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NONEXISTENCE OF CLASSICAL SOLUTIONS
OF THE DIRICHLET PROBLEM FOR FULLY
NONLINEAR ELLIPTIC EQUATIONS

N. KUTEV
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Abstract. Necessary conditions for the existence of classical solutions of the Dirichlet problem
for fully nonlinear, nonuniformly elliptic equations are proved. The effcct of the large inhomogen-
ous term and the geometry of the domain on -the solvability of the boundary value problem is
shown. The above methods are applied to the equations of Monge — Ampere typc.

Key words. Fully nonlinear, nonuniformly elliptic equations, Monge — Ampere type equations,
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INTRODUCTION AND RESULTS

This paper is concerned with the non-solvability of Dirichlet’s problem for
fully nonlinear elliptic equations

¢)) F[u] = F(x,u,Du,D*u) =0 inQ,u=g¢, onaQ

in a given bounded domain  in R" and arbitrarily assigned smooth boundary
data. The real function F(x,z, p,r) is defined on I' = @ x Rx R"x R*** (R"*"
denotes n(n + 1)/2 dimentional space of real symmetric nxn matrices) and
satisfies the ellipticity condition

© Fyo,z,pr) 0 >0  for(x,z,p,el, e RO,

where in (2) and further on the short notations Fy; = 0F|or;, F;.,q = 0*F|dr,; 0y,
F, = 0F|oz, uy; = 0*u[0x, 0x;, etc. will be used and summation convention is
understood.

Suppose that F(x, z, p, r) is twice differentiable and concave function of r i.e.
Fij. (%, 2z, p, V) n"n** < 0 for (x, 2z, p,r) €I and n e R™\0.

Let us define a scalar function E(x, z, p) which will prove to be quite impor-
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tant, by
E(x,z,p) = F(x,z,p,p ® p) — F(x,2,p,0)  for (x,2,p) e QxRxR",’

where the matrix p @ p is {p;p;}ij=1-

We will consider the effect of the large inhomogeneous term F(x, z, p, 0) in
comparison with the function E(x,z, p) and |p| SpF;(x,z,p,p ® p) (SpF,; =
= trace F,;), as well as the effect of the matrix F;;(x, z, p, p ® p) on the solvability
of Dirichlet’s problem.

More precisely, let us suppose that

)  F(x,z,p,0 = —¥(pl)E(x,z,p) — (| p|/R) SpF,)(x, 2, p, p ® p),

for xeQ,z2M, |p| =L, where M, L are positive constants, R is the radius

of the largest ball contained in Q2 and ¥ is a positive, continuous, monotonically
increasing function satisfying the condition

T ode

For instance if (1) is a uniformly elliptic ‘equation ie. ' )
AP S Fiy(x,z,pr) 88 £ 41212
where A, A are positive constants, then A | p |2 < E(x,z,p) < A|p|*andni|p]| <

S1pISPFi(x,z,p,p ®p) S nd|pl.
In this case (3) holds provided that

(5) F(X,Z,P,O)g —Clpizlnl-'-elpla

for some positive constants C and e.
The following theorem relates the behaviour of the large inhomogeneous term
with the non-solvability of Dirichlet’s problem.

Theorem 1. Let Q be a bounded domain in R", whose boundary is of classC**
and F be a real, smooth and concave function of r satisfying the conditions (2)and (3).

