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ARCHIVUM MATHEMATICUM (BRNO)Tomus 30 (1994), 237 { 262ON AN OBLIQUE DERIVATIVE PROBLEMINVOLVING AN INDEFINITE WEIGHTM. FaiermanAbstract. In this paper we derive results concerning the angular distrubition ofthe eigenvalues and the completeness of the principal vectors in certain functionspaces for an oblique derivative problem involving an inde�nite weight function fora second order elliptic operator de�ned in a bounded region.1. INTRODUCTIONAlthough there is a relatively large literature devoted to the spectral theoryfor linear elliptic boundary value problems involving an inde�nite weight function,most of the work to date has been concerned with either selfadjoint problems ornon{selfadjoint problems arising from perturbations of selfadjoint ones. We referto [6], [10, 11], [17, 18], and [19-21] for further information. Thus, even for secondorder operators, such investigations do not apply to such a typical non{selfadjointproblem as the oblique derivative problem. With this in mind, the author [12,13] has recently initiated an investigation into the spectral theory of quite generalnon{selfadjoint problems, but only under the assumption that the weight functionand its reciprocal were essentially bounded in the set concerned. In this paper wefocus our attention upon an oblique derivative problem for a second order operatorand establish some basic facts concerning the spectral theory for such an operatorunder much more general conditions on the weight function than considered in[12, 13].Accordingly, in this paper we shall be concerned with the spectral theory forthe boundary value problem Lu = �!(x)u in 
;(1.1) Bu = 0 on �;(1.2)1991 Mathematics Subject Classi�cation : 35J25, 35P05, 35P10.Key words and phrases: oblique derivative, elliptic problem, inde�nite weight, eigenvalues,principal vectors.Received September 7, 1992.This research was supported in part by a grant from the FRD of South Africa



238 M. FAIERMANwhere L is a linear elliptic operator of the second order de�ned in a boundedregion 
 � Rn; n � 2, with boundary �; B is a linear di�erential operator of the�rst order de�ned on �, and ! is a real{valued function in L1(
) which assumesboth positive and negative values. Our assumptions concerning the problem (1.1{2) will be made precise in xx2 and 3; in particular we mention that, unlike [12, 13],we no longer require that 1=!(x) 2 L1(
). Thus, since it is imperative for thesuccess of our method in developing the spectral theory for the problem (1.1{2)to obtain local a priori estimates for solutions of (1.1) near boundary points ofthe sets � x 2 
 j !(x) > 0	 , � x 2 
 j !(x) < 0	 , and � x 2 
 j !(x) = 0	 , thismeans that the results of [12, 13] are in general no longer valid for the problemunder consideration here as they were based upon the usual a priori estimatefor the solution of a half{space elliptic problem (in the sense of [2, 5]) involvingoperators with constant coe�cients which depend upon a parameter that arisesfrom a local recti�cation of the boundary concerned. Consequently, we have hadto introduce new functions, the so{called generalized parabolic cylinder functionsstudied in [15], as well as new techniques, in order to arrive at the required a prioriestimates. These estimates were established in part in [14, 16] and are furtherextended in x4 of this paper. By means of these estimates, as well as under certainassumptions concerning the problem (1.1{2) (e.g., we require that the resolventset of (1.1{2) not be empty { see Assumption 3.1 below), we are able to determinethe behaviour along various rays in the complex plane of the modi�ed resolventof a certain compact operator Ky introduced below whose characteristic valuesand generalized characteristic vectors are precisely the eigenvalues and principalvectors, respectively, of the problem (1.1{2). With this information we are thenable to apply the Phragm�en{Lindelh�of principle in order to obtain quite generalresults concerning the angular distribution of the eigenvalues of the problem (1.1{2) as well as the completeness of the principal vectors in certain function spaces.Finally, in x2 of this paper we introduce some of our basic assumptions andcollect some known facts concerning the problem (1.1{2) which we require in thesequel. In x3 we introduce the last of our basic assumptions, state our main the-orem, Theorem 3.1, and then introduce the operator Ky mentioned above. In x4we establish some results concerning the growth of the modi�ed resolvent of Kyalong certain rays in the complex plane and these are used in x5 to prove Theorem3.1. 2. PreliminariesIn this section we are going to introduce some of our basic assumptions concern-ing the problem (1.1{2) as well as collect some results from [12] which we requirein the sequel. We will also introduce some de�nitions and notation which will beneeded later on. Hence, to begin with, we let x = (x
1

; : : : ; xn) = (x0; xn) denote ageneric point in Rn and use the notation Dj = @=@xj; D = (D
1

; : : : ; Dn); D� =D�1
1

� � �D�nn , where � = (�
1

; : : : ; �n) is a multi{index whose length P nj =1

�jis denoted by j�j. For G an open set in Rn and k a non{negative integer, welet Hk(G) denote the usual Sobolev space of order k related to L2 (G) and let



ON AN OBLIQUE DERIVATIVE PROBLEM : : : 239( ; )k;G and k kk;G denote the inner product and norm, respectively, in Hk(G).We shall at times in the sequel also consider the spaces Hs(G); s > 0; s =2Z, andHs(Rn�1 ); s 2 R, where, with [s] denoting the integer part of s, the �rst space isde�ned to be that subspace of H [ s] (G) consisting of vectors u for whichkuks;G = 2

4 kuk2

[ s] ;G + Xj�j=[ s]

Z ZGG �

� D�u(x)�D�u(y)�

�

2jx� yjn+2( s�[ s])

dxdy 3

5

1 =2is �nite, while the second space is de�ned to be the completion of C1
0

(Rn�1 ) withrespect to the norm kuks;Rn�1 = h

RRn�1 � 1 + j�j2

� sjFuj2 d� i

1 =2 and Fu denotes theFourier transform of u. Lastly, we let ( ; ) and k k denote the inner product andnorm, respectively, in H = L2 (
).Turning now to the problem (1.1{2), we henceforth suppose that:Assumption 2.1.1) � is of class C 2 ;1 ;2) L(x;D) = P j�j�2

a�(x)D� is uniformly elliptic in 
 with a� real{valuedif j�j = 2 and complex{valued otherwise and such that a� 2 Cj�j�1 ;1 (�
)for j�j � 1; a� 2 L1(
) otherwise, where denotes closure;3) B(x;D) = P j�j�1

b�(x)D�, with b� real{valued if j�j = 1 and complex{valued otherwise, while b� 2 C j�j;1 (�) for j�j � 0;4) � is non{characteristic to B at each of its points.Remark 2.1. By employing a known extension procedure, we may suppose fromnow on that B is de�ned in �
 with b� 2 Cj�j;1 (�
).Thus we see that apart from certain smoothness conditions, Assumption 2.1ensures that the boundary value problem:(2.1) Lu = f in 
;together with the boundary condition (1.2) is a regular elliptic problem in thesense of [2, 24]. Note that if L? denotes the formal adjoint of L and C denotes aboundary operator adjoint to B with respect to the problem (2.1), (1.2) (see [24,p.121], [26]), then the formal adjoint problem of (2.1), (1.2)L?u = f in 
;Cu = 0 on �;(2.2)is also a regular elliptic problem (see [12, x2]).In H we now introduce the operator A (resp. A0) with domain D(A) (resp.D(A0)) as follows: we let D(A) (resp. D(A0)) denote the closure in H 2 (
) of theclass of functions in C 2 (�
) satisfying the boundary condition (1.2) (resp. (2.2))and put Au = Lu for u 2 D(A) (resp. A0u = L?u for u 2 D(A0)). Then we knowfrom [2] that



240 M. FAIERMANTheorem 2.1. If u 2 D(A), then kuk
2 ;


� c� kAuk+ kuk� , where the constant cdoes not depend upon u.It follows immediately that A is semi{Fredholm and dimker A <1. Analogousresults also hold forA0. Moreover, ifA? denotes the Hilbert space adjoint ofA, thenwe know from [12] that A? = A0, and hence it follows that A and A? are actuallyFredholm operators, while we also know from [12] that index A = � index A? =0. Lastly, we note from [12] that A and A? have non{empty resolvent sets andcompact resolvents.Turning to our assumptions concerning !(x), let
+ = � x 2 
 j !(x) > 0	 ; 
� = � x 2 
 j !(x) < 0	 ; 
0 = � x 2 
 j !(x) = 0	 :Assumption 2.2. In the sequel we suppose that:1) j
�j > 0 and j
0 j � 0, where j j denotes n{dimensional Lebesgue measure;2) j
�n int 
�j = 0, where int = interior;3) int 
+ (resp. int 
�) is the union of a �nite number of non{empty disjointregions, say f
+r g (resp. f
�r g), in each of which !(x) is continuous andsuch that for at least one r; 
+r (resp. 
�r ) contains a closed ball in which!(x) is Lipschitz continuous;4) each component �+rj (resp. ��rj) of @
+r (resp. @
�r ), where @ = boundary,is either a component of � or is contained in 
 and is either a componentof @
+s (resp. @
�s ) for some s 6= r, or a component of @
�s (resp. @
+s )for some s, or a component of @

0

if j
0 j > 0, where 

0

= 
n�

1

and

1

= int 
+ [ int
�;5) for each component ��rj of @
�r either (i) ��rj is of class C 1 ;1 and there is aneighbourhood of ��rj such that in the intersection of this neighbourhoodwith 
�r ; !(x) is uniformly continuous and �

� !(x)�

� has a positive in�mumor (ii) ��rj is of class C 2 ;1 and there is a neighbourhood of ��rj such that inthe intersection of this neighbourhood with 
�r ; !(x) = !�rj(x)� d�rj(x)� 
�rj ,where !�rj(x) is uniformly continuous and �

� !�rj(x)�

� has a positive in�mum,d�rj(x) = dist � x;��rj 	 , and 
�rj � 2;6) !(x) has been modi�ed on a set of measure zero, if necessary, so that ifj
0 j > 0, then !(x) = 1 for x 2 ��rj if ��rj � 
n�

0

and !(x) = 0 forx 2 

0

, while if j
0 j = 0, then !(x) = 1 for x 2 ��rj if ��rj � 
.It is an immediate consequence of Assumption 2.2 that if j
0 j > 0, then 

0is the union of a �nite number of non{empty disjoint regions, say f


0 jg, andeach component of @

0 j is either a component of � or is contained in 
 and iseither a component of @
+s or a component of @
�s for some s. Also �xing ourattention upon condition (5) of Assumption 2.2, we shall henceforth de�ne 
�rj = 0if alternative (i) is valid and let 


0

= max E, where E denotes the subset of Rconsisting of all of the 
�rj .In order to arrive at our main results and in order to use the results of [16] wealso require



ON AN OBLIQUE DERIVATIVE PROBLEM : : : 241Assumption 2.3. It will henceforth be supposed that:1) if �+rj (resp. ��rj) coincides with a ��sk, then 
 +rj = 
�sk (resp. 
�rj = 
�sk);2) if j
0 j > 0 and ��rj coincides with a component of @

0

, then (i) ��rj is ofclass Cn? +1 ;1 if 
�rj � 2 and of class Cn?;1 otherwise, where n? denotes theinteger part of n=2, and (ii) there is a neighbourhood of ��rj such that inthe intersection U�rj of this neighbourhood with 

0

; a�(x) 2 Cn?;1 (U�rj)for j�j = 2, where we refer to [1, pp.9{10] for notation.In the following sections we will require some further terminology. Accordingly,with this in mind we now introduce the followingDe�nition 2.1. Let X be a complex Hilbert space and S a linear operator inX. Then the set of all non{zero complex numbers � for which I � �S has aninverse in L(X) is called the modi�ed resolvent set of S and denoted by �m(S).For � 2 �m(S) we let S� = S(I � �S)�1 and call S� the modi�ed resolventof S. A complex number � is called a characteristic value of S if there exists au 6= 0 in D(S) such that (I � �S)u = 0; u is called a characteristic vector of Scorresponding to �. If � is a characteristic value of S, then a non{zero vector uis called a generalized characteristic vector of S corresponding to � if for somep 2 N; u 2 D(Sp) and (I � �S)pu = 0. The set consisting of all generalizedcharacteristic vectors of S corresponding to � together with the zero vector in Xis a subspace of X which we denote by G�(S;X). Lastly, the ray arg � = � in thecomplex plane is said to be a ray of growth of S� of order � if for all � on theray, with j�j su�ciently large, we have � 2 �m(S) and kS�kX � cj�j�� for some� satisfying 0 < � � 1, where c denotes a positive constant and k kX denotes thenorm in L(X).Finally, let T denote the operator of multiplication in H induced by !. Then weobserve that when H, considered only as a vector space, is equipped with the innerproduct ( ; )T = (T:; :), it becomes an inde�nite inner product space [8, p.4]; andin the sequel we shall denote this latter space by HT in order to distinguish it fromthe Hilbert space H. Let M and N denote any two subspaces of H. Then we saythatM and N form a dual pair of subspaces of HT if for each u 6= 0 inM there isa v 2 N such that (u; v)T 6= 0 and for each v 6= 0 in N there is a u 2M such that(u; v)T 6= 0 [8, p.21]. We note from the de�nition and [8, Lemma 10.3, p.21] that ifM and N form a dual pair in HT , then dimM = dim TM = dim N = dim TN ,where dimension is meant in the algebraic sense (see [8, p.2]).3. The main theoremIn this section we are going to state the main results of this paper (see Theorem3.1 below) as well as introduce the operator Ky which will play a vital role in thesubsequent analysis. However, we must �rstly introduce one further assumption. Tothis end we are now going to give a precise meaning to the eigenvalue problem (1.1{2). Accordingly, recalling the de�nition of T given in the last paragraph of x2, it is



242 M. FAIERMANclear that the problem (1.1{2) can be formulated from a purely operator{theoreticpoint of view, namely, as the spectral problem for the pencil S(�) = A��T; � 2 C .Observe that for each �; S(�) is a closed operator in H with domain D(A). Letus recall from [25, pp.56{57 and 102] that a point � 2 C is called a regular pointof S(�) if S(�) has an inverse in L(H). The set of all regular points of S(�) iscalled the resolvent set of S(�) and is denoted by �(S), while the set Cn�(S) iscalled the spectrum of S(�) and is denoted by �(S). It follows from [23, Problem5.32, p.242] that �(S) is open in C , and hence �(S) is closed. A point � 2 Cis called an eigenvalue of S(�) if there exists a vector u 6= 0 in D(A) such thatS(�)u = 0; such a vector u is called an eigenvector of S(�) corresponding to �.If � is an eigenvalue of S(�) and N� denotes the set of all eigenvectors of S(�)corresponding to � together with the zero vector in H, then N� is a subspaceof H which we call the eigenspace of S(�) corresponding to � and dim N� iscalled the geometric multiplicity of �. If � is an eigenvalue of S(�) and u
0

acorresponding eigenvector, then there may exist vectors fujgr
1

in D(A) such thatS(�)uj = Tuj�1

for j = 1; : : : ; r. Then the vectors fujgr
1

are said to be associatedwith the eigenvector u
0

and the set M� consisting of all eigenvectors of S(�)corresponding to � together with their associated vectors and the zero vector in Hforms a subspace of H which we call the principal subspace of S(�) correspondingto � and dimM� is called the algebraic multiplicity of �. Any vector u 6= 0 inM�is called a principal vector for the eigenvalue � of S(�).We have seen in x2 that A (as well asA?) is a Fredholm operator with index zero,and hence it follows from Theorem 2.1, [23, Theorem 5.26, p.238], and Rellich'stheorem [3, p.30] that S(�) is a Fredholm operator with index zero for every � 2 C .Thus we conclude from [23, Theorem 5.31, p.241] that for � 2 C , nul S(�) = defS(�) = constant, with the possible exception of certain isolated points. For ourpurposes we require that this constant be zero, and hence this leads us to introduceAssumption 3.1. We suppose from now on that �(S) 6= ;.Before stating the main results of this paper, let us introduce the followingTerminology. In the sequel, when we speak of regular points, resolvent set, spec-trum, eigenvalues, eigenvectors, associated vectors, principal vectors, eigenspaces,or principal subspaces of the problem (1.1{2), then this will always be meant withrespect to the pencil S(�).The following theorem contains the main results of this paper (we refer toAssumption 2.2 for terminology).Theorem 3.1. The spectrum of the problem (1.1{2) consists solely of eigenvaluesof �nite algebraic multiplicitywhich form a denumerably in�nite subset of C havingno �nite points of accumulation. Moreover, for any � satisfying 0 < � < �=2, thereare in�nitely many eigenvalues in each of the sectors j arg �j < � and j arg ���j <�, while there are at most a �nite number of eigenvalues in each of the sectors� � arg � < � � � and �� + � � arg � � ��. Finally the principal vectors ofthe problem (1.1{2) are complete in each of the function spaces L2 (
+ [
�) andL2

� 
+ [
�; j!(x)jdx� .



ON AN OBLIQUE DERIVATIVE PROBLEM : : : 243Of course when we speak of the completeness of the principal vectors of (1.1{2)in the spaces just cited, we mean that the restrictions of the principal vectors tothe set 
+ [
� are complete (in this vein see Proposition 3.2 below as well as theremarks following Assumption 3.2.).Since the proof of the theorem depends upon the results of x4, it will be deferreduntil x5. However, for our purposes we have to analyse Assumption 3.1 in greaterdetail. To this end let us �rstly observe that 0 2 �(S) (and hence 0 must be aneigenvalue of S(�)) if and only if 0 2 �(A), and if 0 2 �(S), then N
0

= ker A.Now let us �x our attention upon the boundary value problem(3.1) L?u = �!(x)u in 
together with the boundary condition (2.2).We de�ne the eigenvalues, eigenspaces,principal subspaces, spectrum, et cetera of the problem (3.1), (2.2) in an analogousmanner to those for the problem (1.1{2) (see Terminology above, where now weare to replace S(�) by its adjoint S?(�)); and for � an eigenvalue, we let N?�and M?� denote the eigenspace and principal subspace, respectively, of (3.1), (2.2)corresponding to �. It is clear that 0 2 �(S?) (and hence 0 must be an eigenvalueof S?(�)) if and only if 0 2 �(A?), and if 0 2 �(S?), then N?
0

= ker A?. Referringto the last paragraph of x2 for terminology, we have next.Proposition 3.1. In order that �(S) 6= �, it is necessary and su�cient that either0 2 �(A) or 0 2 �(A) and: either (i) N
0

and N?
0

form a dual pair of subspaces ofHT or (ii) N
0

and N?
0

do not form a dual pair in HT , but dim M
0

<1.Proof. To begin with, let us prove the su�ciency part of the proposition. Ac-cordingly, suppose �rstly that 0 2 �(A) and that N
0

and N?
0

form a dual pairin HT . Then we know from [12] that N
0

= M
0

; N?
0

= M?
0

, and we have thedecomposition H = M
0

_+(TM?
0

)?, where _+ denotes the direct sum of subspacesof H and X? denotes the orthogonal complement of the subspace X of H. Sup-pose next that 0 2 �(A), that N
0

and N?
0

do not form a dual pair in HT , andthat dimM
0

< 1. Then we assert that M
0

and M?
0

form a dual pair in HT andH = M
0

_+(TM?
0

)?. Indeed, this assertion was proved in [12, Theorem 3.3] underthe hypothesis that 0 2 �(T ) and this hypothesis was only used in proving thelinear independence of certain sets of vectors in H. It follows from a scrutiny ofthe proof just cited that the assertion remains perfectly valid for the problem un-der consideration here provided that j
0 j = 0. In order to indicate how the proofgiven in [12] is to be modi�ed in order to prove the assertion when j
0 j > 0, it isenough to demonstrate that if fpjg
1̀

is a sequence of non{negative integers satisfy-ing 1 � p
1

� p
2

� � � � � p` � 0 and fzjig; j = 1; : : : ; `; i = 0; : : : ; pj, is a sequenceof vectors in D(A) satisfying Azji = Tzj;i�1

