know that for |A| exceeding a certain positive
number not depending upon &', a fundamental set of solutions for L y = 0 in the
interval 0 < t < 1/4 is given by the vy (t) of (4.5) for 0 < |¢/| < & |p | /7 and
by the vy (t) of (4.6) for |¢| > & |p | /7, where ¢ = 0,; (of course in (4.5-6)
we are now to take v = v, 0 = o, p = p x(t) = x (1), and let v be
determined as before). Minor modifications of the results of [14] give us analogous
results for the equation £_y = 0 in the interval —1/4 <t < 0; and we denote the
corresponding fundamental set of solutions in this case by vl (t), where here and
below we again for brevity refrain from showing explicitly the dependence of the

functions concerned on ¢ and A. Assuming henceforth that |A| is sufficiently large
and & # 0, it follows immediately from [9, Theorem 6.4, p.87] and (4.18) that

(4.20) V) =v" (0) (0)— v (0)I (0) for r=0,1,
while it follows from [9] and (4.19) that
(4.21) V() =—") " (0)IT(0)+ (v1) 7 (0)IT(0) for »=0,1,

where I (0)= | w_(s)F (s)/p W(s) ds, I (0)= ' v (s)F (s)/p W(s) ds
'(0) = L (s)F_(s)/p Wi(s) ds, I'(0) = ol (s)F_(s)/p W(s) ds,

— / —
W (s) denotes the Wronskian of £ y = 0 with respect to v and v_, and WT(s)
denotes the Wronskian of £L_y = 0 with respect to o' and vl . The equations

(4.20-21), as they now stand, are not adequate for our purposes since the absolute
values of T (0) and IT(O) may not remain less than some bound not depending
upon & and A (see [14, Equations (4.11)), (7.4), and (7.6)]). Hence in order to
eliminate these terms, we equate the expressions in the right sides of (4.20-21)
for » = 0,1 to arrive at a linear system of equations in the “unknowns” I (0) and
IT(O), which on solving gives

(4.22) 1(0)=c I'0)+¢ I(0),

where pc = WT(0), pc  =wv_ ()" (0)=v_(0)(v') (0), pc =v (0)o! (0)—
v (0)(eh) (0), pe = —W(0),and p=v (0)' (0)—v (0)(x") (0).
Let us firstly fix our attention upon the case |¢/| > & |g | /7. Then by appealing

to the results of [14, §§3, 4 and 6] and arguing as in the proofs of Theorems 8.1-
2 of [14], it is not difficult to verify that [p| > C G(0)~ / A (0)=A_(0) , |epy| <
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CoNO) < Ol TN pd T and [1T0) < Clglm _1Fodt
where here and below, C' denotes a generic constant which may vary from inequal-
ity to inequality, but does not depend upon &’ nor A. Consequently, by applying
these estimates to (4.22) and then substituting back into (4.20-21), we obtain

oQ

/ /
(4.23) V() <cle/ |F | dt =+  |F_|dt =,
and hence
(4.24) L+l T+ v, o) def

€1 >k uglV/7
<Gl ,R¢+||f—|| R -

Suppose next that 0 < |¢/| < & |p | /7. Then writing v for Yy We know from
[14, §7] that

v (0)=d (OF v O =p""d () g Q+u" 17 —=ip ()20 [ (O,

where for y = 2, d (()=x/2¢/ /1 () =1/T —=¢/2 ,and g ({) =
—2/T = —=(/2 (here T' denotes the Gamma function), while for v > 2, d () =
7! (2vy0)=" 7 /sin 7/20 , f (¢) and g (¢) are entire functions of exponential
type whose zeros lie on the positive real axis, { =~~ /7~ /Ua(f’) lies in a closed
sector with vertex at the origin which, with the exception of the origin, is contained
in the left—half of the complex plane (i.e., that half consisting of numbers with neg-
ative real parts), [(| < v~ /7% & ,and 6 is a constant defined in [14, §3]. Simi-

larly, we can show that o7 (0) =d (¢T)f (¢1), (0') (0) = —/J_/Ud " g (hH+

e re ip (£)/2p f (¢1) , where (f =~= /7u” /Ua(g’) has properties analogous
to those of . Observing that p, ¢ R and that g_ = ey , where e = w_/w | we
conclude from these results that |p| > Clp | /7 m () 4+e/ 7m ¢ /7¢ | where