Moreover, let F be non-increasing in z for each (x, p,r) € 2x R"x R"*",

Then there exists C* boundary data such that the Dirichlet problem (1) has no
solution:

Remark 1. Theorem 1 shows that the assumption
| F(x,2,p,0)| = C(1 + |p|?),
in theorem 8.2 in [2] can not be weakened. If we suppose that

F(x,z,p,0) £ —=C(1 + | pI*™).



for some positive constants C and & i.e.
[F(x,z,p,0)| 2 C(1 + |p|**9),

then the Dirichlet problem (1) is not generally solvable even in uniformly convex
domain Q. )

Let us now consider a second type of non-solvability, which is due to the structure
of the matrix F;(x,z,p,p ® p), rather than to the inhomogeneous term
F(x, z, p, 0). More precisely, we suppose that

6) ¥(1p 1) E(x,2,p) S | p| SPF.i(%, 2,0, p ® ),

for |p| 2L,z 2 M and x € 2, where M, L are positive constants and ¥ is the
same function as in (3). In this case we will demonstrate the need for the geometric
restrictions on the domain Q2 in order for the Dirichlet problem to be generally
solvable. '

Suppose the following conditions on the asymptotic behaviour of the coefficients
Fii(x,z,p, p ® p), F(x, z, p, 0) for large values of | p |

) Fy,(%, 2, p, P ® P)SPF (%, 2, P, p ® p) = fY(x, 0) + O(1),
F(x, 2, p, 0)/(| p | SPF (%, 2, p, p ® D)) = f(x, 6) + O(1),

as |p| = o, ¢ = p/| p| hold. Here f*(x, o), f(x, 0) are continuous functions of
their arguments. Using the matrix #(x, 6) = {f"(x, 0)}};~, we introduce a gene-
ralized notion of mean curvature. Let y be a point of 92 and v denote the unit
outer normal to 002 at y. Also let ky, k;,..., k,-y and 4,,4,,...,4,-; be

respectively the principal curvatures and principal directions of dQ at y. We
then put

-1

® H(y,v) = ) 4F(y,v) 4k + vF(y,v)v. H,
i=1 .
where H is the ordinary mean curvature of 02 at y.

Example 1. Equations of Monge — Ampere type
® det D*u = g(x, u, Du).

This equation is elliptic only when the Hessian matrix D?u is positive (or nega-
tive) and we consider convex solutions 4 and positive functions g. For the equa-
tion (9) simple computations give us E(x, z, p) = 0 and SpF,(x,z, p,p ® p) =0)
forn > 2 and | p | for n = 2, and hence (6) holds. If we write equation (9) in the
form :

(10) F(D*u) = log det D*u = log g(x, u, Du),

we then have that the function F is concave on the cone of nonnegative matrices
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R"*", In this case for the equation (10) we obtain E(x, z, p) = — o0, SpF;(x, z, p,
p®p)20forn >2and +o for n = 2, and again (6) holds. Moreover, when
n=2

vioo—vv,
—ViV2 V%

37"(%")=( ) Jy,v) =

and
A H(y,v) = (f +v3) k + 2v]vik = k(y),

i.e. the generalized mean curvature at y coincides with the ordinary curvature at y.
Let us go back to equation (1) and formulate the following nonexistence result
depending on the generalized mean curvature.

Theorem 2. Let Q be a bounded domain in R", whose boundary is of class C**
and F be a real, smooth and concave function of r satisfying the conditions (2), (6), (7).
Moreover, let F be nonincreasing in z for (x, p, ) € 2 x R"x R"*" and F(x, z, p, 0) <
SO0forz = M, |p| = L. If the geometric condition

(1) A I ()

falls at a single point y of the boundary surface, then there exists smooth boundary
data for which no solution of the Dirichlet problem is possible.

For instance, the condition (2) for the equation of Monge — Ampere type (10)
in R? is k(y) = 0, where k(y) is the ordinary curvature at y € Q2 (see example 1).
Hence the Dirichlet problem for (10) in @ = R? is not solvable for arbitrary
boundary data when the domain is nonconvex, which is a well-known result.

For convenience, we will directly prove the following nonexistence theorem for
equations of Monge — Ampere type.