(zj;�1

= 0) and such that fzj 0

g
1̀

is abasis of N
0

, then the zji form a linearly independent set in H. Indeed, if this is notthe case, then there is a non{trivial linear combination of these vectors, say u
1

,such that u
1

= 0. Hence it follows that there is a non{trivial linear combination ofthe zji; i < pj, say u2

, such that u
2

= 0 almost everywhere in a non{empty opensubset 
# of 
. If u
2

is a linear combination of only the zj 0

, then, since L has



244 M. FAIERMANthe unique continuation property [22, Theorem 2.4], we arrive at the contradictionthat u
2

is the zero vector in H. If u
2

is not a linear combination of only the zj 0

,then there is a non{trivial linear combination of the zji; i < pj � 1, say u
3

, suchthat u
3

= 0 almost everywhere in 
# . By arguing with u
3

as we did with u
2

, andby repeating the steps indicated if necessary, we �nally arrive at the contradictionthat there is a non{trivial linear combination of the zj 0

which is equal to zeroalmost everywhere in 
# .If 0 2 �(A), then let H
0

= (TM?
0

)? and A
0

= AjH
0

. Then it is clear thatD(A
0

) = D(A) \ H
0

; D(A) = M
0

_+D(A
0

), and A
0

: D(A
0

) � H
0

! R(A
0

) (=range of A
0

) is densely de�ned in H
0

and closed, with ker A
0

= 0. Moreover,as in [12] we can show that: (1) AM
0

and R(A
0

) are closed, linearly indepen-dent subspaces of H such that R(A) = AM
0

_+R(A
0

), (2) H = TM
0

_+R(A
0

) andR(A
0

) = (M?
0

)?, and (3) the mapping A�1

0

: R(A
0

) ! H
0

is compact. It followsfrom these results that if T
0

= T jH
0

, then T
0

H � R(A
0

), and hence in H
0

we maynow introduce the compact operator K = A�1

0

T
0

. If 0 2 �(A), then let us writeH
0

for H, A
0

for A; T
0

for T , and in H
0

let us introduce the compact operatorK = A�1

0

T
0

. Now it was shown in [12] that � is a non{zero eigenvalue of the prob-lem (1.1{2) if and only if � is a characteristic value of K (see De�nition 2.1 forterminology), and if � is a non{zero eigenvalue of (1.1{2), then M� = G�(K;H0

).In light of this last result, the proof of the su�ciency part of the proposition iscomplete.Finally, if �(S) 6= �, then by introducing a shift in the spectral parameter �,if necessary, there is no loss of generality in assuming that 0 2 �(S), and hencethat 0 2 �(A). Putting K = A�1 T , the necessity part of the proposition is animmediate consequence of the properties of K cited in the previous paragraph. �In the course of proving Proposition 3.1 it was shown thatCorollary 3.1. The spectrum of the problem (1.1{2) consists of at most isolatedeigenvalues of �nite algebraic multiplicity.In light of Corollary 3.1., we see that there is no loss of generality in supposingthat 0 2 �(S), and hence that 0 2 �(A), since this situation can always be achieved,if necessary, by means of a shift in the spectral parameter �.Assumption 3.2. It will henceforth be supposed that 0 2 �(A).For the remainder of this paper we let K = A�1 T , so that K is a compactoperator in H. We recall from the proof of Proposition 3.1 that � is an eigenvalueof the problem (1.1{2) if and only if � is a characteristic value of K, and if � is aneigenvalue of (1.1{2), then M� = G�(K;H).Suppose next that j
0 j > 0 and let 
y = 
n�

0

; Hy = L2 (
y), where we referto Assumption 2.2 for terminology. Then let us introduce the extension operatorE : Hy ! H by putting (Ef)(x) = f(x) in 
y, (Ef)(x) = 0 in 
n
y for f 2 Hy.Let us also introduce the restriction operator R mapping H onto Hy by puttingRf = f j
y for f 2 H and in Hy introduce the compact operator Ky = RKE .



ON AN OBLIQUE DERIVATIVE PROBLEM : : : 245Proposition 3.2. Suppose that j
0 j > 0. Then � is a characteristic value of Kif and only if � is a characteristic value of Ky. Moreover, if � is a characteristicvalue of K, then R maps G�(K;H) onto G�(Ky;Hy) injectively.Proof. Before the beginning the proof let us observe that Tu = TERu for u 2 H,and hence Ku = KERu for u 2 H. Now suppose �rstly that � is a characteristicvalue ofK. If u 6= 0 and (I��K)u = 0, then it follows that �KyRu = Ru 6= 0, andso � is a characteristic value of Ky and Ru a corresponding characteristic vector.Suppose next that u 2 G�(K;H) and that for some integer p > 1; (I � �K)pu =0; (I � �K)p�1 u 6= 0. Then there exist the vectors fujgp�1

0

in G�(K;H), whereup�1

= u and u
0

6= 0, such that (K���1 I)uj = uj�1

, where u�1

= 0. Hence (Ky���1 I)Ruj = Ruj�1

, and so (Ky���1 I)pRu = 0; (Ky���1 I)p�1 Ru 6= 0. Thus itfollows thatR maps G�(K;H) into G�(Ky;Hy), and since a simple argument showsthat this mapping is injective, we also have dim G�(K;H) � dim G�(Ky;Hy).Suppose next that � is a characteristic value ofKy. If u 6= 0 and (I��Ky)u = 0,then �RKEu = u = REu; T (�KEu � Eu) = 0, and hence �K(KEu) = KEu 6=0. Thus � is a characteristic value of K and KEu a corresponding character-istic vector. Now let u 2 G�(Ky;Hy) and assume that for some integer p >1; (I � �Ky)pu = 0; (I � �Ky)p�1 u 6= 0. Then there exist the vectors fujgp�1

0in G�(Ky;Hy), where up�1

= u and u
0

6= 0, such that (Ky � ��1 I)uj = uj�1

,where u�1

= 0. Hence (K � ��1 I)KEuj = KEuj�1

, and so (K � ��1 I)pKEu =0; (K � ��1 I)p�1 KEu 6= 0. Thus KE maps G�(Ky;Hy) into G�(K;H), and sinceit is easy to show that this mapping is injective, we also have dim G�(Ky;Hy) �dim G�(K;H). Thus we conclude from these results that R maps G�(K;H) ontoG�(Ky;Hy) injectively, which completes the proof of the proposition. �If j
0 j = 0, then we will henceforth write 
y for 
; Hy for H; Ky for K, andput E = R = I.Proposition 3.3. The range of Ky is dense in Hy.Proof. Let f 2 Hy and let � be an arbitrary positive number. Then there existsa � 2 C1
0

(
) such that supp � � 

1

and k� � Efk < �, where supp = supportand where we refer to Assumption 2.2 for terminology. Let g denote the elementof Hy de�ned by g(x) = !(x)�1 (L�)(x) for x 2 

1

and g(x) = 0 otherwise. ThenA� = TEg; u = R� = Kyg, and ku� fk
0 ;


y < �. Since � is arbitrary, the proof iscomplete. �4. The modified resolvent of KyIn this section we are going to investigate the growth of the modi�ed resol-vent (see De�nition 2.1) of the operator Ky introduced in x3 along certain raysemanating from the origin in C and the results so obtained will then be used inx5 to prove Theorem 3.1. Accordingly, referring to Assumption 2.2 and to theensuing statements for terminology, let us henceforth put ��rj = (
�rj + 2)=2 and�
0

= (

0

+ 2)=2. Then the main result of this section is contained in the following



246 M. FAIERMANProposition 4.1. If � 2 R and � 6= k� for k 2Z, then the ray arg � = � is a rayof growth of Ky� of order 1=�
0

.The proof of the proposition will depend upon certain lemmas which will bepresented below, and in order to state these lemmas we require the following de�-nitions. Accordingly, let x0 2 ��rj . Then by hypothesis there is an open set U � Rnand a real{valued function � of n� 1 variables such that the following conditionshold: (1) there is a Cartesian coordinate system (y
1

; : : : ; yn) (in short (y0; yn)) inRn about x0 , where the yn{axis is directed along the inward normal to ��rj at x0(i.e., pointing into 
�r ) and the y
1

�; : : : ; yn�1

� axes lie in the tangent plane to��rj at x0 such that U = � (y0; yn)jy0 2 U 0; jyn��(y0)j < �
1

	 , where U 0 is the openball jy0j < �
0

and �
0

; �
1

are positive constants, (2) � 2 C 1 ;1 (U 0) (see [1, pp.9 and10] for notation), and (3) U \ 
�r = � (y0; yn) 2 U jyn > �(y0)	 ; U \ ��rj =
� (y0; yn) 2 U jyn = �(y0)	 , and U \ (Rnn
�r ) = � (y0; yn) 2 U jyn < �(y0)g.We call U a neighbourhood and (y0; yn) a system of coordinates connected withthe point x0 ; and by choosing �

1

su�ciently small, if necessary, we shall assumehenceforth that U is contained in that neighbourhood of ��rj whose existence isasserted in alternatives (i), (ii) of condition (5) of Assumption 2.2. Moreover,if we let U = � �j� = (�
1