m (¢) = =y~ /7g (O)/f ({) and where we take arg ¢ = 0 if ¢ > 0, arg ¢ = —7
ife <0and argug > 0, and arge = m1f € < 0 and arg g < 0. The func-
tion m ({) has been studied in [15] for the case ¥ > 2 (note that the f | f of
[15] are just f and ¥~ log | respectively), where the following results were es-
tablished: (1) —=Imm (¢)/Im{ > 0 for Im({ # 0, (2) m (¢) > 0 for ¢ real and
non—positive, and (3) if 0 < |a| < 7/2 and arg ( = a + 7, then Rem ({) >
m(0) >0, 0 <argm (() < aifa >0, a<argm () < 0ifa < 0. Tt
follows immediately from these results that |p| > C|p | /7 if ¥ > 2, and sim-
ilarly we can show that this is also the case if v = 2. By appealing to the re-
sults of [14, §7] and by arguing as in the proof of Theorem 8.3 of [14], it is now

0 /
not difficult to verify that |c,,| < C, [T (0)] < Clp |~/ 7 |F | dt , and

TOI<Clp |-/ 7 |F] dt
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Consequently, by applying these estimates to (4.22) and then substituting back
into (4.20-21), we obtain

> / /
V) <Clu |7/7 [Fldt "+  |F_]dt

— 00

and hence

(4.25) L+l T+ v, o) def
[ <ky|pg]|t/ e

SO my + 11 &

Let us now fix our attention upon the boundary value problem: (4.16) together
with the boundary condition v(n) = h(n’) on n, = 0, where (Fh)(&") = V(¢',0).
Then it follows immediately from (4.24-25) and [14, Theorem 2.1] (here we use
the sharper verison as explained in the proof of Lemma 4.2) that

ol orz <C NP rr + -1 e s

and similarly we can show that
ol ore < CNF A my + -1 e

These latter results have been established for the case v € C*°(U), and it is clear
that they also remain valid for v as defined in the statements preceding (4.16).
Thus fixing our attention upon this latter v, we now have

Wolll ore <C L —=dw x (70) v + L = Adw_x_(=m) v ,
i3 K™

and hence we may argue as we did in the proof of Lemma 4.2 to complete the proof
of that part of the lemma concerning (4.14) for the case u € C'°°(2). The proof
for the case u € H () then follows from a standard approximation procedure.
Finally, (4.15) follows from (4.14) by interpolation. d

We now turn to the case where | | > 0, Fri]» C €2, and Frij coincides with a

component of 9 . Then if, for x € Frij and u € H (), we recall that when

passing to the local coordinates n at & the expression Lu goes over into Lv, we
have

Lemma 4.4. Suppose that the hypothesis of Proposition 4.1 is satisfied and that

Frij is contained in €. Suppose also that | | > 0 and that Frij coincides with a

component of 982 . Then for each point x € Frij there exists a neighbourhood
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X CC 2 of this point, with X\Frij c QVUQ |, and positive numbers ¢ , ¢ such
that for A € Z(0) and |[A| > ¢ |

ot
(4.26) (Julll o o+ lull, o+ AL TSl

ot /
<e (L=Au FZull, N Ll geedin

— 00

(427) el o=, s+l /s

<e DT (L= (L),

for every uw € H () with suppu C X.