Theorem 3. Let the positive function g(x, z, p) satisfy the condition

(12 . glx,z,p) 2 ¥(phip"*!

forz 2 M, |p| 2L, xeQ,(Q is a neighbourhood of some point y € ), where
M, L are positive constants, ¥ is the same function as in (3), (4) and Q be a uniformly
convex C!'! domain in R". Then there exists C® boundary data such that the Dirichlet
problem for the equation of Monge— Ampere type (9) in Q has no convex solution
ue C(Q) n C}(Q). :

For example, the condition (12) holds when

gx,z,p) ZClp|"*'In**"|p| . for xeQ,,z2M,|p| 2L,

where C, M, L, e are positive constants.
The result in theorem 3 is the best possible one. This follows from th. 2 in [8],
where under the assumption:
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g(x, o), p) = [P "1 ¥(p))

for all x in some neighbourhood of 8Q, | p| 2 L, where the continuous non-
decreasing, positive function ¥ satisfies the condition

J atjw) = oo,

the Dirichlet problem for the equation of Monge — Ampere type (9) is generally
solvable.

As for the results in theorems 1, 2, they are in many ways the best possible,
too, which follows from th. 1, 2 in [9]. Moreover, when F(x, z, p, r) is a linear
function of r, the results in theorems 1, 2 remain the best possible ones, as it
follows from [11].

Let us recall that in the quasilinear case, Serrin, [11], introduces the classes
of irregularly and singularly elliptic equations and proves the corresponding non-
existence theorems. In this paper we introduce the classes (3) and (6) of fully,
nonlinear, nonuniformly elliptic equations which contain the equations con-
sidered by Serrin when F(x, z, p, r) is a linear function of r. Thus we extend Serrin’s
work for quasilinear equations to fully, nonlinear equations.

Finally we would like to thank Prof. Trudinger who called our attention to the
recently published work of Trudinger and Urbas [13], in which results similar
to those in theorem 3 are proved. More precisely, from theorem 1.3 in [13] it
follows that the Dirichlet problem for the equation of Monge —Ampere type (9)
is not generally solvable when '

g(x,z,p)2 C(L +|p|»)? forall xN,,zeR,peR"

and « > n + 1, where N, is a neighbourhood of some point y € 09.
The paper is divided into two paragraphs. In the first one we prove theorems 1, 2.
Paragraph 2 deals with the nonsolvability of Dirichlet’s problem for the equa-
tions of Monge — Ampere type and theorem 3 is proved.

1. PROOFS OF THEOREMS 1| AND 2

The main tool for our treatment of nonexistence results is the following variant
of comparison principle (see th. 17.1 in [4], p. 443).

Theorem 4. Let Q be a bounded domain in R" and y-a relatively open C* portion
of 0Q. Let ue C(Q) n CH QU y), ve C(Q) n CXR) satisfy F[u] 2 F[v] in Q,
u = vondQ\y, 0v/dt = — oo on y (t denotes the unit normal direction into Q). More-
over

(i) the function F is continuously differentiable with respect to z, p, r variables;

-
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(ii) the operator F is elliptic on all functions of the form tu + (1 — f)v, 0 <

Sts1;

(iii) the function F is non-increasing in z for each (x, p,r) € 2 x R" x R""'l

It then follows that u < v in Q.

Proof. Suppose that the conclusion of theorem 4 is not true. Since u < v on
0Q\y, from theorem 17.1 in [4] it follows that the function u — v attains its
maximum at some point P € y. This is impossible because d(u — v)/dt = + oo at P.

Further we need the following simple lemmas.

Lemma 1. Let the continuous, positive, monotonically increasing function ¥
satisfy (4). Then for any positive constants a, b, ly, 8, there exists a constant
8(a, b, Iy, 8,), 0 <8 <98, and a nonnegative function ve C[a,b] n C*(a,b),

satisfying the conditions: v’ £ —1ly,v'(a) = —ooand v” — V't = 26(v)? P(a|v'|[D)
for te(a, b). .
Proof. Let the constant / 2 /, satisfy the inequality
€ ’ ° dt
a So(b® — a? and O0=—"0 .
I. qf( %l ) b* — g? ¢I t2%(1)