; : : : ; �n) = (�0; �n) 2 Rn; j�0j < �
0

; j�nj < �
1

	 ,then U can be mapped onto U by means of the mapping �j = yj for j =1; : : : ; (n � 1); �n = yn � �(y0), and we refer to (�0; �n) as local coordinates ofordinary type of ��rj at the point x0 . When 
�rj � 2, it will however be moreconvenient for us to work with local coordinates of a di�erent kind than thatjust de�ned, and which we introduce in the following way. Let us relabel they
1

; : : : ; yn�1

coordinates by �
1

; : : : ; �n�1

, respectively, let �0 = (�
1

; : : : ; �n�1

), de-note that portion of ��rj described by � y0; �(y0)� ; jy0j < �
0

, by � �0;  (�0)� ; j�0j < �
0

,and let �(�0) denote the interior unit normal to ��rj at � �0;  (�0)� . If we now letU = � �j� = (�
1

; : : : ; �n) = (�0; �n) 2 Rn; j�0j < �
0

=2; j�nj < �
2

	 , where �
2

< 1=4is su�ciently small, then U is di�eomorphic to a subset U # of U under the map-ping y = (y
1

; : : : ; yn) = � �0;  (�0)� + �n�(�0). We henceforth refer to (�0; �n), asjust de�ned, as local coordinates of normal type of ��rj at the point x0 . Note thatif we let ek denote the unit vector in Rn parallel to and pointing in the direc-tion of the positive yk{axis, then in terms of the local coordinates at x0 we haveDi = P nk =1

eki (Dk + P ns=1

cks(�)Ds), where Dk = @=@�k; eki is the i{th compo-nent of ek with respect to the standard basis of Rn, and cks(0) = 0. Hence if wepass to local coordinates at x0 and restrict ourselves to the set � � 2 Uj�n > 0	 ,then in this set (1.1) becomes(4.1) L(�;D)v � �w(�)v = 0where D = (D
1

; : : : ;Dn); L(�;D) = P j�j�2

a0�(�)D�; w(�) = ! � x(�)� if 
�rj =0; w(�) = !�rj � x(�)� �
�rjn if 
�rj � 2, and v(�) = u� x(�)� , while if ��rj is also acomponent of �, then, still restricting ourselves to the set U , (1.2) becomes(4.2) B(�;D)v = 0 on �n = 0;
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b0�(�)D�. Lastly, let us note that similar de�nitions andresults hold for the case where x0 is a point of � which does not belong to any ofthe ��rj (this situation could arise when j
0 j > 0).In proving Proposition 4.1 we wish to make use of the results of [14] and to thisend we require some further terminology. Accordingly, for � 2 R, let �(�) denotethe ray in the complex plane emanating from the origin which makes an angle� with the positive real axis and suppose that x0 2 ��rj with 
�rj � 2. Then interms of the local coordinates of normal type at x0 , (1.1) goes over into (4.1) for� 2 U ; �n > 0, while (1.2) goes over into (4.2) if ��rj is a component of �. Assumingnow that 0 6= � 2 �(�) and that � satis�es the hypothesis of Proposition 4.1, letus �x our attention upon the equation(4.3) h L
0

(0;D)� q 2 �(�n)i v = 0 for �n � 0;where L
0

(0;D) = P j�j=2

a0�(0)D�; q 2 = �!
0

; !
0

denotes the limit as x! x0 ; x 2
�r , of !�rj(x), and putting �n = t; �(t) is a real{valued function de�ned in t � 0which satis�es the following conditions: (i) �(t) is of class C 2 in 0 � t � 1 and ofclass C 1 in 0 � t < 1, (ii) �(t) > 0 for t > 0; �(t) = 1 for t � 1, and �(t) = t
for 0 � t � 1=2, where 
 = 
�rj . If in (4.3) we make a Fourier transformation withrespect to �0 � �0 ! �0 = (�
1

; : : : ; �n�1

)� and replace �n by t, then we arrive at thedi�erential equation(4.4) h L
0

(0; i�0; d=dt)� q 2 �(t)i V= p
0

V 00 + ip
1

(�0)V 0 � � p
2

(�0) + q 2 �(t)� V = 00 � t <1; 0 = d=dt;where p
0

6= 0 and p
1

(�0) (resp. p
2

(�0)) is a homogeneous polynomial of degree1 (resp. 2) in the �j . Let 
 = 
�rj ; � = ��rj ; �2 = q 2 =p
0

; a(�0) = � p
1

(�0)2 �4p
0

p
2

(�0)�� 4p2

0

; � + 
�1 = 
�2 =���2 =�a(�0), and � = (�
1

; : : : ; �n�1

), where �k =�k��1 =� for k = 1; : : : ; (n� 1) and where here and in the sequel we always assignto arg �2 its principal value when �2 6= 0 and adopt the convention that z� =exp� �(log jzj+i arg z)	 for �; z 2 C ; z 6= 0, and for which arg z has been speci�ed.Then we know from [14] that there exists the constant �(x0 ; �) > 1 such that whenj�j exceeds a certain positive number not depending upon �0, then a fundamentalset of solutions of (4.4) in the interval 0 � t � 1=2 is given byv
+

(t; �; �) = exp � �itp
1

(�0)=2p
0

	 D�;
 (
 1 =��1 �t);(4.5) v�(t; �; �) = exp � �itp
1

(�0)=2p
0

	 Dy�;
 (
 1 =��1 �t)for 0 < j� j < �(x0 ; �), where D�;
(z) and Dy�;
 (z) are the generalized paraboliccylinder functions de�ned in [15] if 
 > 2, while D�;2

(z) and Dy�;2

(z) are the



248 M. FAIERMANparabolic cylinder functions D�(z) and D���1

(iz), respectively, de�ned in [27],and by(4.6) v�(t) = G(t)�1 =4 expn i t
Z

0

��(s)dso

� 1 + u�(t)�for j� j � �(x0 ; �), where G(t) = G(t; �0; �) = a(�0)��2 x(t); ��(s) = ��(s; �0; �) =
� �p

1

(�0)=2p
0

� �G(t; �0; �)1 =2 ; �

� u�(t)�

� < 1 independently of t; �0, and �, and where0 < arg G(t) < 2�; Im�
+

(s) > 0, and Im��(s) < 0. Finally, if ��rj is also acomponent of �, then we let(4.7) B
0

(0;D) = Xj�j=1

b0�(0)D�:We are now in a position to deal with the proof of Proposition 4.1. Accordingly,for 0 6= � 2 �(�), where � is the angle of the proposition, and for s > 0; � > 0,let kjujks;�;G = kuks;G + j�js=2 �kuk
0 ;G for every open set G � Rn and vectoru 2 Hs(G). Suppose next that the component ��rj of @
�r is also a componentof �, that x0 2 ��rj , and that U is a neighbourhood connected with the point x0 .Then for u 2 H 2 (
), with supp u � U if 
�rj = 0 and supp u � U # otherwise, letus put(4.8) kjBujk0s;� = j�j( s�2) =2 �kBvk

1 =2 ;Rn�1 + j�j( s�3 =2) =2 �kBvk
0 ;Rn�1;where in terms of the local coordinates � of x0 (we henceforth suppose, unlessotherwise stated, that the local coordinates are of ordinary type if 
�rj = 0 andof normal type if 
�rj � 2, whether ��rj is a component of � or not), v(�) =u� x(�)� ; B(�;D) is de�ned in the statement following (4.2), and Bv is to beinterpreted in the sense of trace on the hyperplane �n = 0. For the case wherex0 is a point of � which does not belong to any of the ��rj (a situation which couldarise when j
0 j > 0) and U is a neighbourhood connected with the point x0 , weput kBuk0 = kBvk

1 =2 ;Rn�1 for u 2 H 2 (
) with supp u � U , where all terms arede�ned just as before and the local coordinates are taken to be of ordinary type.Hence referring to Assumption 2.2 and x3 for terminology, we now haveLemma 4.1. Suppose that the hypothesis of Proposition 4.1 is satis�ed. Thenfor each point x0 2 

1

there exists a neighbourhood X �� 

1

of this point andpositive numbers c
0

; c
1

such that for � 2 �(�) and j�j � c
1

,kjujk
2 ;1 ;


y � c
0

k(L� �!)uk
0 ;


y;(4.9) kjujk
3 =2 ;1 ;


y � c
0

j�j�1 =4 k(L� �!)uk
0 ;


y(4.10)for every u 2 H 2 (
) with supp u � X.Proof. That part of the lemma concerning (4.9) has been proved in [12, Lemma4.1], while (4.10) follows from (4.9) by interpolation [24, Proposition 2.3, p.19].�



ON AN OBLIQUE DERIVATIVE PROBLEM : : : 249Lemma 4.2. Suppose that the hypothesis of Proposition 4.1 is satis�ed and that��rj is a component of �. Then for each point x0 2 ��rj there exists a neighbourhoodX of this point, withX\
 � 
y, and positive numbers c
0

; c
1

such that for � 2 �(�)and j�j � c
1

,(4.11) kjujk
2 ;��rj;


y � c
0

h k(L� �!)uk
0 ;


y + kjBujk0
2 ;��rj i ;(4.12) kjujk

3 =2 ;��rj;


y � c
0

h j�j�1 =4 ��rjk(L� �!)uk
0 ;


y + kjBujk0
3 =2 ;��rj ifor every u 2 H 2 (
) with supp u � X.Proof. If 
�rj = 0, then that part of the lemma concerning (4.11) has been provedin [12, Lemma 4.1], while (4.12) follows from (4.11) by interpolation. Hence wesuppose from now on that 
�rj � 2; and to simplify the proof we shall also sup-pose that we are dealing with the case x0 2 �+rj . Now let U be a neighbourhoodconnected with the point x0 , let X �� U # be a neighbourhood of x0 , and letu 2 H 2 (
) such that supp u � X. Then passing to local coordinates at x0 , weknow from [14] that there exist positive constants k

