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NONEXISTENCE OF CLASSICAL SOLUTIONS 
OF THE DIRICHLET PROBLEM FOR FULLY 

NONLINEAR ELLIPTIC EQUATIONS 

N. KUTEV 

(Received October 10, 1985) 

Abstract. Necessary conditions for the existence of classical solutions of the Dirichlet problem 
for fully nonlinear, nonuniformly elliptic equations are proved. The effect of the large inhomogen-
ous term and the geometry of the domain on the solvability of the boundary value problem is 
shown. The above methods are applied to the equations of Monge —Ampere type. 

Key words. Fully nonlinear, nonuniformly elliptic equations, Monge — Ampere type equations, 
comparison principle. 
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INTRODUCTION AND RESULTS 

This paper is concerned with the non-solvability of Dirichlet's problem for 
fully nonlinear elliptic equations 

(1) Flu] =5 F(x, u, Du, D2u) = 0 in Q, u = cp, on dQ 

in a given bounded domain Q in Rn and arbitrarily assigned smooth boundary 
data. The real function F(x,z,p,r) is defined on F « QxRxRnxRnxn (Rnxn 

denotes n(n + l)/2 dimentional space of real symmetric nxn matrices) and 
satisfies the ellipticity condition 

(2) FtJ(x, z, p, r) W > 0 for (x, z, p,r)er,Ce R\0, 

where in (2) and further on the short notations FtJ « dFldrtJ,FtJtM « d^F/dr^r^, 
Fz == dFJdz, utJ - d2ujdxtdxs, etc. will be used and summation convention is 
understood. 

Suppose that F(x, z, p, r) is twice diflferentiable and concave function of r i.e. 
Fij.iq(x, z, p, r) r\Xir\xq £ 0 for (x, z, p,r)eT and r\ e Rn\0. 

Let us define a scalar function E(x, z, p) which will prove to be quite impor-
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tant, by 

E(x9z9p) =F(x9z9p9p ®p) - F ( x , z , p , 0) for (x, z, p) e QxR xRn
t 

where the matrix p ® p is {p,P;}/j=i • 
We will consider the effect of the large inhomogeneous term F(x, z, p, 0) in 

comparison with the function E(x9 z, p) and | p | SpFtj(x9 z9p,p <g> p) (5pF0 = 
= trace Fl7), as well as the effect of the matrix Fu(x9 z>P>P ® P) on the solvability 
of Dirichlet's problem. 

More precisely, let us suppose that 

(3) F(x9 z, p, 0) ^ - <F(| p |) £(x, z, p) - (| p \IR) SpFu(x9 z9p,p® p), 

for x e fi, z jg M, | p | ^ L, where M, L are positive constants, R is the radius 
of the largest ball contained in Q and *P is a positive, continuous, monotonically 
increasing function satisfying the condition 

(4) f7no<0°-
For instance if (1) is a uniformly elliptic equation i.e. 

A|C|2 £Fifaz9p9r)tiZJ£A\e\2. 

where A, A are positive constants, then A | p |2 ^ F(x, z9p) < A \ p |2 and nX\p\ g 
< | p | SpFu(x9 z9p9p ®p) ^nA\p\. 

In this case (3) holds provided that 

(5) F(x,z,p,0)^ - C | p | 2 / n 1 + fi|pl, 

for some positive constants C and e. 
The following theorem relates the behaviour of the large inhomogeneous term 

with the non-solvability of Dirichlet's problem. 

Theorem 1. Let Q be a bounded domain in Rn
9 whose boundary is of classC1,1 

and F be a real, smooth and concave function ofr satisfying the conditions (2) and (3). 
Moreover, let F be non-increasing in z for each (x, p, r) e Q x Rn x Rnxn. 
Then there exists C00 boundary data such that the Dirichlet problem (1) has no 

solution: 

Remark 1. Theorem 1 shows that the assumption 

|F (x ,z ,p ,0) | ^ C(l + |p | 2 ) , 

in theorem 8,2 in [2] can not be weakened. If we suppose that 

F(x9z9p,0)Z -C( l + | p | 2 + e ) . 
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for some positive constants C and c i.e. 

|F (x , z ,p ,0 ) | £C( l + |p|2+«), 

then the Dirichlet problem (1) is not generally solvable even in uniformly convex 
domain Q. 