Let us consider the function v given by

v(t) = st'l(é(sz — a?))ds, where G(s) —-_ji —”’%m

It is evident that G(s) is monotonically increasing for s < —1I/a and thus there
exists a well defined inverse function G™*: (0, G(—!/a)) » (— 0, —I/a). One can
easily check that v = 0, v' = tG™'(6(t* —a?®) = -1 < —1,, v'(@) = —c0 and
v = G 14(t* — a?)) + 2¢5t2/G'(G"(¢5(t2 —a?)) = v/t + 25(')* P | v |/9).

| 2
Moreover v £ =25 j t‘l’(t) and ve C[a, b] n C3*(a, b).

Lemma 2. Let the continuous, positive, monotonically increasing function ¥
satisfy (4). Then for any positive constants a, b, ly, 0, there exists a constant
8(b — a, ly, 8), 0 < & < &, and a nonnegative function h,/h_/, h+eC[a, b] n
N C%(a, b) satisfymg the conditions: h', = I(h_ = —1;), h',(b) = +oo(h’ @) =
= — ), by = &(h)* ¥( b’ |) for te(a, b).

Proof. Let the constant / = /, satisfy the inequality

[

<dyb—a) and 6= }

{0

“Let us consider the function- h.(h.) given by

36



.= fH;‘(&(b —8))ds(h_ = fH:’(&(s — a))ds),

Ho@s) = | =% (H_(s)= f -—-‘-1-‘——).

s 1Y) “w 2P| t])

It is evident that H,(H_.) is monotonically decreasing (increasing) for s 2
> I(s £ —I)and thus there exists a well defined inverse function H3! : (0, H.(/)) =
- (I, 0) (HZ! : (0, H_(=10)) - (—o0, —1I)). One easily checks that h, = 0,
hy = H'(O(b — 0) 21 2 I, hiy(b) = oo(h. = HZ'((t — a)) £ —1 = —h,
h' (@) = —oo) and b, = F6/H(H:') = 6(h%)* P(| h’ |). Moreover h, <
<= j Wd(% and h, € C[a, b] n C¥(a, b).

Lemmas 1, 2 and theorem 4 can be used now to derive theorem 1.

Proof of theorem 1: We suppose that u € C(2) n C*(Q) is a solution of the
Dirichlet problem (1). Let K be the ball with the largest radius 2R contained in £
and P be a fixed boundary point of 022 at which K is internally touching. Let r
denote the distance from P. In the domain Q; = {x € 2; R < r < diam 2}, we

consider the function h(r) = v(r) + M,, M, = max (M, sup u) where v(r) is
29Nn)rz R} ,
the function defined in lemma 1, when a = R, b = diam Q, /, = max (L, ¥~(1)),

8o = 1/2and 6 = &,.
One easy calculation yields
F[k] = F(x, h, 'Dr, (" — K'Jr) Dr ® Dr + (k'Jr) 8) <
< F(x,h, WDr,h'*Dr @ Dr) + (h" — h'[r — h'*) F {(x, h, h'Dr, h'*Dr ®
® Dr)rir; + (h'[r) SpF,((x, h, h'Dr, h'*Dr ® Dr) < E(x, h, h'Dr) +
+ F(x, h, k'Rr, 0) + (W'[r) SpF,(x, h, ' Dr, h’*Dr @ Dr) +
+ (h" — K'[r W'*) F {(x, h, h'Dr, ¥'*Dr ® Dr)r;r;.

where

When h” — h'[r — B'? £ 0, from (3) we have the estimate

F[h] S E(x, h, 'Dr) + F(x, h, i'Dr,0) < Y(| i’ |) E(x, h, 'Dr) +
+ F(x, h, W' Dr,0) < 0.
If h" — i'Jr — k' > 0 it follows that '

F[h] s ((h" — W'[r)[h'?) E(x, h, h'Dr) + F(x, h,h'Dr, 0) S
< 26,%(a | b’ |[r) E(x, h, W' Dr) + F(x,h, h'Dr,0) <
S Y(h')E(x, h,h'Dr) + F(x, h,h’'Dr,0) < 0,