Proof. If 'yf} = 0, then that part of the lemma concerning (4.26) has been proved
in [16], while (4.27) follows from (4.26) by interpolation. Hence we suppose from
now on that 'yf} > 2; and to simplify the proof we will also suppose that z € L.
Let U be a neighbourhood and (¥, y,) a system of coordinates connected with
the point # (with respect to FT]»). It is clear that there 1s no loss of generality in
assuming henceforth that (v, yn) € Uly, < ¢(y') =UNQ CU,;, where we re-
fer to condition (2) of Assumption 2.3 for the definition of U,;- Nowlet X CCU
be a neighbourhood of  and let u € C*°(£2) such that supp u C X. Then passing
to local coordinates at # and assuming henceforth that A € =(8) with |A] > 0, we
again arrive at the equations (4.16-17), where v and £ are defined as before, but
now £_ = £ (0,D). Supposing for the moment that v € C*°(U) and that the fy
are defined according to (4.16-17), we may, as before, write ¢ for 7, and make a
Fourier transformation F with respect to n'(n’ — &’) in (4.16-17) to arrive at the
initial-value problems (4.18-19). Assuming henceforth that |A| is sufficiently large,
a fundamental set of solutions for £ y = 0 in the interval 0 <t < 1/4 is given by
v (1), defined precisely as in the proof of Lemma 4.3 (again for brevity we do not
show explicitly the dependence of the functions concerned on & and A), while a fun-
damental set of solutions of £_y = 0 in the interval —1/4 <t < 01is given by vl (1),
where now vf (t) =exp @tA_(0) , ol (t) =exp @tA (0) , where the Ag(s) are de-
fined precisely as in the proof just cited, and with the restriction |¢/| > & | | /7
given there being replaced by [¢'| > 0. Using these fundamental solutions, we
again arrive at the formulae (4.20-21) for V' 7 (0), and since as before, we wish
to eliminate the terms I (0) and IT(O), we may argue as we did in the proof of
Lemma4.3 to arrive at (4.22) and then, with the same terminology as in that proof,
prove that for the problem under consideration here, (4.23-24) remain valid for
€'l >k | | 7. For €] < & |p | /7, we now have p = —y /7d (O)f (O)u /" x
m (¢) —i¢ ! | where we assign to arg ¢ its value in (0,27) (here and below
we always employ the terminology of the proof of Lemma 4.3). From the re-
sults given in the proof of Lemma 4.3 and in [14] it now follows that |p| >
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Clu |77, e | < ClEllp 777, lepgl < C for the remaining p,q, 1 (0) <

0o / /
Cla =77 =F [dt ', 1'0) <Ca@)lel~  __IF-| dt " where

a(¢)=1if |¢'] <1, a(€¢') = |¢'|~ | otherwise, and hence we conclude from (4.22)
and (4.20) that

@%)W@MSGM|—”’MW|ﬁ D@ e g a
while (4.22) and (4.21) give

4 WOI<C e IF ld ! ea@er
Finally, from (4.28) we obtain

(4.30) Ll DT vE o) de

|/ <k lugl /o

SO g+l 177 M=l ) ot

— 00

while from (4.29) we obtain

(4.31) €'l +1A1 7 Cle] Vg, 0) de

|/ <k lugl /o

SO N mn 1o 117 W2 ) podt

— 00

Let us now fix our attention upon the boundary value problem: (4.16) together
with the boundary condition v(n) = h(n’) on n, = 0, where (Fh)(&") = V(¢',0).
Then it follows from (4.24), (4.30), and [14, Theorem 2.1] (in the sharpened form
as explained before) that

(4.32) ol ery <€ L =dw x v AL rr +
+

)

/
117 L el gt

— 00
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Turning next to the boundary value problem: (4.17) together with the boundary
condition v(n) = h(n’') on n, = 0, where h(n’) is defined above, we know from the
proof of Theorem 2.1 of [16] that for this problem we have the a priori estimates

loll Jre < C AL e + €'l Vg0 d¢
Rr—1

and

/ /
loll / g2 <C 1f-ll- / gn—adt + €' V(£ 0) def )

— o0 Rnr—1

and hence it follows from (4.24) and (4.31) that the inequality (4.32) persists when
olll oz s replaced by 1ol ,n = lell s + AL 7 “lfel / 22 Thus we have
established that

(4.33) Helll oy + Mol ppe <O L =Aw x @ .
5

)

/o /
+ 1€ vl ®r + [A] 1€ vll- ) ge-adt

— 00

for v € C°(U), and it is clear that this inequality persists for v(n) = u () . Then
with this latter v in (4.33), we can argue with (£ —Aw x )vand £ v as we did in

/
the proof of Lemma 4.2 and with [|1£ v]|_ / g1 dt as we did in the proof

of Theorem 2.1 of [16], to show that (4.33) remains valid when (£ — Aw x v
is replaced by (£ — Aw)v and £ v by Lv, provided that the diameter of X is
sufficiently small. This proves that part of the lemma concerning (4.26) for the
case u € C°°(Q), while the proof for the case u € H () follows from a standard
approximation procedure. Finally, (4.27) follows from (4.26) by interpolation. O

Before commencing with the proof of Proposition 4.1, we state the following

standard results (cf. [4], [16]).