Let us now consider a second type of non-solvability, which is due to the structure 
of the matrix FtJ(x9 z9p9p ® p)9 rather than to the inhomogeneous term 
F(x, z, p, 0). More precisely, we suppose that 

(6) -P(| P I) E(x9 z, p) £ | p | SpF^x, z9p9p® p), 

for | p | ^ L, z ^ M and x e C, where M, L are positive constants and *P is the 
same function as in (3). In this case we will demonstrate the need for the geometric 
restrictions on the domain Q in order for the Dirichlet problem to be generally 
solvable. 

Suppose the following conditions on the asymptotic behaviour of the coefficients 
Fij(x9 z9p9p ® p)9 F(x9 z, p9 0) for large values of | p \ 

(7) FtJ(x9 z, p9 p ® p)/SpF!/x, z, p9 p ® p) « /"(x, a) + 0(1), 
F(x, z, p, 0)/(| p | SpF,/x, z, p, p ® p)) * /(x, a) + 0(1), 

as | p | -» oo, tr = p/\ p \ hold. Here fiJ(x9 a)9 f(x9 a) are continuous functions of 
their arguments. Using the matrix &(x9 a) =- {ftJ(x9 a)}*Jml we introduce a gene­
ralized notion of mean curvature. Let y be a point of dQ and v denote the unit 
outer normal to dQ at y. Also let kl9 kl9..., kn~1 and Xl9 Xl9..., Xn^1 be 
respectively the principal curvatures and principal directions of dQ at y. We 
then put 

(8) JT(y, v) - £ X^(y9 v) ̂  + v^(y, v) v . H, 

where if is the ordinary mean curvature of dQ at y. 

Example 1. Equations of Monge—Ampere type 

(9) det D2u =- g(x, ii, Du). 

This equation is elliptic only when the Hessian matrix D2u is positive (or nega­
tive) and we consider convex solutions u and positive functions g. For the equa­
tion (9) simple computations give us E(x9 z9 p) = 0 and SpF^x, z, p, p <g> p) *- 0) 
for n > 2 and | p |2 for n == 2, and hence (6) holds. If we write equation (9) in the 
form 

(10) F(D2u) - log det D2u « log g(x, u9 Du)9 

we then have that the function F is concave on the cone of nonnegativc matrices 
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U"*-. In this case for the equation (10) we obtain E(x, z,p) - - oo, SpFu(x, z, p, 
P <8> p) =S 0 for n > 2 and + oo for « = 2, and again (6) holds. Moreover, when 
n = 2 

\~~V1V2 V l / 

and 
jjT(y9 V) = (vt + v$)k + 2v2v2

2k = fc(j;), 

i.e. the generalized mean curvature at y coincides with the ordinary curvature at y. 
Let us go back to equation (1) and formulate the following nonexistence resjilt 

dependirig on the generalized mean curvature. 

Theorem 2. Let Q be a bounded domain in Rn, whose boundary is of class C1,1 

and Fbea real, smooth and concave function ofr satisfying the conditions (2), (6), (7). 
Moreover, let F benonincreasingin z for (x, p, r) e QxRnxRnXn andF(x, z, p, 0) g 
^ 0 for z ^ M, | p | ^ L. If the geometric condition 

(11) - tf{y, v) }> -f(y, v) 

fails at a single point y of the boundary surface, then there exists smooth boundary 
data for which no solution of the Dirichlet problem is possible. 

For instance, the condition (2) for the equation of Monge —Ampere type (10) 
in R2 is k(y) ^ 0, where fc(y) is the ordinary curvature at y e dQ (see example 1). 
Hence the Dirichlet problem for (10) in Q c # 2 is not solvable for arbitrary 
boundary data when the domain is nonconvex, which is a well-known result. 

For convenience, we will directly prove the following nonexistence theorem for 
equations of Monge —Ampere type. 

Theorem 3. Let the positive function g(x, z, p) satisfy the condition 

(12) ^ g(x,z,p)^n\P\)\P\n+1 

for z ^ M, | p | ^ L, x e Qy (Qy is a neighbourhood of some point y e 8Q), where 
M, L are positive constants, !P is the same function as in (3), (4) and Qbea uniformly 
convex C1,1 domain in Rn. Then there exists C°° boundary data such that the Dirichlet 
problem for the equation of Monge —Ampere type (9) in Q has no convex solution 
u e C(Q) n C2(fi). 