We may now apply the comparison principle, theorem 4 to the domain £
and the open boundary set y = 2 n {r = R}. Since u $ h on 92 n {r = R} and

37



0h/dt(R) = v'(R) = — o (tr denotes the unit normal direction into ), it follows
that
u<h<max(M, sup u)+ — 1 :‘fo ds =M,.
- oan{rz R} 51 1o S'I'(S) ~
"Let now ¢ be an arbitrary real number between 0 and R/2 and ¢ denote the
distance from the centre of K. In the domain Q, = {x€eQ2;r < Rand R < ¢ <
< 2R — &} we consider the function h(¢) = M, + h.(¢) where h, is defined
inlemma 2 whena = R,b = 2R — ¢, /l, = max (L, ¥"'(1)),0, = land d = §, =
t ¢ dt 2 33 dt
R—¢ x'f t2w(@) — R 2@
<R

lity j < R)2

v

. Here the constant /, = [, satisfies the inequa-

£29(1)
An easy calculation now gives
F[h] = F(x, h, "' Do, (h" — h’|¢) Do ® Do + (h'|o) 6" < E(x, h, h'Dg) +
+ F(x, h, W' Dg, 0) + (k’[¢) SpF,(x, h, k' Dg, h'*Dg ® Do) +
+ (h" — W[g — W?) Fy(x, h, " Do, h'>De ® Dg) g¢;-
When h” — h'/g — h'?> S 0 from (3) we have the estimate
| F[n] < ¥( k' |) E(x, h, k'Dg) + F(x, h, k'Dg, 0) +
+ (W[Q) SpF,j(x, h, h'Dg, h'*Dg ® Dg) < 0.
Ifh" — h'jo — W2 > 0 it follows that
F[h] < (0" — W'[o)/h'?) E(x, h, W’ D) + F(x, h, h’Dg, 0) +
+ (W'[R) SpFj(x, h, h'Do, h'*Dg ® Dg) < 6,%(I b’ |) E(x, h, h'Dg) +
+ F(x, h, 'D'Dg, 0) + (h'[e) SpF,i(x,h, h'Dg, h'*Dg ® Dg) < 0.
Consequently F[h] < 0. Let us apply the comparison principle, theorem 4,
‘to the domain 2, and the boundary set y = {¢ =2R — ¢} n {xe 2, r < R}.

Since u £h on {xeQ; r=R} and -0h/0t2R — &) = —h',(2R — &) = —
(z denotes the unit normal direction into £2,) it follows that

1 2 ds
< max(M, sup u)+
3 o S X (M, sup W

1 Rf{® dt \7'*® dt
+[3T+7(,f mp(z)) | n/f(t)]'

Letting ¢ — 0 and using the continuity of u yields the same inequality at P, i.c.

. . -1 .
u(P) < max (M, sup u)+[_611_+£2(_(j- dt ) ]j dt

UShSle"'

9Nz R) I tz‘P(t) Jn tP() i
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Thus in order to prove theorem 1 it then suffices to choose the boundary values ¢
such that ¢ = 0 on 92 n {r = R} and

1 R(® dt \"']® dt
NH>M+[5+5(A7E5)]AEWT

Proof of theorem 2. We suppose that u € C(Q) n C*(Q) is a solution of the
Dirichlet problem (1) and let P(y) € 02 be a point where the geometric condition
(11) fails, i.e. Z°(y, v) + f(y, v) < —3n at P(y) for some positive constant n < 1.
Then there exists a quadric surface S tangent to Q2 at P such that (see [11], p. 465):

(i) S has a unique parallel projection onto the tangent plane at P;

(ii) the point set S N {r < R} (r denotes the distance from P) is contained in the
closure of Q for all sufficiently small values of R and

(iii) the generalized mean curvature ), of the surface S (see (8)) satisfy the
condition X', £ A + n for the positive constant . Consequently Ay, V) +
+ f(,v) < —2n at P(y).