Lemma 4.5. Suppose that |2 | > 0. Then for each point x € Q there exists
a neighbourhood X CC Q of this point and a positive number ¢ such that
[Jul| & o <e||Lu] , ,forevery uw € H () with suppu C X.

Lemma 4.6. Suppose that |2 | > 0 and that T is a component of 92 which is
also a component of I'. Then for each point x € ' there exists a neighbourhood
X of this point, with X NQ C Q , and a positive number ¢ such that ||u|| , <
¢ ||Lu|| o+ ||Bu|" for every uw € H () with suppu C X.

Proof of Proposition 4.1. Let V = wulu € D(A), [w™ Lul] +<oo if|Q |=

0and V = wlu € D(A), |w™ Lul|  + < oo, [|Lul|  , =0 if [Q |[> 0. Then
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by considering a suitable covering of Q by means of a finite number of open balls,
each of which is contained in one of the sets X of Lemmas 4.1-6, we may appeal
to these lemmas and argue as in [5,§4] to show that there exist positive constants

k .k such that if A € Z(0) and [A| > k , then

(4.34) Wull] ) oo + <k T o)TES] 1 3 |2 | =0,
(4.35) Wulll /oot + 1l /
<k AT/ TES] vl o, B Q2 [>0

for every pair u € V, f € H! for which (4 — AT)u = TEFf.
Referring to (4.35), let us show that when |© | > 0, then there exists the
constant kT > k such that if A € Z(0) and |[A] > k', then [||u]| /oo, 1<

2k (A= 7o||TES| .t for every pair u, f as defined above. Indeed, if this is not
the case, then it follows from (4.35) that there exists au € H / (Q), and sequences

w; “inVand X O in E(0), where ||ul] = [Jus|] = 1 and |A;] — o0 as § — o0,
such that |A;]™ / oo (A= XNThu; < 1 for each ¢, u; — u weakly in H / (©) and
u; — u strongly in I (Q) as i — oo, while [|u|| =+ = 0. We are now going to prove

that Lu = 0 in the sense of distributions on £2; and since it is easy to show that
Lu(¢) = 0 for ¢ € C*°(Q ) and for ¢ € C>(Q1), it is clear that in order to achieve

our goal we need only fix our attention upon the case where I'; is a component
of 00 , # €T, Uis aneighbourhood connected with the point z , ¢ € C*(Q)

rjo 2
with supp ¢ C U, and show that Lu(¢) = 0. To this end, let us observe from the

oQ

Banach-Saks theorem [7, p.181] that there exists the subsequence wu; , . of

P

! wu;, — ustrongly in H /' (Q) as p — oco. Hence

the u; such that w, = p~

Lu¢)=—  D""uD%é 4+  aD'ué
o le|<
(4.36) , ,
= lim - D*™ % w,, D aq¢ + anD%w,, ¢ ,
p—00 y 0 y O

|| |l <

where o’ is a multi-index satisfying o/ < «, |a'| = 1. By passing to local coordi-
nates of ordinary type at # and integrating by parts, it is not difficult to verify that
the modulus of the expression in square brackets on the right side of (4.36) does

/
not exceed ¢ trDvp, dy , Where, referring to the paragraph fol-

n

d In'|<po
lowing the statement of Proposition 4.1 for notation, v, () = w, x(n) , tr denotes
trace on the hyperplane 7, = 0, the constant ¢ does not depend upon p, and all the
remaining terms are defined as before. Since |[wp|| ,  + — 0 as p — oo, it follows
immediately that Lu(q;) = 0. Thus we have shown that Lu = 0, and hence by
unique continuation [22, Theorem 2.4] we arrive at the contradiction that « = 0.

For a > 0 let E(0,a) = A € E(0)||A] > a . Then it follows from (4.34-35) and

from what we have just shown that there exist the positive constants ¢ , ¢ such
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that for A € 2(6, ¢),
(4.37) alll oo + <c A7/ 70 TEF

for every pair u € V, f € H' for which A — AT u = TEf. Consequently, if
A€ E(0,¢), feH and (I — AKT)f = 0, then a simple argument shows that
there exists a w € V such that Ru = f and (A — AT)u = 0, and so we see
from (4.37) that f = 0. Thus we conclude that Z(6,¢) C p,(KT). Moreover, if
A€ E(0,c), feH, and K;r\f = wu, then it is not difficult to verify that there
exists a v € V such that Rv = u and (4 — AT)v = TES, and hence it follows from
(4.37) that