For example, the condition (12) holds when 

g(x,z,p)^C\p\n+1lni+e\p\ for xeQy,z ^ M, | P | £ L, 

where C, M, L, e are positive constants. 
The result in theorem 3 is the best possible one. This follows from th. 2 in [8], 

where under the assumption: 
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g(x,<p(x),p)&\p\"+l9{\p\) 

for all x in some neighbourhood of dQ, \ p\ ^ L, where the continuous non* 
decreasing, positive function V satisfies the condition 

fdtKmt)) = oo, 
the Dirichlet problem for the equation of Monge-Ampere type (9) is generally 
solvable. 

As for the results in theorems 1, 2, they are in many ways the best possible, 
too, which follows from th. 1, 2 in [9]. Moreover, when F(x, z, p, r) is a linear 
function of r, the results in theorems 1, 2 remain the best possible ones, as it 
follows from [11]. 

Let us recall that in the quasilinear case, Serrin, [11], introduces the classes 
of irregularly and singularly elliptic equations and proves the corresponding non­
existence theorems. In this paper we introduce the classes (3) and (6) of fully, 
nonlinear, nonuniformly elliptic equations which contain the equations con­
sidered by Serrin when F(x, z, jp, r) is a linear function of r. Thus we extend Serrin's 
work for quasilinear equations to fully, nonlinear equations. 

Finally we would like to thank Prof. Trudinger who called our attention to the 
recently published work of Trudinger and Urbas [13], in which results similar 
to those in theorem 3 are proved. More precisely, from theorem 1.3 in [13] it 
follows that the Dirichlet problem for the equation of Monge—Ampere type (9) 
is not generally solvable when 

a 

g(x, z, p) £ C(l + | p 12)T for all xNy ,zeR,peRn 

and a > n -f 1, where Ny is a neighbourhood of some point y e dQ. 
The paper is divided into two paragraphs. In the first one we prove theorems 1, 2. 
Paragraph 2 deals with the nonsolvability of Dirichlet's problem for the equa­

tions of Monge —Ampere type and theorem 3 is proved. 

1. PROOFS OF THEOREMS 1 AND 2 

The main tool for our treatment of nonexistence results is the following variant 
of comparison principle (see th. 17.1 in [4], p. 443). 

Theorem 4. Let Q be a bounded domain in Rn and y-a relatively open Cl portion 
of dQ. Let u € C(Q) n C2(0 uy), v e C(Q) n C\Q) satisfy F[u] £ F[v] in Q, 
u ^ v on dQ\y9 dv/dx = — oo on y (T denotes the unit normal direction into Q), More' 
over 

(i) the function F is continuously differentiate with respect to z>p> r variables; 
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(ii) the operator F is elliptic on all functions of the form tu + (1 - t) v, 0 ^ 
£t£l; 

(iii) the function F is non-increasing in z for each (x, p,r) e QxRnxRn*n. 
If then follows that u ^ v in Q. 
P roo f Suppose that the conclusion of theorem 4 is not true. Since u £ v on 

dQ\y, from theorem 17.1 in [4] it follows that the function u - v attains its 
maximum at some point P ey. This is impossible because d(u — v)jdx = + oo at P. 

Further we need the following simple lemmas. 

Lemma 1. Let the continuous, positive, monotonically increasing function W 
satisfy {4). Then for any positive constants a,b,l0,50 there exists a constant 
S(a, b, l0, 50), 0 < 8 < 50 and a nonnegative function v e C[a, fc] n C2(a, b), 
satisfying the conditions: v' ^ - / 0 , v'(a) = - oo and v" - v'[t = 25(v')2 T(a \ v' I/O 
for t e (a, b). 

Proof. Let the constant / ^ l0 satisfy the inequality 

aJ-^-<80(b
2-a2) and & = —*—]-J*—. 