As in the proof of theorem 1 we consider the domain Q;, = {xe Q; R <r <

< diam Q} and the function h(r) = v(r) + M; M; = max(M, sup u) where o(r)
_ 420 {rz R}
is the function defined in lemma 1 when a = R, b.= diam Q, /[, = max (L, ¢! ..

. (diam Q)) = 1,6, = (2diam )™, = 6,.
An easy calculation yields .

F[h] < E(x, h, W' Dr) + F(x, h, h'Dr, 0) + (h'[r) SpF{(x, h, k' Dr, h’*Dr x Dr) +
+ (h" = W|r — W'®) F(x, h, ¥'Dr, h'*Dr x Dr) r;r;.
When h” — h'[r — h’? £ 0 we have from (6) the estimate
F[h] 2.(1/diam Q) (¥(| b’ |) E(x, h, hDr) — | h'| SpF,,(x h,h'Dr,h’*Dr ® Dr)) £ 0
If i — B'[r — B'* > 0 it follows that’

F[h] = (0" = W[")|K'?) E(x, h, W'Dr) —{} b’ |/diam.Q) SpFij(x, h, k'Dr, h'*Dr ®
® Dr) £ (1/diam Q) (6, diam Q . E(x, h, h'Dr) —
— | W' | SpFi(x, h, h'Dr, h'*Dr ® Dr)) 0.

Consequently F[h] £.0, 0h/dt(R) = h'(R) = v'(R) = —0 and h=u on
02 n {r = R}. From the comparison principle, theorem 4, we have the estimate
1 ¢ ds
u £ h £ max M, sup u) + —
( onn(rgx) ) 03 z;‘. SW(S)

Further on we will need the foilowin’g simple lemma.

Lemma 3. Let the assumptions of theorem 2 hold. Then fYx, 0) o'e’ = 0 for
x € Q and ¢ is a unit vector in R", where f'J are defined in (7).
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Proof. From the definition of f*/ and (6) it follows that

FY(x, 0) 0'a’ = F(x, 2, to, ¢ ® o) 6'6’|SPF ,(x, z, to, t*¢ @ a) + O(1) <
S E(x, z, t0)/(12SpF (%, z, to, t*¢ ® 6)) + 0(1) <
SBRP(tD) +01) >0 as t— oo,

Let us go back to the proof of theorem 2 and define the function d(x) as the
distance from x to the surface S. Let & be an arbitrary real number between 0
and R/2. In the domain Q, = {x € 2; r < R and & < d(x)}, where r is the distance
from P(y), the function d(x) is of class C'', when R is sufficiently small (see [11],
p. 421, or [4] p. 381).

Consider the function h(d) = h_(d) + M3, where h_(d) is defined in lemma 2
whena =¢, b = R, I, = max (L, ¥~ !(1/n)), 6, = n and

[} 2 0
1 i dt

7 =

R—s t’!l'(t) R tzT(t)
Here the constant /, = max (L, ¥~ l(llrp)) satisfies the inequality

© o de. nR
| Sorm S5
I ?( )

6564=

—— < n(R —¢).
In the following calculation we will use an important identity to calculate F;;d;,
(see [11], p. 422, lemma 1). Thus we obtain the inequalities

F[h] = F(x, h, 'Dd, h"Dd ® Dd + W'D*d) < F(x h, k'Dd, h'*Dd ® Dd) +
+ Fy(x, h, k'Dd,i"*Dd ® Dd) (h" — W) d,d; + h'd,)) = E(x, h, k'Dd) +
+ F(x, h, 'Dd, 0) + (h' — W2 F(x, h, ¥'Dd, ¥*Dd ® Dd) dd; -

