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ASYMPTOTIC AND OSCILLATORY BEHAVIOR 
OF S O L U T I O N S OF DIFFERENTIAL EQUATIONS 

WITH ADVANCED ARGUMENTS 
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(Received September 25, 1985) 

Abstract. We study the asymptotic behavior of solutions of the differential equation j/")(f) -f 
+ fit u(o(t))) =h(t) with advanced arguments which extend some earlier results of the authors. 
We also establish a necessary and sufficient condition that all solutions are oscillatory when n is 
even and are either oscillatory or stiongly monotone when n is odd. 
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§1 I N T R O D U C T I O N 

The purpose of this paper is to study the asymptotic and oscillatory behavior 
of solutions of the non-linear differential equation with advanced argument 

(l) «<">(0+f(t,w(<T(0)) = /i(0, 

where feC([0, co)xK, R) and satisfies conditions which guarantee the existence 
of solutions of (1) on [/0, co), t0 ^ 0, h e C([0, co), R) and a(t) ^ / ^ 0. A non-
trivial solution of (1) is called oscillatory if it has arbitrarily large zeros. Otherwise 
it is called nonoscillatory. A nonosciHatory solution is said to be strongly monotone 
if it tends monotonically to zero as t -> co together with its first n — 1 derivatives. 

Recently the authors [1] generalized results obtained earlier by Cohen [3], 
Tong [8] and Singh [7] for ordinary differential equations to delay differential 
equations of the form (1) with retarded arguments. Here we present several results 
some of which further extend our results to advanced arguments. 

55 



O. AKINYELE, R. S. DAH1YA 

§2 MAIN RESULTS 

Wc shall need the following two lemmas. The first lemma can be proved easily 
and the second lemma is due to Kiguradze [5]. 

Lemma 1. Let u(t) and g(t) be nonnegative, real-valued continuous functions [0, oo) 
such that 

t 

. u(t) g u0 + J g(s) ua(s) ds, 0 < a <; 1, 
to 

for u0 as a positive constant and t = /0. Then for t e [0, oo), / = t0 we have 

ii(0 ^ [u0-a + (1 - a) j g(s) ds]"^«, 0 < a < 1 
to 

and 
t 

u(t) g M0 exp ( J g(s) ds), a = 1. 
*0 

Lemma 2. Ifu(t)> u'(i),..., w(M_1)(0 are absolutely continuous and constant sign 
on the interval [/0, oo) and u{n)(t) u(t) ;g 0, then there exists an integer /, 0 _ / S 
5jJ n — 1 which is even if n is odd and odd if n is even such that 

1 " ( 0 ' - {n - 1) ^{n - 0 ' "(''"1)(2""'"lf> I» ^ t o -

Theorem 1- Assume that the following hold: 

(0 /K0 i-* # continuous and nonnegative function on [0, oo) arid /?(/) > 0 for 
/ > 0, 

(ii) ](a(s))<n-1)p(s)ds < OO, 0 < a = 1, 
i 

(iii) | f(/, t/((T(/)) | g p(t) | M(a(0) |% 0 < a = 1, 

(iv) ]\h(s)\ds< oo. 

T/ĵ n equation (1) has 
(a) solutions which are asymptotic to the solutions of u{n)(t) = 0 as / -• oo, 
(b) solutions which are also asymptotic to ytn"1

9 y ^ 0 provided a = 1. 
Proof (a). Applying Taylor's theorem for / ;> 1, we have 

*~x u(J)(U 1 f 

"(o-z-^po-iy+T--^ jo-ar^wwd-. 
y-o ./• V" — -J* j 
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With appropriate choice of constants c0, ci9..., cn_x and / > 1, we get 

(2) | u(t) | < (i\ cj |) I-- l + f \ \ | «*">(s) | ds < 
J = o \W ~ -J- 1 

- C'"~' + (n - 1)! / ' , I ( S ) ' ds + (/. - 1)! / K s ) ' " ( ° ( s ) ) '*ds' 
n - 1 

where £ | c. | = c, 0 < a __ 1. 
J«o 

Now replacing / by (r(l), it follows that 

<wAy»-- *(0 
| «(a(0) | s c(ff(0)"_1 + } * " , j I h(s) I ds + 

(attW1 a(t) 

+ ( B - i ) i . / P W ' ^ W ) ! ' ^ -

From the above inequality, we have 

I liCflYfY* I 1 ff(0 . 1 ff(t) 

< »c) 

- ^ + (n - 1)! { P(s) l M(<7(s))'"ds (using (iv)) 

<fc+TWlKs)r-'>l"(g(s))''ds, 
i (<T(s)r("_l) 

i * 

where k = c + _ J | h(s) | ds. 