0

; k
1

such that for j�j � k
1

,(4.13) kjvjk
2 ;�;Rn+ � k

0

h k(L
0

� q 2 �)vk
0 ;Rn+ + kjB

0

ujk0
2 ;� i ;where k

0

does not depend upon X;�, nor u; v(�) = u� x(�)� ; � = � +rj ; Rn
+

=
� (�0; �n) 2 Rnj�n > 0	 ; kjB

0

ujk0
2 ;� is given by the right side of (4.8) with B(�;D)replaced by B

0

(0;D) (see (4.7)), s by 2, and � by �, and all remaining termsare de�ned above (see (4.3) in particular). Note that in Theorem 2.1 of [14] anestimate similar to (4.13) was given and which di�ered only from (4.13) in thatthe term kjB
0

ujk0
2 ;� was replaced by kjB

0

ujk0
2 ;1

. However, in view of the equations(8.3{4), (8.7{8), (9.7) of [14] and the fact that the right side of (9.5) of [14] can bereplaced by C h kjf jk2`�2 ;q;1

+ khk2`�mB�1 =2 ;Rn�1 i , we see that (4.13) is actually asharper version of the estimate established in [14]. A standard argument involvingan extension of v to Rn and the use of the Poincar�e inequality [3, p.73] shows that




 (L
0

� q 2 �)v 





0 ;Rn+ � �(d)h k
2

kvk
2 ;Rn+ + j�j k�vk

0 ;Rn+ i + 



 (L� �w)v 





0 ;Rn+;where d denotes the diameter of X;�(d)! 0 and d! 0 and the constant k
2

doesnot depend upon X;�, nor u, while we can argue as in [5, x4] to show thatkjB
0

ujk0
2 ;� � k

3

� �(d) + j�j�1 =2 � � kjvjk
2 ;�;Rn+ + kjBujk0

2 ;�;where the constant k
3

does not depend upon X;� nor u. Sincej�j k�vk
0 ;Rn+ � k

4

kvk
2 ;Rn+ + 



 (L
0

� q 2 �)v 





0 ;Rn+;where the constant k
4

does not depend upon X;�, nor u, it follows that we canchoose d su�ciently small and j�j su�ciently large to complete the proof of thatpart of the lemma concerning (4.11). Finally, (4.12) follows from (4.11) by inter-polation. �



250 M. FAIERMANLemma 4.3. Suppose that the hypothesis of Proposition 4.1 is satis�ed and that��rj is contained in 
. Suppose also that ��rj coincides with a ��sk. Then for eachpoint x0 2 ��rj there exists a neighbourhood X �� 
y of this point and positivenumbers c
0

; c
1

such that for � 2 �(�) and j�j � c
1

,kjujk
2 ;��rj;


y � c
0





 (L � �!)u





0 ;


y;(4.14) kjujk
3 =2 ;��rj;


y � c
0

j�j�1 =4 ��rj 



 (L � �!)u





0 ;


y;(4.15)for every u 2 H 2 (
) with supp u � X.Proof. If 
�rj = 0, then that part of the proof concerning (4.14) has been provedin [12, Lemma 4.1], while (4.15) follows from (4.14) by interpolation. Hence wesuppose from now on that 
�rj � 2; and to simplify the proof we shall also supposethat we are dealing with the case x0 2 �+rj . Furthermore, �xing our attention uponthe terms �(t); !
0

; �2 , and �(x0 ; �) de�ned in the statements following (4.3) and(4.4) for the case x0 2 ��rj, we shall now denote these terms by ��rj(t); !�0 rj; (��rj)2 ,and ��rj(x0 ; �), respectively, in order to demonstrate the dependence of their de�-nitions on the ��rj . Then without loss of generality we can henceforth suppose that�+rj(x0 ; �)j�+rj j1 =� = ��sk(x0 ; �)j��skj1 =�, where � = � +rj , since we know from [14]that �+rj(x0 ; �) or ��sk(x0 ; �) can always be increased if necessary to achieve thisend.Next let U be a neighbourhood and (y0; yn) a system of coordinates connectedwith the point x0 (with respect to �+rj). It is clear that there is no loss of generalityin assuming henceforth that � (y0; yn) 2 U jyn < �(y0)	 = U\
�s and that U\
�s iscontained in that neighbourhood of ��sk whose existence is asserted in condition (5)of Assumption 2.2. Now letX �� U # be a neighbourhood of x0 and let u 2 C1(
)such that supp u � X. Then passing to local coordinates at x0 and assuminghenceforth that � 2 �(�) with j�j > 0, let us put v(�) = u� x(�)� ; �
+

(�n) =�+rj(�n); ��(�n) = ��sk(�n)(�n � 0); !
+

= ! +

0 rj; w� = !�
0 sk; �2

+

= (�+rj)2 ; �2� =(��sk)2 ; �
+

= �+rj(x0 ; �); �� = ��sk(x0 ; �), and
� L

+

(D; �)v � (�) = f
+

(�; �) for � 2 Rn
+

;(4.16)
� L�(D; �)v � (�) = f�(�; �) for � 2 Rn�;(4.17)where L

+

(D; �) = L
0

(0;D) � �!
+

�
+

(�n); L�(D; �) = L
0

(0;D) � �!���(��n);Rn� = � (�0; �n) 2 Rnj�n < 0	 , and we refer to (4.3{4) for the remaining de�nitions.We are now going to use (4.16{17) to establish a priori bounds for v. To thisend, let us suppose �rstly that v 2 C1
0

(U) and that the f� are de�ned accordingto (4.16{17). Writing t for �n and letting V (�0; t) = (Fv)(�0; t); F�(�0; t; �) =(Ff�)(�0; t; �), where F denotes the Fourier transformation introduced in (4.4), itfollows immediately from (4.16{17) that V (�0; t) is the unique solution of each ofthe initial{value problems,L
+

� i�0; d=dt; �� y = F
+

(�0; t; �) in 0 � t � 1=4;(4.18) y ( r ) (1=4) = 0 for r = 0; 1;



ON AN OBLIQUE DERIVATIVE PROBLEM : : : 251and L� � i�0; d=dt; �� y = F�(�0; t; �) in � 1=4 � t � 0;(4.19) y ( r ) (�1=4) = 0 for r = 0; 1;where y ( r ) = dry=dtr. Then, not showing explicitly the dependence of the functionsconcerned on �0 and �, we already know that for j�j exceeding a certain positivenumber not depending upon �0, a fundamental set of solutions for L
+

y = 0 in theinterval 0 � t � 1=4 is given by the v�(t) of (4.5) for 0 < j�0j < �
+

j�
+

j1 =� andby the v�(t) of (4.6) for j�0j � �
+

j�
+

j1 =�, where � = � +rj (of course in (4.5{6)we are now to take 
 = 
 +rj ; � = � +rj; � = �
+

; �(t) = �
+

(t), and let � bedetermined as before). Minor modi�cations of the results of [14] give us analogousresults for the equation L�y = 0 in the interval �1=4 � t � 0; and we denote thecorresponding fundamental set of solutions in this case by vy�(t), where here andbelow we again for brevity refrain from showing explicitly the dependence of thefunctions concerned on �0 and �. Assuming henceforth that j�j is su�ciently largeand �0 6= 0, it follows immediately from [9, Theorem 6.4, p.87] and (4.18) that(4.20) V ( r ) (0) = v ( r )

+

(0)I
1

(0) � v ( r )� (0)I
2

(0) for r = 0; 1;while it follows from [9] and (4.19) that(4.21) V ( r ) (0) = �(vy
+

)( r ) (0)Iy
1

(0) + (vy�)( r ) (0)Iy
2

(0) for r = 0; 1;where I
1

(0) = R

1 =4

0

� v�(s)F+

(s)=p
0

W (s)� ds; I
2

(0) = R

1 =4

0

� v
+

(s)F
+

(s)=p
0

W (s)� ds,Iy
1

(0) = R

0�1 =4

� vy�(s)F�(s)=p0

W y(s)� ds; Iy
2

(0) = R

0�1 =4

� vy
+

(s)F�(s)=p0

W y(s)� ds,W (s) denotes the Wronskian of L
+

y = 0 with respect to v
+

and v�, and W y(s)denotes the Wronskian of L�y = 0 with respect to vy
+

and vy�. The equations(4.20{21), as they now stand, are not adequate for our purposes since the absolutevalues of I
1

(0) and Iy
1

(0) may not remain less than some bound not dependingupon �0 and � (see [14, Equations (4.11)), (7.4), and (7.6)]). Hence in order toeliminate these terms, we equate the expressions in the right sides of (4.20{21)for r = 0; 1 to arrive at a linear system of equations in the \unknowns" I
1

(0) andIy
1

(0), which on solving givesI
1

(0) = c
11

Iy
2

(0) + c
12

I
2

(0);(4.22) Iy
1

(0) = c
21

Iy
2

(0) + c
22

I
2

(0);where �c
11

= W y(0); �c
12

= v (1)� (0)vy
+

(0)�v�(0)(vy
+

)(1) (0); �c
21

= v (1)

+

(0)vy�(0)�v
+

(0)(vy�)(1) (0), �c
22

= �W (0), and � = v (1)

+

(0)vy
+

(0)� v
+

(0)(vy
+

)(1) (0).Let us �rstly �x our attention upon the case j�0j � �
+

j�
+

j1 =�. Then by appealingto the results of [14, xx3, 4 and 6] and arguing as in the proofs of Theorems 8.1{2 of [14], it is not di�cult to verify that j�j � C �

� G(0)�1 =2

� �
+

(0)���(0)�
�

� ; jcpqj �
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2

(0)j � Cj�0j�1

�R 1
0

jF
+

j2 dt�

1 =2 , and jIy
2

(0)j � Cj�0j�1

�R

0�1 jF�j2 dt�

1 =2 ,where here and below, C denotes a generic constant which may vary from inequal-ity to inequality, but does not depend upon �0 nor �. Consequently, by applyingthese estimates to (4.22) and then substituting back into (4.20{21), we obtain(4.23) jV (0)j � Cj�0j�3 =2

�

�

1
Z

0

jF
+

j2 dt�

1 =2 + �

0

Z�1 jF�j2 dt�

1 =2

� ;and hence
Zj�0j��+ j�+ j1=� h

� 1 + j�0j2

�

3 =2 + j�j3 =2 � i

�

� V (�0; 0)�

�

2 d�0(4.24) � C h kf
+

k2

0 ;Rn+ + kf�k2

0 ;Rn� i :Suppose next that 0 < j�0j < �
+

j�
+

j1 =�. Then writing 
 for 
 +rj , we know from[14, x7] thatv
+

(0) = d
+

(�)f
+

(�); v (1)

+

(0) = �1 =�
+

d
+

(�)h g
+

(�) + ��1 =�
+

� �ip
1

(�0)=2p
0

� f
+

(�)i ;where for 
 = 2; d
+

(�) = � 1 =2 2( ��1 =2) =2 ; f
+

(�) = 1=��

3

4

� �=2� , and g
+

(�) =�2=��

1

4

� �=2� (here � denotes the Gamma function), while for 
 > 2; d
+

(�) =� 1 =2 (2
�)�
=4 �= sin� �=2� 	 ; f
+

(�) and g
+

(�) are entire functions of exponentialtype whose zeros lie on the positive real axis, � = 
�2 =���2 =�
+

a(�0) lies in a closedsector with vertex at the origin which, with the exception of the origin, is containedin the left{half of the complex plane (i.e., that half consisting of numbers with neg-ative real parts), j�j � 
�2 =��2

+

� 2

2

, and �
2

is a constant de�ned in [14, x3]. Simi-larly, we can show that vy
+

(0) = d
+

(�y)f
+

(�y); (vy
+

)(1) (0) = ��1 =�� d
+

(�y)h g
+

(�y)+��1 =�� � ip
1

(�0)=2p
0

� f
+

(�y)i , where �y = 
�2 =���2 =�� a(�0) has properties analogousto those of �. Observing that �2� =2 R and that �2� = ��2

+

, where � = !�=!+

, weconclude from these results that j�j � Cj�
+

j1 =� �

�

�

m
2

(�) + �1 =2 �m
2

� ��1 =�� �

�

�

�

, wherem
2

(�) = �
�1 =�g
+

(�)=f
+

(�) and where we take arg � = 0 if � > 0; arg � = ��if � < 0 and arg �2

+

> 0, and arg � = � if � < 0 and arg �2

+

< 0. The func-tion m
2

(�) has been studied in [15] for the case 
 > 2 (note that the f
1

; f
2

of[15] are just f
+

and 
�1 =�g
+

, respectively), where the following results were es-tablished: (1) �Imm
2

(�)=Im � > 0 for Im � 6= 0, (2) m
2

(�) > 0 for � real andnon{positive, and (3) if 0 < j�j < �=2 and arg � = � + �, then Rem
2

(�) �m
2

(0) > 0; 0 < arg m
2

(�) < � if � > 0; � < arg m
2

(�) < 0 if � < 0. Itfollows immediately from these results that j�j � Cj�
+

j1 =� if 
 > 2, and sim-ilarly we can show that this is also the case if 
 = 2. By appealing to the re-sults of [14, x7] and by arguing as in the proof of Theorem 8.3 of [14], it is nownot di�cult to verify that jcpqj � C; jI
2

(0)j � Cj�
+

j�3 =2 � �

R 1
0

jF
+

j2 dt�

1 =2 , andIy
2

(0)j � Cj�
+

j�3 =2 � �

R

0�1 jF�j2 dt�

1 =2 .



ON AN OBLIQUE DERIVATIVE PROBLEM : : : 253Consequently, by applying these estimates to (4.22) and then substituting backinto (4.20{21), we obtain
�

� V (0)�

� � Cj�
+

j�3 =2 � �

�

1
Z

0

jF
+

j2 dt�

1 =2 + �

0

Z�1 jF�j2 dt�

1 =2

� ;and hence
Zj�0j<�+ j�+ j1=� h

� 1 + j�0j2

�

3 =2 + j�j3 =2 � i

�

� V (�0; 0)�

�

2 d�0(4.25) � C h kf
+

k2

0 ;Rn+ + kf�k2

0 ;Rn� i :Let us now �x our attention upon the boundary value problem: (4.16) togetherwith the boundary condition v(�) = h(�0) on �n = 0, where (Fh)(�0) = V (�0; 0).Then it follows immediately from (4.24{25) and [14, Theorem 2.1] (here we usethe sharper verison as explained in the proof of Lemma 4.2) thatkjvjk
2 ;�;Rn+ � C h kf

+

k
0 ;Rn+ + kf�k0 ;Rn� i ;and similarly we can show thatkjvjk

2 ;�;Rn� � C h kf
+

k
0 ;Rn+ + kf�k0 ;Rn� i :These latter results have been established for the case v 2 C1

0

(U), and it is clearthat they also remain valid for v as de�ned in the statements preceding (4.16).Thus �xing our attention upon this latter v, we now havekjvjk
2 ;�;Rn � C �










� L
0

� �!
+

�
+

(�n)� v 








0 ;Rn+ + 








� L
0

� �!���(��n)� v 








0 ;Rn� � ;and hence we may argue as we did in the proof of Lemma 4.2 to complete the proofof that part of the lemma concerning (4.14) for the case u 2 C1(
). The prooffor the case u 2 H 2 (
) then follows from a standard approximation procedure.Finally, (4.15) follows from (4.14) by interpolation. �We now turn to the case where j
0 j > 0; ��rj � 
, and ��rj coincides with acomponent of @

0

. Then if, for x0 2 ��rj and u 2 H 2 (
), we recall that whenpassing to the local coordinates � at x0 the expression Lu goes over into Lv, wehaveLemma 4.4. Suppose that the hypothesis of Proposition 4.1 is satis�ed and that��rj is contained in 
. Suppose also that j
0 j > 0 and that ��rj coincides with acomponent of @

0

. Then for each point x0 2 ��rj there exists a neighbourhood
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 of this point, with Xn��rj � 
y [ 

0

, and positive numbers c
0

; c
1

suchthat for � 2 �(�) and j�j � c
1

,(4.26) kjujk
2 ;��rj;


y + kuk
2 ;
 0 + j�j1 =4 ��rjkuk

3 =2 ;
 0� c
0

�





 (L � �!)u





0 ;


y + kLuk
0 ;
 0 + j�j1 =4 ��rj �

0

Z�1 kLvk2�1 =2 ;Rn�1d�n�

1 =2

� ;(4.27) kjujk
3 =2 ;��rj;


y + kuk
3 =2 ;
 0 � c

0

h j�j�1 =4 ��rj 



 (L � �!)u





0 ;


y + kLuk
0 ;
 0 ifor every u 2 H 2 (
) with suppu � X.Proof. If 
�rj = 0, then that part of the lemma concerning (4.26) has been provedin [16], while (4.27) follows from (4.26) by interpolation. Hence we suppose fromnow on that 
�rj � 2; and to simplify the proof we will also suppose that x0 2 �+rj .Let U be a neighbourhood and (y0; yn) a system of coordinates connected withthe point x0 (with respect to �+rj). It is clear that there is no loss of generality inassuming henceforth that � (y0; yn) 2 U jyn < �(y0)	 = U \


0

� U +rj , where we re-fer to condition (2) of Assumption 2.3 for the de�nition of U +rj . Now let X �� U #be a neighbourhood of x0 and let u 2 C1(
) such that suppu � X. Then passingto local coordinates at x0 and assuming henceforth that � 2 �(�) with j�j > 0, weagain arrive at the equations (4.16{17), where v and L
+

are de�ned as before, butnow L� = L
0

(0;D). Supposing for the moment that v 2 C1
0

(U) and that the f�are de�ned according to (4.16{17), we may, as before, write t for �n and make aFourier transformation F with respect to �0(�0 ! �0) in (4.16{17) to arrive at theinitial{value problems (4.18{19). Assuming henceforth that j�j is su�ciently large,a fundamental set of solutions for L
+

y = 0 in the interval 0 � t � 1=4 is given byv�(t), de�ned precisely as in the proof of Lemma 4.3 (again for brevity we do notshow explicitly the dependence of the functions concerned on �0 and �), while a fun-damental set of solutions of L�y = 0 in the interval�1=4 � t � 0 is given by vy�(t),where now vy
+

(t) = exp � it��(0)	 ; vy�(t) = exp � it�
+

(0)	 , where the ��(s) are de-�ned precisely as in the proof just cited, and with the restriction j�0j � �
+

j�
+

j1 =�given there being replaced by j�0j > 0. Using these fundamental solutions, weagain arrive at the formulae (4.20{21) for V ( r ) (0), and since as before, we wishto eliminate the terms I
1