(4.38) KLf < fI] v for A€ E(00),

where ¢! = ¢ ||w||g~ . This completes the proof of the proposition. O

Remark 4.1. We assert that we can choose the constants ¢ and ¢! in (4.38) so
that this equation remains valid along every ray arg A = &’ for which ¢ € ¥, =
6' | 10/ — 6] < ¢ for some suitable positive number ¢. Indeed, since the proofs
of Lemmas 4.1-4 depended upon the results of [5, 14, 16] which were actually
established under the assumption that arg A varied in a closed sector with vertex
at the origin, and since it is clear that under our assumptions the conditions for
the validity of these latter results at the point & in question (see Conditions I,
IT of [5, §§2, 3], Assumption 2.1 and Theorem 10.1 of [14], and Assumption 2.1 of
[16]) also hold for argA = ¢ for ¢’ € X, if they hold for argA = 4, and with ¢
depending only upon # and not upon z | it follows immediately that in Lemmas
4.1-4 we may choose the constants ¢ ,¢ so that (4.9-10), (4.11-12), (4.14-15),
and (4.26-27) remain valid along every ray argA = ¢ for ¢/ € X, and with ¢
depending only upon 6. Arguing as in the proof of Proposition 4.1, we can now
show that the constants k& , k& of (4.34-35) can be chosen so that the inequalities
shown remain valid along every ray arg A = ¢’ for & € Y., and hence by arguing
with (4.35) as we did before for the case |2 | > 0 we can complete the justification
of our assertion.
Recalling the definition of Z(8, a) given in the proof of Proposition 4.1, we now
extend this definition to arbitrary 6 € R.

Proposition 4.2. Suppose that § € R and there exist positive constants ¢ | ¢
such that for A € Z(0,¢), (4.37) holds for every pair u € V, f € H! for which
(A= AXT)u=TEf. Then 0 # kx for k € Z.

Proof. We shall only prove the proposition under the assumption that L (x,€) >
0 for z € Qand 0 # ¢ € R? where L (z, D) denotes the principal part of L(z, D);
the remaining case can be dealt with similarly. We also let ¢ € C*°(IR™) such that
0<¢(x) <1, ¢(x) =1 for |z| < 1, and ¢(x) = 0 for |z| > 2.

Now suppose that the proposition is false and that § = 2kw. Then recalling
from Assumption 2.2 that for some r,Q, contains a closed ball with centre z in
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which w(z) is Lipschitz continuous, we see that there is a non-zero vector § € R”
such that L (z ,i€ ) = ¢! Hence if for A € Z(0,c) sufficiently large we put
o) =6 A/ (x—x ), ur(x) =exp i dw(z ) / & @ wvy(x), where - denotes
inner product, and let u(z) = ux(z) in (4.37), then we may appeal to Theorem
10.2 of [24, p.52] to show that the expression on the left side of (4.37) is not less
than CAT~% for all A sufficiently large, where C' denotes a positive constant, while
the expression on the right side of (4.37) is O AT 75 as A — oco. Thus we
arrive at a contradiction. Similarly we can show that the supposition = (2k+1)7
leads to a contradiction, and this completes the proof of the proposition. a

5. PROOF OoF THEOREM 3.1

Let us firstly show that the generalized characteristic vectors of KT are complete
in H'. To this end let us divide the complex plane into sectors by means of the
distinct rays arg A = 0;, j = 1,..., p, where: (1) the angular opening of each sector
is less than 27 /n and (2) 8; # kx for j=1,...,p and k € Z. Let us also observe
from [2] that for any & > 0 there exists the increasing sequence 7; “ of positive
numbers, tending to co with j, such that for each j, the circle |A\| = r; is contained

in p, (KT and (I —AK")~ . K;r\ ar S exp |A|2 ¢ for |A| = r;, where
[| ||t denotes the norm in E(HT). Now let G denote the closed span of all the
generalized characteristic vectors of KT and suppose that G # H'. Then there
exists an h # 0 in H! such that (g, h) .+ =0forevery g € G, and hence it follows
that for any f € HT, K;r\f, h s
our attention upon any one of the open sectors in the complex plane determined

1s an entire function. Thus we see that if we fix

by the rays arg A = ; and restrict ourselves here to a particular branch of A /oo
then A /70K f h

In light of Proposition 4.1 and the above estimates for the norms of K;r\ on the

+ 1s analytic in and continuous on the closure of this sector.
:

circles |A] = r;, we may appeal to the Phragmén-Lindelh6f principle to deduce
that K;r\f,h ; tends uniformly to zero as |A| — oo. Thus K;r\f,h + =0,
and hence KTf h + = 0. Since f is arbitrary, we conclude from Proposition
3.3 that h =0, which is a contradiction.