Applying Lemma 1, we get 

(a(0)n_1 L (" - J ) ! i J 
and hence 

( 4 ) I u(a(t))\ < M n y i e w f ( i j ) f _i f _ i and o < a _ 1. 
WO)"1 _ ~ 

Furthermore 

f | f(s, u(a(s))) | ds <; \p(s) | u(a(s)) |" ds ^ 
1 1 

f_ Maf((T(s))a(M-1)p(s)ds < oo. 
I 
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Now integrating (1) from 1 to /, we get 

u{*-l\t) = ^""^(l) - J f(5, u(a(s)))ds + J h(s)ds. 
1 I 

00 

Set u(n"n(l) + J h(s) ds = c2 and choose t0 large enough so that 
I 

Ma J p(5)(a(s))("-1)ads < c29 then lim uin"l\t) * 0. 

(b) Now for a = 1, it follows from (2) 

(5) Jij£M < fc + _| J p(s) I „(<-(-)) I ds < 

A/f °° 

S k + --. J (a(5))"-1 p(s) ds g kx in view of (ii) for some kx > 0. 

Integrating (1) from ti to / with tt > 1, it follows 

„<•-->(,) g ttC--i)(ri)+ J Mp(5)((7(5)r-1 d5 + J | fc(5) | d5 
ti ti 

and as / -> oo, 

uiH'x\t) ^ u^-'XtJ + M Jp(s)(a(s))n~1 ds + ]\h(s) | d5. 
- . f i 

00 fc 
For some k2 > 0, set u(w 1}(li) + J | h(s) | ds = ----- and choose tt large enough 

so that Jl/J/>(*) (*(*))"-! ds^-^ 2 - , then u^-^t) ^ k2. Hence limw^"1^) 

exists and ia a nonzero constant. Moreover, | u(0 I ^ k^f'1 will make u(t) 
asymptotic to y/""1, y ?- 0. 

Example 1. Consider the third order equation 

(6) u'"(0 + r5ull2(t + n) = r 4 , / > 0. 

Now /( / , u(a(t))) = r5ull2(t + TI), so that p(t) = r 5 , cx(t) = / + n9 h(0 = r 4 

1 °° 
and a = —. The hypothesis of Theorem 1 are satisfied with Jh(/)d/ < oo. The 

2 ! 
conclusion of Theorem 1 (a) therefore holds. A solution of the given equation is 
given by u(0 = (/ — n)2. 

Example 2. Consider the fourth-order equation 

(7) u'v(0 + e-\t + n)~3 u(t + n) = e~\ t £ 0. 
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-t 

I / ( Í , «(<*)))! u(t+ -.)!-- e \u(t + n)\, 
(t + n) J | (f + n)3 

p(t) = , o-(0 = t + 7T, h(t) = e t and a = 1. 
(t + n)3 

Again the hypothesis of Theorem 1 are satisfied and the conclusion (b) of 
Theorem 1 holds. A solution of the equation is given by u(f) -= t3. 

Example 3. Consider the n-th order equation 

(8) u(">(t) + t~(n + 2)ull2(t + n) = e'\ 

\f(t9u(a(t)))\ <t-(n+2)\u(t + n)\l}2, 

so that 

p{t) = /"(" + 2), a(t) = t + n, a = y and h(t) = e'
f. 

The hypothesis of Theorem 1 are satisfied and the conclusion therefore implies 
that there exist solutions which are asymptotic to the solutions of u(n)(0 = 0 as 
/ -> oo. 

Theorem 2. Assume that cp(t) is a nonnegative continuous function on [0, oo) and 
g(u) > 0 is continuous for u > 0 and nondecreasing on [0, oo) such that the following 
hold: 

OO 

(v) J (p(s) ds < oo, 
00 

(vi) J | h(s) | ds < oo, 

( v i i ) | / 0 , « ( a ( 0 ) | ^ 9 ( 0 g ( | ^ | ) . 

Then the conclusion of Theorem 1(a) holds. 
Proof. Following the proof of Theorem 1 and using the hypothesis, we obtain 

J±M^st+l';wiJi!W£))i)d, 
W0)-' . V w r v 

Applying Bihari's lemma [2], we get 

i««жs c-. [ е д +7^ ) d s ], 
wor1 - ( 

m ds 
where G(co) == J —py and G""1 is the inverse of G. Now using hypothesis (v), we 

59 



O. AKINYELE, R. S. DAHIYA 

see that 

I " W O ) I ^ M f o r s o m e M > 0 a n d a in ^ i 
(cr(O)" 

and hence 

J | f(s, u(ф)) | ds < 00. 
1 

The remaining proof is similar to that of Theorem 1. 
Remark. In Theorem 2, the choice g(u) = \ u |a, where a is any positive number, 

is permitted. In particular, if we choose g(u) — \ u |a where a > 1, then we still 
have the same conclusion provided the equation (1) has solutions that exist on 
[T, oo) for any T > 0. 