_ Y Z A,F,,(x, h, h'Dd, h'’Dd ® Dd) 4,

Considering h” — h'> S 0and h” — h'? > 0 we obtain in both cases the follow-
ing inequalities ‘
F[h] S n'l’(l h' |) E(x, h, h’'Dd) + F(x, h, k' Dd, 0)
-k Z k 3 . AFu(x, b, K'Dd, h"Dd@Dd)A,

1-1
SnP(K ) E(x, b, ¥'Dd) + | ' | SpFy(x, h, ¥'Dd, h'*Dd ® Dd)( Z AT (x, v) Ak, +
i=1
+ f(x,v) + 0(1) + O(R)) as |h'| - oo,

where the normal vector v and the pnncxpal directions and principal curvatures
are calculated at the point z(x) on S nearest to x.

Since A" (x, v) + f(x,v) S X (3, V) + f(y,v) + O(R) it follows that
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F[k] < n'¥(I b’ |) E(x, b, k'Dd) + | k' | SpFy(x, h, h'Dd, h'*Dd ® Dd) (¥ (y, v) +
+ (3, v) + 0(1) + O(R)) = n¥(| h'|) E(x, h, h'Dd) —
— | W | SpFy(x, h,h'Dd, h'’Dd @ Dd) <0 as |h'| > o and R

is sufficiently small. Consequently F[h] < 0, dh/dt(s) = h’(¢) = —o0, h Z u on
Q@ n {r = R} and from the comparison principle, theorem 4, we have the estimate

1 P ds
u<h<max(M, sup u)+ -—
- ( ann{rgx} ) 53 ,j, s!l’(s)

Rf{® dt \™' 2 dt
+—2—(1'4‘. t’W(t)) é te(r)’

when R is sufficiently small.

Letting ¢ — 0 and using the continuity of u yields the same inequality at P,

Thus to prove theorem 2 it then suffices to choose the boundary values ¢ such
that ¢ = 0 on 92 N {r =2 R} and

1 ® dt R{® dt \7'1® dt
B FM - I T T (J :zm)) ok

+

§ 2. EQUATIONS OF MONGE -~-AMPERE TYPE

In this paragraph we will prove theorem 3.

Let u € C(Q) N C*(£) be a convex solution of (9), K be an internally touching
ball to 0Q at y with radius 3R and r denote the distance from the centre of K. Let

K,(y, 2R) be a ball and R be sufficiently small so that K n K, < £,. In the domain
Q,=K,n{xef; r <3R —¢ where 0 <& < R} we consxder the function

h(r) = h,(r) + M,, where M, = max (M, supu) and h, is defined in lemma 2
09\K
witha = R, b = 3R — ¢, I, = L, 8, = min (1, R*"*) and

-1 9 dt 19 dt
§ =45 = pg .
ST IR 1;[ 12y@) :! 1*9(t)

Here the constant /s = L satisfies the inequality
£ - dt
=
s t°P(t)

One easy calculation gives that the Hessian matrix D*h = ((b" — W'[r)ryr; +
+ (h'[r) 6*) is positive and we may apply the comparison principle, theorem 4
(see also lemma 3.1 in [13]) to the functions h(r) and u. Thus we have the estimates
det D*h = (W, /)" + (W, — B [r) (hifr)* ™t S 8(hi)"+! P(hL)/R"™1 S| Dh "+,
.Y( Dh|) S g(x, h, Dh) in Q,. '

< 50R < 50(2R - 8).
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Since u is convex we have supu < supu and u £ h on Q n JdK,. Moreover
2\K; 09\Ky

W3R — ¢) = h',(3R — &) = oo and from the comparison principle it follows that

<h <max(M supu)+(l—j dt )_1 } dr
wsh=m 29\ K, R i *¥(1) {08

Letting ¢ — 0 and using the continuity of u yields the same inequality at y. Thus
in order to prove theorem 3 it then sufficies to choose the boundary values ¢ such
that ¢ = 0 on 0Q\K, and

1 ® dr \7''7 dt
""”>M+(ﬂ?m> IETTOR
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