\ t2V(t) b2~a2 { t2V(0 

Let us consider the function v given by 

v(t) » J sG"\8(s2 - a2)) ds, where G(s) = J 
- t*V(a\t\) 

It is evident that G(s) is monotonically increasing for s ^ —//a and thus there 
exists a well defined inverse function G"1: (0, G(-l/a)) -> (-oo , -//a). One can 
easily check that v ^ 0, t/ = fG^OK'2 - a2)) < -Is - / 0 , t/(a) = -co and 
v" = G - 1 ^ 2 - a2)) + 2dt2IG'(G~1(6(t2 - a2))) = v'\t + 2S(v')2 W(a \ v' \\t). 

1 °° dt 
Moreover v g -̂ -r- f m,. and t> e C[a, 6] n C2(a, b). 

2<5 f; f!P(0 

Lemma 2. Let ffte continuous, positive, monotonically increasing function 5* 
satisfy (4). Then for any positive constants a,b,l0,80 there exists a constant 
S(b — a, l0, 80), 0 < 8 < 50 and a nonnegative function fc+/A-./, 'ft+_ e C[a, ft] n 
n C2(a,&) satisfying the conditions: h'+ ^ /0(ft.L ^ ~/0) , h'+(b) = + oo(ft:L(a) = 
-. - cx>), ft"± = <5(ft'±)

2 n i *i I) /or t e (a, b). 
Proof. Let the constant / ^ l0 satisfy the inequality 

J _^L_ < d0(fc - a) and 8 = --J— J --^—. 
1 t2y(0 6 - a i *2-F(0 

Let us consider the function ft+(A-) given by 
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ft+ = JH+
l(d(b-s))ds(h^ = J#I1(5(5 - a))ds), 

a b 

where 

! t2V(t)\ -Lt2V(\t\)J 
It is evident that #+(#_) is monotonically decreasing (increasing) for s ^ 
^ /(s ^ —/) and thus there exists a well defined inverse function # + 1 : (0, #+(/)) -• 
-• (/, oo) (HZ1 : (0, # - ( - / ) ) -+ (-00, - / )) . One easily checks that ft± £ 0, 
h+ = H^SfP - 0) = / = /o. *+(*) = «>(*- = H-'W - a)) ^ - / ^ - / 0 , 
ftl(a) = -oo) and h"± = +5/# '±(#±

1) = <5(ft'±)
2 !P(| ft± |). Moreover ft± _\ 

- TI ii%) and h± G c[a> b] n c2(a> b)* 
Lemmas 1, 2 and theorem 4 can be used now to derive theorem 1. 
Proof of theorem 1: We suppose that u e C(Q) n C2(Q) is a solution of the 

Dirichlet problem (1). Let K be the ball with the largest radius 2R contained in Q 
and P be a fixed boundary point of dQ at which K is internally touching. Let r 
denote the distance from P. In the domain Qx = {x e Q; R < r < diam Q}9 we 
consider the function ft(r) = v(r) + M t , Af x = max (M, sup w) where v(r) is 

dfln}r;>R} 

the function defined in lemma 1, when a = R, b = diam (2, /0 = max (L, ^""^l)), 
<50 = 1/2 and <5 = <5t. 

One easy calculation yields 

F[ft] = F(x, ft, ft'Dr, (ft" - ft'/r) Dr ® Dr + (ft'/r) <5") g 
_; F(x9 ft, ft'Dr, ft'2Dr ® Dr) + (ft" - ft'/r - ft'2) F0(x, ft, WDr9 h'2Dr ® 

® Dr) rtrj + (ft'/r) 5/?Fu(x, ft, h'Dr9 h'2Dr ® Dr) ^ E(x9 ft, ft'Dr) + 
+ F(x, ft, ft'Kr, 0) + (ft'/r) SpFtJ(x9 ft, ft'Dr, ft'2Dr ® Dr) + 

+ (ft" - ft'/r ft'2) F0(x, ft, ft'Dr, ft'2Dr ® Dr) rfj. 

When ft" - ft'/r - ft'2 <\ 0, from (3) we have the estimate 

F[ft] ^ F(x, ft, ft'Dr) + F(x, ft, ft'Dr, 0) < W(\ ft' |) F(x, ft, ft'Dr) + 
+ F(x, ft, ft'Dr, 0) .^ 0. 