The proof in the following theorem is similar to the method by Sevelo and 
Vareh [6] for even order linear delay equations. 

Theorem 3. Suppose there exists a continuous function p(t) on [0, oo) and p(t) > 0 
for t > 0, p < 1 such that /(/, u) > 0, if u > 0, /(/, u) < 0, if u < 0, 

\f(t9u)\ £p(t)\u\'9 (l ,u)e[0,oo)xP , 

and there is a function Q(t) such that 

Q("\t) = h(t) with lim Q(i\t) = 0 for 0 ^ i ^ n - l . 
r-»oo 

If 
fr^-^/KOdt--- oo, 

then every solution of{\) is oscillatory in the case n is even and is either oscillatory or 
strongly monotone in the case n is odd. 

Proof. Let n be even and u(t) be a nonoscillatory solution of (1). We assume that 
u(t) > 0 for large t. Set u(t) = y(t) + Q(t)9 then u(o(t)) = y(o(t)) + Q(o(t)) and 

y(rt)(0 - ~f(U u(°(t))). 

Now y(M)(0 < 0 f° r large f due to a condition in the theorem. Hence y{n~l)(t) is 
decreasing and so the derivatives of X0 of orders up to (n — 1) are eventually of 
constant sign, the odd order derivatives being eventually positive. Hence 

y'(t) > 0 and y(t) is increasing for large /. 

Using Kiguradze's Lemma, 
9(J-« + l ) ( « - l ) 

y(t) ̂  y(2^w+1>o ̂  - j 4 — — — (* - t0y-i y>-i>(0 
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for t > t0 provided t0 is sufficiently large. Hence if 

2 ( i - n + i ) ( n - i ) 

fc== ( n - 1 ) . . . ( » - J ) ' 
then 

y(t) ^ ktn-1/n~1\t)> t£2t0. 

Since a(t) >. t and y(t) is increasing for large f, there exists tt such that 

yfa(O) .S y(0 ^ /kl""1/""1^) for t £ / j . 

Moreover, since lim g(,)(0 = 0 for 0 ^ i ^ /J — 1 and u(t) = y(0 + (>(0> for 
f-*oo 

large /, i.(n_1)(/) ^ / " _ 1 ) ( 0 , so 

/»>(/) + W-»p(t) [yin-l)(t)Y £ /B>(0 + pd) [y(<r(.t))Y ^ 
g /">(/) + p(/) [«(«x(0)]' ^ yln)(t) +f(A <<*))) = o. 

Dividing the inequality by [? (" - 1 >(/)]' and integrating from /, to /, we obtain 

[/"""(-XT' 

For large enough /, we see that 

+ fc'íí"<"~1)p(0d. r^O. 

J tfi(n X)p(t)dt < co which is a contradiction. 

Now let n be odd and assume the existence of a nonoscillatory solution u(0-
If u(0 does not approach zero as t -+ oo, then y(t) does not approach zero as 
/ -* co, since u(0 = y(0 + <?(0-

Now 
y(0 

1*01-- .1*2 ' 1-11+1 . 

>>(2,_»+10 

and an application of Kiguradze's Lemma to | ̂ (2'~"+1)/) | yields with the increas
ing property of y(t), 

I X<r(0) I £ I y(f) I ^ m*/ - 1 1 / " - > ( 0 I. 
where 

y(0 m « inf 
УV J - # + i . j 

The proof now follows in the same way as for n even. It follows that if a non-
oscillatory solution exists then it approaches zero as t -> o°. Hence lim u{i)(t) -*» 0, 
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i = 1, 2 , . . . , n — 1 monotonically. If u(t) < 0 then the proof can be constructed 
similarly. 

Theorem 4. Suppose there exists a continuous function p(t) on [0, oo), p(t) > 0, 
y < 1 and f(t, u), h(s) satisfy conditions of Theorem 3 such that 

(0 I / M l £p{t)\u\\ 
co 

(ii) J | h{s) | d_r < co. 

Then a necessary and sufficient condition that every solution of (I) be oscillatory 
if n is even and be either oscillatory or strongly monotone if n is odd is that 

J[a(/)]^-1>p(0dr = oo. 

Proof. Suppose (1) is oscillatory if n is even and is either oscillatory or strongly 
monotone if n is odd and 

][o(t)Y*~X)Pif) At = co does not hold, 

then by Theorem 1, equation (1) has a nonoscillatory solution u(t) which are 
asymptotic to the solutions of u{*\t) -= 0 as / -+ oo. Hence (1) is not oscillatory, 
and also not strongly monotone. 

Conversely suppose 

][a(t)Y^l)p(t)dt = oo9 

then by Theorem 3, every solution of (1) is oscillatory if n is even and is either 
oscillatory or strongly monotone if n is odd. The proof is complete. 
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