In light of the results of §3, all the assertions of the theorem, except those
concerning completeness in H, = L 2 UQ™; |w(x)|dz and the angular distri-
bution of the eigenvalues, now follow. On the other hand, if we bear in mind that
C* intQ UintQ~ 1s dense in H,, then the assertion concerning completeness
in ‘H,, follows easily from the foregoing results.

We are now going to show that there are infinitely many eigenvalues of the
problem (1.1-2) lying in the sector |argA| < ¢ and in proving this result, we
can, without loss of generality, suppose that ¢ < 7/n. Accordingly, let us suppose
that there are at most a finite number of eigenvalues of (1.1-2) lying in the sector
just cited. Then it follows from the results of §3 that there is an » > 0 such
that if X! denotes the region in the A-plane defined by the inequalities 6 <
arg A < 0, |A| > r, where §; = (—=1)/¢, then X/ C p,,,(KT) and (4.37) is valid for
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ANEEWG;,r), j=1,2.For 0 £ feH and A € X/ let u = K;r\f. Then we know
from the final paragraph of the proof of Proposition 4.1 that there exists a v € V
such that Rv = wand A — AT v =TEf, and so we see from (4.37) that

(5.1) A/ KTf <oTEer
(5.2) ARl G <o TEF

)

for A € 2(6;,r), j = 1,2, where here and below C' denotes a generic constant which
does not depend upon f nor A. Observing that A — AT~ : X — L(H) is anlytic
in p, (K1) and that for A€ 2/ = M e X, A\ =r , KIf ., TEf . <
l|lv||/ TEf 1 Ssup (A=AT)~ ,, where || [l denotes the norm in [E(H),
we also see that (5.1) holds for A € X/. Thus, since A /UDKI\f % — M is an-
alytic in X/ and continuous in X/, and bearing in mind the estimates for the
norms of K;r\ on the circles |A\| = r; given above, we can now appeal to the

Phragmén—Lindelhof principle to deduce that (5.1) persists for A € X/ Further-
more, we may argue with the closed graph theorem as in the proof of Lemma

13.4 of [3, p.210] to deduce that Kt € £ HF, H / (Q') and that A—\T ~ ¢
LH,H!(Q) for A€ pp(K"). Thus A - AT~ X — L H,H/ (Q) is an-
alytic in pp, (K1), while we also see that for A € %/, K;r\f /| o TES it <
ol y, / TEF < sup » (A=XT " 1,

L H,H ' (Q),and so we conclude that (5.2) persists for A € X, Lastly, it fol-

lows from the remark just made about KT that X / UDKI\f CXL = H Q) s

analytic in X/ and continuous in X/,

where || H;-t denotes the norm in

and hence bearing in mind the estimates for
the norms of I — AKT = on the circles |A| = r; given above, we can now appeal
to the Phragmén—Lindelhof principle to deduce that (5.2) persists for A € 37

We conclude from the foregoing results that (5.1-2) hold for any f € H' and
A € E(0, 7). On the other hand, since it is easy to show that if A € Z2(0,r) and u € V,
f € HT are any pair for which A — A" uw = TEf, then we must have Ru = K;r\f,
it follows that the hypothesis of Proposition 4.2 is satisfied for ¢ = C, ¢ =r, and
f = 0. Hence, in view of Proposition 4.2, we arrive at a contradiction.

Similarly, we can show that there are infinitely many eigenvalues of (1.1-2) lying
in the sector |arg A — w| < e. Furthermore, as a consequence of Remark 4.1 we
see that there exists a positive number 7, such that the sets A € Cle < arg A <
7—¢, |[A|>r. and A€Cl|—7+e<arg A< —¢, |A]| > 7. are both contained in
pm (K1), and hence it follows that there are at most a finite number of eigenvalues
of (1.1-2) lying in each of the sectors e <argA < m—eand —7+e < argh < —e.
This completes the proof of the theorem. a
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