If ft" - ft'/r - ft'2 > 0 it follows that 

*[*] £ ((ft" - ft'/r)/ft/2) £(x, ft, h'Dr) + F(x, ft, ft'Dr, 0) <\ 
£ 2S0W(a | ft' |/r) £(x, ft, ft'Dr) + F(x, ft, ft'Dr, 0) = 

3 y(l ft' I) E(x9 ft, ft'Dr) + F(x, ft, ft'Dr, 0) £ 0t 

We may now apply the comparison principle, theorem 4 to the domain Qt 

and the open boundary set y = (2 n {r = /?}. Since u £ h on dQ n {r ^ R} and 
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dhjdx(R) = v'(R) = - oo (T denotes the unit normal direction into Q), it follows 
that 

1 °° ds 
u£h£ max (M, sup u) + — J -^rr-r = Af2. 

ann{rg_?> ° i Jo s *v 5 1 

Let now e be an arbitrary real number between 0 and R/2 and Q denote the 
distance from the centre of K. In the domain Q2 - {xe Q\ r < R and R < Q < 
< 2R — e} we consider the function ft(o) = M2 + ft+(o) where h+ is defined 
in lemma 2 when a = R, b = 2R - e, /0 = max (L, ^""Hl))* <50 = 1 and 5 = d2 = 

1 °° dr 2 * dl -s _- f _ > _ f _ . Here the constant l2 > L satisfies the inequa-
R - « i j r2no - * ij . 2 no 

Uty J -2T7T -5 «/2 < * - «• 
la *V(0 

An easy calculation now gives 

F[ft] = F(x, ft, ft'D<?, (ft" - h'/Q) DQ®DQ + (WJQ) 8iJ ^ E(x, h, h'DQ) + 
+ F(x, h, h'DQ, 0) + (h'/Q) SpFtJ(x, h, h'DQ, h'2DQ ® DQ) + 

+ (h" - h'lQ - h'2) Fu(x9 h, h'DQ, hf2DQ ® DQ) QiQj. 

When h" - h'lQ -~ h'2 £ 0 from (3) we have the estimate 

F[ft] .5 V(| ft' I) £(x, h, h'DQ) + F(x, ft, h'DQ, 0) + 
+ (h'/Q) SpF(j(x, ft, h'DQ, h'2DQ ® De) _g 0. 

If h" - V'IQ - ft'2 > 0 it follows that 

F[ft] g ((ft" - ft'/e)/ft'2) £(*> *• h'DQ) + H*> ft, ft;^» 0) + 
+ (h'/R) SpFij(x, ft, h'DQ, W2DQ ® D^) = a 2f( | ft' |) £(x, ft, ft'!><?) + 

+ F(x, ft, ft'D'Z><?, 0) + (ft'/e) SpFij(x,h, h'DQ, h'2DQ <g> Dg) = 0. 

Consequently F[ft] ^ 0. Let us apply the comparison principle, theorem 4, 
to the domain Q2 and the boundary set y = {Q = 2R - e} n (x e Q, r < R}. 
Since u £ ft on {x e 0 ; r = £} and dhjdx(2R - e) = -ft'+(2R - e) = -oo 
(t denotes the unit normal direction into Q2) it follows that 

1 °° ds 
u g ft SM2 + - j— J / . g max (M, sup M) + 

d 2 l0 ST(S) dQn{rZR} 

+r_L+_Lff_____vif____.i 
Letting e -» 0 and using the continuity of « yields the same inequality at P, i.e. 

u(P) g max (M, sup u) + T-i- + %• ( J - r ^ - V 1 J ------ • 
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Thus in order to prove theorem 1 it then suffices to choose the boundary values q> 
such that <p = 0 on dQ n {r ^ R} and 

/ m s / T l R(™ At Y1! ? at 

Proof of theorem 2. We suppose that u e C(Q) n C2(Q) is a solution of the 
Dirichlet problem (1) and let P(y) e dQ be a point where the geometric condition 
(11) fails, i.e. tf(y9 v) +/(y , v) < — 3f/ at P(y) for some positive constant rj < I. 
Then there exists a quadric surface S tangent to dQ at P such that (see [11], p. 465): 

(i) 5 has a unique parallel projection onto the tangent plane at P; 
(ii) the point set S n {r < R} (r denotes the distance from P) is contained in the 

closure of Q for all sufficiently small values of R and 
(iii) the generalized mean curvature X s of the surface S (see (8)) satisfy the 

condition X s g Jf + t] for the positive constant rj. Consequently Xs(y9 v) + 
+ f(y>v) < -2rjatP(y). 