(0) and Iy
1

(0), we may argue as we did in the proof ofLemma4.3 to arrive at (4.22) and then, with the same terminology as in that proof,prove that for the problem under consideration here, (4.23{24) remain valid forj�0j � �
+

j�
+

j1 �. For j�0j < �
+

j�
+

j1 =�, we now have � = �
 1 =�d
+

(�)f
+

(�)�1 =�
+

�
� m

2

(�) � i� 1 =2

� , where we assign to arg � its value in (0; 2�) (here and belowwe always employ the terminology of the proof of Lemma 4.3). From the re-sults given in the proof of Lemma 4.3 and in [14] it now follows that j�j �
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+

j1 =�, jc
11

j � Cj�0jj�
+

j�1 =�, jcpqj � C for the remaining p; q; �

� I
2

(0)�

� �Cj�
+

j�3 =2 � �

R 1
0

jF
+

j2 dt�

1 =2 , �

� Iy
2

(0)�

� � C�(�0)j�0j�1

�

R

0�1 jF�j2 dt�

1 =2 , where�(�0) = 1 if j�0j � 1; �(�0) = j�0j�1 =2 otherwise, and hence we conclude from (4.22)and (4.20) that(4.28) jV (0)j � C � j�
+

j�3 =2 � �

1
Z

0

jF
+

j2 dt�

1 =2 + �(�0)j�
+

j�1 =� �

0

Z�1 jF�j2 dt�

1 =2

� ;while (4.22) and (4.21) give(4.29) jV (0)j � C � j�
+

j�3 =2 � �

1
Z

0

jF
+

j2 dt�

1 =2 + �(�0)j�0j�1

�

0

Z�1 jF�j2 dt�

1 =2

� :Finally, from (4.28) we obtain
Zj�0j<�+ j�+j1=� h

� 1 + j�0j2

�

3 =2 + j�j3 =2 � i

�

� V (�0; 0)�

�

2 d�0(4.30) � C � kf
+

k2

0 ;Rn+ + j�
+

j1 =� 0

Z�1 kf�k2�1 =2 ;Rn�1dt� ;while from (4.29) we obtain
Zj�0j<�+ j�+j1=� h j�0j3 + j�j1 =2 �j�0j2

i

�

� V (�0; 0)�

�

2 d�0(4.31) � C � kf
+

k2

0 ;Rn+ + j�
+

j1 =� 0

Z�1 kf�k2�1 =2 ;Rn�1dt� :Let us now �x our attention upon the boundary value problem: (4.16) togetherwith the boundary condition v(�) = h(�0) on �n = 0, where (Fh)(�0) = V (�0; 0).Then it follows from (4.24), (4.30), and [14, Theorem 2.1] (in the sharpened formas explained before) thatkjvjk
2 ;�;Rn+ � C �










� L
0

� �!
+

�
+

� v 








0 ;Rn+ + kL
0

vk
0 ;Rn� +(4.32) + j�

+

j1 =2 � �

0

Z�1 kL
0

vk2�1 =2 ;Rn�1dt�

1 =2

� :



256 M. FAIERMANTurning next to the boundary value problem: (4.17) together with the boundarycondition v(�) = h(�0) on �n = 0, where h(�0) is de�ned above, we know from theproof of Theorem 2.1 of [16] that for this problem we have the a priori estimateskvk
2 ;Rn� � C � kfk

0 ;Rn� + �

ZRn�1 j�0j3

�

� V (�0; 0�

�

2 d�0 �

1 =2

�and kvk
3 =2 ;Rn� � C �

�

0

Z�1 kf�k2�1 =2 ;Rn�1dt�

1 =2 + �

ZRn�1 j�0j2

�

� V (�0; 0)�

�

2 d�0 �

1 =2

� ;and hence it follows from (4.24) and (4.31) that the inequality (4.32) persists whenkjvjk
2 ;�;Rn+ is replaced by kjvjky

2 ;�;Rn� = kvk
2 ;Rn� + j�j1 =4 �kvk

3 =2 ;Rn�. Thus we haveestablished thatkjvjk
2 ;�;Rn+ + kjvjky

2 ;�;Rn� � C "










� L
0

� �!
+

�
+

� v 








0 ;Rn+(4.33) + kL
0

vk
0 ;Rn� + j�j1 =4 � �

0

Z�1 kL
0

vk2�1 =2 ;Rn�1dt�

1 =2

#for v 2 C1
0

(U), and it is clear that this inequality persists for v(�) = u� x(�)� . Thenwith this latter v in (4.33), we can argue with (L
0

��!
+

�
+

)v and L
0

v as we did inthe proof of Lemma 4.2 and with �

0

R�1 kL
0

vk2�1 =2 ;Rn�1dt�

1 =2 as we did in the proofof Theorem 2.1 of [16], to show that (4.33) remains valid when (L
0

� �!
+

�
+

)vis replaced by (L � �w)v and L
0

v by Lv, provided that the diameter of X issu�ciently small. This proves that part of the lemma concerning (4.26) for thecase u 2 C1(
), while the proof for the case u 2 H 2 (
) follows from a standardapproximation procedure. Finally, (4.27) follows from (4.26) by interpolation. �Before commencing with the proof of Proposition 4.1, we state the followingstandard results (cf. [4], [16]).Lemma 4.5. Suppose that j
0 j > 0. Then for each point x0 2 

0

there existsa neighbourhood X �� 

0

of this point and a positive number c
0

such thatkuk
2 ;
 0 � c

0

kLuk
0 ;
 0 for every u 2 H 2 (
) with suppu � X.Lemma 4.6. Suppose that j
0 j > 0 and that �

0

is a component of @

0

which isalso a component of �. Then for each point x0 2 �
0

there exists a neighbourhoodX of this point, with X \
 � 

0

, and a positive number c
0

such that kuk
2 ;
 0 �c

0

� kLuk
0 ;
 0 + kBuk0 � for every u 2 H 2 (
) with suppu � X.Proof of Proposition 4.1. Let V = � uju 2 D(A); k!�1 Luk

0 ;


y <1	 if j
0 j =0 and V = n uju 2 D(A); k!�1 Luk
0 ;


y < 1; kLuk
0 ;
 0 = 0o if j
0 j > 0. Then



ON AN OBLIQUE DERIVATIVE PROBLEM : : : 257by considering a suitable covering of �
 by means of a �nite number of open balls,each of which is contained in one of the sets X of Lemmas 4.1{6, we may appealto these lemmas and argue as in [5,x4] to show that there exist positive constantsk
0

; k
1

such that if � 2 �(�) and j�j � k
1

, thenkjujk
3 =2 ;�0;


y � k
0

j�j�1 =4 �0kTEfk
0 ;


y if j
0 j = 0;(4.34) kjujk
3 =2 ;�0;


y + kuk
3 =2 ;
 0(4.35) � k

0

h j�j�1 =4 �0kTEfk
0 ;


y + kuk
0 ;
 0 i if j
0 j > 0for every pair u 2 V; f 2 Hy for which (A � �T )u = TEf .Referring to (4.35), let us show that when j
0 j > 0, then there exists theconstant ky

1

� k
1

such that if � 2 �(�) and j�j � ky
1

, then kjujk
3 =2 ;�0;


y �2k
0

j�j�1 =4 �0kTEfk
0 ;


y for every pair u; f as de�ned above. Indeed, if this is notthe case, then it follows from (4.35) that there exists a u 2 H 3 =2 (
), and sequences
� ui 	 1

1

in V and � �i 	 1
1

in �(�), where kuk = kuik = 1 and j�ij ! 1 as i !1,such that j�ij�1 =4 �0 



 (A � �iT )ui 



 < 1 for each i, ui ! u weakly in H 3 =2 (
) andui ! u strongly in H 1 (
) as i!1, while kuk
0 ;


y = 0. We are now going to provethat Lu = 0 in the sense of distributions on 
; and since it is easy to show thatLu(�) = 0 for � 2 C1
0

(

0

) and for � 2 C1
0

(
y), it is clear that in order to achieveour goal we need only �x our attention upon the case where �+rj is a componentof @

0

; x0 2 �+rj, U is a neighbourhood connected with the point x0 ; � 2 C1
0

(
)with supp� � U , and show that Lu(��) = 0. To this end, let us observe from theBanach{Saks theorem [7, p.181] that there exists the subsequence � ui( p)

	 1p=1

ofthe ui such that wp = p�1

P ps=1

ui( s)

! u strongly in H 3 =2 (
) as p!1. Hence(4.36) Lu(��) = � Xj�j=2

� D���0u;D�0�a���

0 ;
 0 + Xj�j�1

� a�D�u; ��

0 ;
 0= limp!1� � Xj�j=2

� D���0wp; D�0�a���

0 ;
 0 + Xj�j�1

� a�D�wp; ��

0 ;
 0 � ;where �0 is a multi{index satisfying �0 � �; j�0j = 1. By passing to local coordi-nates of ordinary type at x0 and integrating by parts, it is not di�cult to verify thatthe modulus of the expression in square brackets on the right side of (4.36) doesnot exceed c P ni=1

�

R j�0j<�0 �

� trDivp �

�

2 d�0 �

1 =2 , where, referring to the paragraph fol-lowing the statement of Proposition 4.1 for notation, vp(�) = wp � x(�)� ; tr denotestrace on the hyperplane �n = 0, the constant c does not depend upon p, and all theremaining terms are de�ned as before. Since kwpk
3 =2 ;


y ! 0 as p!1, it followsimmediately that Lu(��) = 0. Thus we have shown that Lu = 0, and hence byunique continuation [22, Theorem 2.4] we arrive at the contradiction that u = 0.For a � 0 let �(�; a) = � � 2 �(�)j j�j � a	 . Then it follows from (4.34{35) andfrom what we have just shown that there exist the positive constants c
0

; c such



258 M. FAIERMANthat for � 2 �(�; c),(4.37) kjujk
3 =2 ;�0;


y � c
0

j�j�1 =4 �0 



 TEf 





0 ;


yfor every pair u 2 V; f 2 Hy for which � A � �T � u = TEf . Consequently, if� 2 �(�; c); f 2 Hy, and (I � �Ky)f = 0, then a simple argument shows thatthere exists a u 2 V such that Ru = f and (A � �T )u = 0, and so we seefrom (4.37) that f = 0. Thus we conclude that �(�; c) � �m(Ky). Moreover, if� 2 �(�; c); f 2 Hy, and Ky�f = u, then it is not di�cult to verify that thereexists a v 2 V such that Rv = u and (A� �T )v = TEf , and hence it follows from(4.37) that(4.38) 



