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ON A GENERAL SOLUTION OF FINITE ORDER
DIFFERENCE EQUATION WITH CONSTANT COEFFICIENTS

MAREK Pycia

ABSTRACT. In the present paper we give new formulas for a general solution of the
linear difference equation of finite order with constant complex coefficients without
necessity of solving the characteristic equation

Introduction. In this paper we deal with the following difference equation of
order m:

m
(1) LTn4m = Ay Tptm—r

r=1
with constant complex coefficients aq, . . ., a,,. Our Theorem gives a simple formula
for the general solution depending only on the coefficients ay, ..., a,. We do not

have to solve the characteristic equation as it is usually done (cf for instance [1],
[2]) and, in general, it is often impossible to find the exact solutions of it.
To formulate our Theorem we adopt the following convention:

(~1)!-0=1.

Theorem. Let xg,...,x,,_1 be arbitrary complex numbers, let hy,..., h,, be
nonnegative integers. The general solution of equation (1) is of the form (2):

(hit -+ hm =Dt +hm) " 4,
Ty, = a;t x
hi!l ... hy! ot
=0 1lhi+F+mhp=n-—I =1

m—1

forn=20,1,....
Proof of the Theorem. The proof is by induction with respect to n.
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In the first part we show that formula (2) holds for n = 0,...,m — 1. Let us
take [ € {0,...,m — 1} and consider three cases depending on [ is smaller, greater
than n or equal to n.

In the case | < n we have 1hi+---+mh,, = n—1{ > 0, and therefore hy +-- -+
hpy —1 > 0. Let us note that hyy_;+ -+ by, = 0. In fact, if Ay + -+ hyy, > 0
then would exist i € {m —{,...,m} such that h; > 0. Consequently we would
have 1hy + - -+ mhy, > ih; > (m—1) > n—{; which is a contradiction. Therefore
we have:

(hi4 -4 hp — D i 44 )

=0.
hil ... hy,!
In the case { > n we have 1hy +---4+mh,, =n—1 < 0. Since the set of all such
sequences (hy, ..., hp) is empty, the sum over this set of indices is 0.
For ! = n we have 1h;+- - -+mh,, = n—1 = 0. Consequently hy = --- = h,;, =0

and, applying our convention, we get:

(hi 4t b = Dbt + -+ h) _ (=1)10
hil .. hy! 1-...-1

Summing up this three cases we can observe that formula (2) holds for n =
0,....m—1

Now, for an inductive step, we assume that Theorem is true for m consecutive
indices n,...,n+m — 1.

Substituting the right hand side of formula (2) into equality (1) (we change
simultaneously n for n+m —r in formula (2)) and changing the order of sumation
we get:

m m—1
LTn4m = Ay
r=1 =0 1lhi++mhy=n-I
(hy 4 A by = Dt 4 ho) ™
. as T =
Bl B L

m—1 m
= an,
=0 r=1 lhi4+--+mhp=n4+m—r—I
(hit -t b = D+ h) ™
. a. xry .

hil- o byl !

i=1

Let us fix | € {0,...,m — 1}, and consider the coefficient standing before ;.
Performing the indicated operations we obtain that this coefficient is equal to:

(4) Corringm O

lgi++mgm=n+m-I i=1
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where every ¢y, 4. is uniquely defined coefficient. We will determine the value
of it depending on ¢1,...,9m. Let us fix ¢1,..., gm.

Since we get ;n:l al* as a product of admissible a, (i.e., such that g, > 0) and
suitable uniquely defined ;n:l alh’:

h; for ¢=1,...,r—1,r+1,...,m,

5 P =
(5) g h;, +1 for i1=r.

Therefore to obtain the coefficient ¢4, . 4. 1t is enough to add all the coefficients
of the form:

(hi 44 b — D + - 4 )
Ryl hy!

standing before admissible [, alh’.
Let us put:

P, j)={r:g9->0}0{s,...,j5}.
We have:
(hi 44 b — DA + -+ )

c =
g1, 4m
hyl- oo hy!
P(1,m)

(hi4- A by = DA + - 4 )
= +
Ryl hp!
P(1,m—-1-1)
(hi4 - A by = DA + -+ )
Ryl hp! '

_|_
P(m—1I,m)

Because if r € {i,...,j} — P(4,j) then g, = 0, it follows that Py Ir =
i:i gr. Applying formula (5), hence we get:

(Gt 4@ =D+ 4 gn=Dlgn-t+ - +9n)

Co1,im = » : — = +
P(1,m—1-1) gl (ge = D!
n G+ =D+ A gn— D gma+ -4 (gr = 1)+ 4 gm)
1. . — 1. . | -
P(m—1,m) git - (g = D!
= (g1+..'+gm_1)!(gm—l+"'+gm)
- gr _1 T ' _|_
P(1,m—1-1) 1+ +gm—1) gl gm!
n ot tgn = Dgmort et g = 1)
" 1) -at ot =
P(m—1,m) (g1+ + 9m 1) g1 ... gm:
m—I{—1 m
gr gr(gm—l+"'+gm—1)

_|_
@+t gm =1 (ot g Dgmot + ot gn)

(g1 +gm— D gm-1+ -+ gm)
gl gm!
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1+t gm-1-1) | G-t + +gn)Gm-t+ A+ gm — 1)
(it tgm—1 (it gm—Dgm+ -+ gm)
91+ +9m = Dgm-t+ -+ 9n)
gl gm! o
(gr+ -+ gm—1) + (Gm-t1 + -+ gn — 1)
g1+ +gm—1)
91+ +gm = Dgmt+ -+ 9n)

gl gm!
(gt g = DMgmet e+ gm)
g1l gm! ’

Inserting this into (4) and then into (3) we obtain:

m—1

(G144 gm =D gmai 44 gm) " o

Tn4+m =
gl gm!

=0 lg14+-+mgm=n-—I

Now induction concludes the proof. a

Remark 1. It may be interesting to note here that formula (2) can be written
as follows:

m—1 s
Ly — ar
=0 ki, ks€{l,....m}:k1++ks=n—1,ks;>m—1, seN}i=1

xry .

z

Remark 2. Theorem can be proved by some combinatorial reasoning.
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