As in the proof of theorem 1 we consider the domain .Q1 = { x e O ; . R < r < 
< diam Q} and the function ft(r) = v(r) + Mt M\ = max(M, sup u) where v(r) 

dnn{r£R) 

is the function defined in lemma 1 when a = R9 b = diam Q9 l0 = max (L, V1 . 
. (diam Q)) = /3<50 = (2 diam fl)"1, 5 = <53. 

An easy calculation yields . 

F[ft] ^ E(x, ft, ft'Dr) + F(x9 ft, ft'Dr, 0) + (ft'/r) S^P0<x, ft, ft'Dr, ft'2Dr x Dr) + 
+ (ft" - ft'/r - ft'2) F0(x, ft, ft'Dr, ft'2Dr x Dr) rfj. 

When ft" — ft'/r — ft'2 ^ 0 we have from (6) the estimate 

P[ft] £ (1/diam fi) ( n i h' |) E(x, ft, ftDr) - | ft' | SpFv(xf ft, ft'Dr, ft'2Dr ® Dr)) ^ 0. 

If ft" - ft'/r - ft'2 > 0 it follows that 

P[ft] £ ((ft" - hflr)lh'2) E(x9 ft, h'Dr) - ([ ft' 1/diam Q) SpFy(x, ft, ft'Dr, ft'2l?r ® 
® £r) ^ (1/diam Q) (<50 diam O . E(x9 ft, ft'Dr) -

- | ft' | SpFtj(x9 ft, ft'Dr, ft'2Dr ® Dr)) ^ 0. 

Consequently P[ft] ^A), dhjdx(R) = ft'(K) = t/(R) == -co and ft ^ w on 
30 n {r ^ R}. From the comparison principle, theorem 4, we have the estimate 

1 °° ds 
u^h^ max (M, sup u) + - j - f - " ^ ^ = M3. 

Further on we will need the following simple lemma. 

Lemma 3. Let the assumptions of theorem 2 hold. Then fiJ(x, a) oloJ = 0 for 
xeQ and a is a unit vector in R", where fiJ are defined in (7). 
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Proof. From the definition of fiJ and (6) it follows that 

fiJ(x, a) a{aJ - Fly(x, z, ta, t2a ® a) <x V/SpFyfo z, r<r, *2<r ® <r) + 0(1) ^ 
£ £(*, z, ta)l(t2SpFtj(x> z, to, *2<r <g> <r)) + 0(1) ^ 

£ */(*2!P(| 11)) + 0(1) -> 0 as t - oo. 

Let us go back to the proof of theorem 2 and define the function d(x) as the 
distance from x to the surface S. Let e be an arbitrary real number between 0 
and H/2. In the domain fi3 = {x 6 (2; r < R and e < d(x)}, where r is the distance 
from P(y), the function d(x) is of class C1, *, when .R is sufficiently small (see [11], 
p. 421, or [4] p. 381). 

Consider the function h(d) » ft_(d) + M3, where ft .(d) is defined in lemma 2 
when a « e, 6 « JR, /0 — max (L, !P""1(l/i7)X 50 = r\ and 

áз^._ł_j_í__ž|.J___ 
Л - 6 ii t2Ш) ~ R u t2Пt lY(t) R '« rw(t) 

Here the constant /4 _ max(_, y ^ l l f ) ) satisfies the inequality 

f dt . t}R 

ii rv(t) 2 

In the following calculation we will use an important identity to calculate F{ldit 

(see [11], p. 422, lemma 1). Thus we obtain the inequalities 

F[h] - F(x, h, h'Dd, h'Dd ® Dd + h'D2d) < F(x h, h'Dd, h'2Dd ® Dd) + 
+ Fy(x, h, h'Dd, h'2Dd ® Dd) ((h' - h'2) dtdj + fc'dy) - £(x, h, h'Dd) + 

+ F(x, h, h'Dd, 0) + (h' - h'2) Fu(x, h, h'Dd, h'2Dd ® Dd) d^j -

- * T -7-A-3 • V«(*. fc. *'-><-. *'*->-* ® I>d) A,. 
1-1 1 — K|« 

Considering h" — h'* _ 0 and h" — h'2 > 0 we obtain in both cases the follow­
ing inequalities 