 Ky�f 





0 ;


y � cyj�j�1 =�0kfk
0 ;


y for � 2 �(�; c);where cy = c
0

k!kL1 (
)

. This completes the proof of the proposition. �Remark 4.1. We assert that we can choose the constants c and cy in (4.38) sothat this equation remains valid along every ray arg� = �0 for which �0 2 �� =
� �0 j j�0 � �j � �	 for some suitable positive number �. Indeed, since the proofsof Lemmas 4.1{4 depended upon the results of [5, 14, 16] which were actuallyestablished under the assumption that arg � varied in a closed sector with vertexat the origin, and since it is clear that under our assumptions the conditions forthe validity of these latter results at the point x0 in question (see Conditions I,II of [5, xx2, 3], Assumption 2.1 and Theorem 10.1 of [14], and Assumption 2.1 of[16]) also hold for arg� = �0 for �0 2 �� if they hold for arg� = �, and with �depending only upon � and not upon x0 , it follows immediately that in Lemmas4.1{4 we may choose the constants c

0

; c
1

so that (4.9{10), (4.11{12), (4.14{15),and (4.26{27) remain valid along every ray arg � = �0 for �0 2 �� and with �depending only upon �. Arguing as in the proof of Proposition 4.1, we can nowshow that the constants k
0

; k
1

of (4.34{35) can be chosen so that the inequalitiesshown remain valid along every ray arg � = �0 for �0 2 ��, and hence by arguingwith (4.35) as we did before for the case j
0 j > 0 we can complete the justi�cationof our assertion.Recalling the de�nition of �(�; a) given in the proof of Proposition 4.1, we nowextend this de�nition to arbitrary � 2 R.Proposition 4.2. Suppose that � 2 R and there exist positive constants c
0

; csuch that for � 2 �(�; c), (4.37) holds for every pair u 2 V; f 2 Hy for which(A � �T )u = TEf . Then � 6= k� for k 2Z.Proof. We shall only prove the proposition under the assumption that L
0

(x; i�) >0 for x 2 �
 and 0 6= � 2 Rn, where L
0

(x;D) denotes the principal part of L(x;D);the remaining case can be dealt with similarly. We also let � 2 C1
0

(Rn) such that0 � �(x) � 1; �(x) = 1 for jxj < 1, and �(x) = 0 for jxj > 2.Now suppose that the proposition is false and that � = 2k�. Then recallingfrom Assumption 2.2 that for some r;
+r contains a closed ball with centre x0 in



ON AN OBLIQUE DERIVATIVE PROBLEM : : : 259which !(x) is Lipschitz continuous, we see that there is a non{zero vector � 0 2 Rnsuch that L
0

(x0 ; i� 0 ) = ei�. Hence if for � 2 �(�; c) su�ciently large we putv�(x) = �� �1 =4 (x � x0 )� ; u�(x) = exp� i� �!(x0 )�

1 =2 � 0 � x	 v�(x), where � denotesinner product, and let u(x) = u�(x) in (4.37), then we may appeal to Theorem10.2 of [24, p.52] to show that the expression on the left side of (4.37) is not lessthan C� 34�n8 for all � su�ciently large, where C denotes a positive constant, whilethe expression on the right side of (4.37) is O � � 34�n8� 14�0 � as � ! 1. Thus wearrive at a contradiction. Similarly we can show that the supposition � = (2k+1)�leads to a contradiction, and this completes the proof of the proposition. �5. Proof of Theorem 3.1Let us �rstly show that the generalized characteristic vectors ofKy are completein Hy. To this end let us divide the complex plane into sectors by means of thedistinct rays arg� = �j ; j = 1; : : : ; p, where: (1) the angular opening of each sectoris less than 2�=n and (2) �j 6= k� for j = 1; : : : ; p and k 2Z. Let us also observefrom [2] that for any � > 0 there exists the increasing sequence � rj 	 1
1

of positivenumbers, tending to1 with j, such that for each j, the circle j�j = rj is containedin �m(Ky) and h





 (I � �Ky)�1





 Hy + 



 Ky� 



 Hy i � exp� j�jn2 + � 	 for j�j = rj, wherek kHy denotes the norm in L(Hy). Now let G denote the closed span of all thegeneralized characteristic vectors of Ky and suppose that G 6= Hy. Then thereexists an h 6= 0 in Hy such that (g; h)
0 ;


y = 0 for every g 2 G, and hence it followsthat for any f 2 Hy; � Ky�f; h�

0 ;


y is an entire function. Thus we see that if we �xour attention upon any one of the open sectors in the complex plane determinedby the rays arg � = �j and restrict ourselves here to a particular branch of �1 =�0 ,then � �1 =�0Ky�f; h�

0 ;


y is analytic in and continuous on the closure of this sector.In light of Proposition 4.1 and the above estimates for the norms of Ky� on thecircles j�j = rj , we may appeal to the Phragm�en{Lindelh�of principle to deducethat � Ky�f; h�

0 ;


y tends uniformly to zero as j�j ! 1. Thus � Ky�f; h�

0 ;


y � 0,and hence � Kyf; h�

0 ;


y = 0. Since f is arbitrary, we conclude from Proposition3.3 that h = 0, which is a contradiction.In light of the results of x3, all the assertions of the theorem, except thoseconcerning completeness in H! = L2

� 
+ [
�; j!(x)jdx� and the angular distri-bution of the eigenvalues, now follow. On the other hand, if we bear in mind thatC1
0

� int
+ [ int
� � is dense in H!, then the assertion concerning completenessin H! follows easily from the foregoing results.We are now going to show that there are in�nitely many eigenvalues of theproblem (1.1{2) lying in the sector j arg�j < �; and in proving this result, wecan, without loss of generality, suppose that � < �=n. Accordingly, let us supposethat there are at most a �nite number of eigenvalues of (1.1{2) lying in the sectorjust cited. Then it follows from the results of x3 that there is an r > 0 suchthat if �0r denotes the region in the �{plane de�ned by the inequalities �
1

<arg � < �
2

; j�j > r, where �j = (�1)j�, then �0r � �m(Ky) and (4.37) is valid for



260 M. FAIERMAN� 2 �(�j; r); j = 1; 2. For 0 6= f 2 Hy and � 2 �0r , let u = Ky�f . Then we knowfrom the �nal paragraph of the proof of Proposition 4.1 that there exists a v 2 Vsuch that Rv = u and � A� �T � v = TEf , and so we see from (4.37) that




 �1 =�0Ky�f 





0 ;


y � C 



 TEf 





0 


y;(5.1)




 �1 =4 �0Ky�f 





3 =2 ;


y � C 



 TEf 





0 ;


y(5.2)for � 2 �(�j ; r); j = 1; 2, where here and below C denotes a generic constant whichdoes not depend upon f nor �. Observing that � A� �T � �1 : �! L(H) is anlyticin �m(Ky) and that for � 2 �00r = � �j� 2 �0r; j�j = r 	 , 



 Ky�f 





0 ;


y �





 TEf 





0 ;


y �kvk=



 TEf 





0 ;


y � sup
�

00r 



 (A � �T )�1





 H, where k kH denotes the norm in L(H),we also see that (5.1) holds for � 2 �00r . Thus, since �1 =�0Ky�f : �0r ! Hy is an-alytic in �0r and continuous in �0r, and bearing in mind the estimates for thenorms of Ky� on the circles j�j = rj given above, we can now appeal to thePhragm�en{Lindelh�of principle to deduce that (5.1) persists for � 2 �0r. Further-more, we may argue with the closed graph theorem as in the proof of Lemma13.4 of [3, p.210] to deduce that Ky 2 L� Hy;H 3 =2 (
y)� and that � A � �T � �1 2L� H;H 3 =2 (
)� for � 2 �m(Ky). Thus � A � �T � �1 : � ! L� H;H 3 =2 (
)� is an-alytic in �m(Ky), while we also see that for � 2 �00r , 



 Ky�f 





3 =2 ;


y=



 TEf 





0 ;


y �kvk
3 =2 ;


=



 TEf 





0 ;


y � sup
�

00r 



 (A � �T � �1







yH, where k kyH denotes the norm inL� H;H 3 =2 (
)� , and so we conclude that (5.2) persists for � 2 �00r . Lastly, it fol-lows from the remark just made about Ky that �1 =4 �0Ky�f : �0r ! H 3 =2 (
y) isanalytic in �0r and continuous in �0r, and hence bearing in mind the estimates forthe norms of � I � �Ky � �1 on the circles j�j = rj given above, we can now appealto the Phragm�en{Lindelh�of principle to deduce that (5.2) persists for � 2 �0r.We conclude from the foregoing results that (5.1{2) hold for any f 2 Hy and� 2 �(0; r). On the other hand, since it is easy to show that if � 2 �(0; r) and u 2 V,f 2 Hy are any pair for which � A� �T � u = TEf , then we must have Ru = Ky�f ,it follows that the hypothesis of Proposition 4.2 is satis�ed for c
0

= C; c = r, and� = 0. Hence, in view of Proposition 4.2, we arrive at a contradiction.Similarly, we can show that there are in�nitely many eigenvalues of (1.1{2) lyingin the sector j arg� � �j < �. Furthermore, as a consequence of Remark 4.1 wesee that there exists a positive number r� such that the sets � � 2 C j� � arg � ��� �; j�j � r� 	 and � � 2 Cj��+ � � arg � � ��; j�j � r� 	 are both contained in�m(Ky), and hence it follows that there are at most a �nite number of eigenvaluesof (1.1{2) lying in each of the sectors � � arg � � � � � and �� + � � arg� � ��.This completes the proof of the theorem. �
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