F[h] _ ijlPfl V |) E(x, h, h'Dd) + F(x, h, h'Dd, 0) 

- *' _ . fe<, A • Vw(*» *> &'-><*. h'lDd ® -><0 *i ^ 
*-»l 1 — tfeja 

n - 1 

£ijy(lft'|)£(x,ft, ft'Dd) + |ft'|SpFw(x,ft, h'Dd,h'2Dd <8> Dd) ( £ X ^ ( x , v)Xfa + 
i » i 

+ /(x, v) + 0(1) + 0(H)) as | ft' | -*oo, 

where the normal vector v and the principal directions and principal curvatures 
are calculated at the point z(x) on S nearest to x. 

Since JT3(x, V) + /(x, v) g Xjy, v) + f(y, v) + 0(R) it follows that 
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F[h] g i7«PCI *' I) E(x, h, WDd) + \h'\ SpFkl(x, h, h'Dd, h'2Dd ® Dd) (Jt,(y, v) + 

+ f(y, v) + 0(1) + 0(R)) _ IJ V(| fc' |) E(x, h, h'Dd) -

- r\ | W | SpFw(*, ft, h'Dd, W2Dd <8> D d) _ 0 as | W \ -+ oo and R 

is sufficiently small. Consequently F[h~\ g 0, dhldx(s) — /il(fi) = — oo, ft 2: « on 
fl n (r = J?} and from the comparison principle, theorem 4, we have the estimate 

1 " ds 
u g f c ^ m a x ( M , sup «) + — j - — _ + 

annus*} °3 h " W 
df V 1 7 dt 

2 V,i t*m) l tW(t) ' 

when J* is sufficiently small. 
Letting e -+ 0 and using the continuity of u yields the same inequality at P. 
Thus to prove theorem 2 it then suffices to choose the boundary values <p such 

that q> = 0 on dQ n {r ^ R} and 

rm^i____ * ? d ' • R (? d r V 1 ? dr 

§ 2 . E Q U A T I O N S OF M O N G E - A M P E R E TYPE 

In this paragraph we will prove theorem 3. 
Let u e C(Q) n C2(Q) be a convex solution of (9), K be an internally touching 

ball to dQ at y with radius 3R and r denote the distance from the centre of K. Let 
Kt(yf 2R) be a ball and J* be sufficiently small so that K n Kt c C y. In the domain 
Q4 = Kt n {x e iQ; r < 3_R — e where 0 < e < Jt} #we consider the function 
ft(r) = ft+(r) + M 4 , where M 4 = max (Mf supu) and ft+ is defined in lemma 2 

dfl\JTi 

with a = JR, b « 31. - e, /0 «'L t 5 0 « min (1, JR"""1) and 

1 ? d* l- ? d* 
'-•.-wт-гf _ í - i т í 2* - 8 ii t*¥(t) ~ R L t2W(t) 

Here the constant /5 ^ L satisfies the inequality 

]-£r7<5oR<d0(2R-e). 
ii t2T(t) 

One easy calculation gives that the Hessian matrix D2h — ((/»' — /t'/r) rtrj + 
+ (h'jr) 5,J) is positive and we may apply the comparison principle, theorem 4 
(see also lemma 3.1 in [13]) to the functions h(r) and u. Thus we have the estimates 
det D2h - (h'Jry + (h"+ - ft'+/r)(fc;/r)"-1 ^ S5(h'+)n*1 n / . ; ) / * - 1 _ | DA j"*-. 
.« , ( |D/ . | )_g(x ,& .D/. ) in0 4 . 
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Since u is convex we have sup u ^ sup u and u ^ h on Q n 5Kj. Moreover 
n\Kt on\Kx 

h'(3R — e) = h'+(3R — a) = oo and from the comparison principle it follows that 
L - 1 «• 

u ś h š max ( ч l l r di V 1 ? ď 

Letting e -> 0 and using the continuity of u yields the same inequality at y. Thus 
in order to prove theorem 3 it then sufficies to choose the boundary values cp such 
that (p = Oon dQ\Kx and 

* > > M Ҷ Ï І - Д > Г / Ï 
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