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ALGEBRAIC THEORY OF FAST MIXED-RADIX 
T R A N S F O R M S : 

II. COMPUTATIONAL COMPLEXITY 
AND APPLICATIONS 

VITfiZSLAV VESELY 

(Received June 26, 1986) 

Abstract. This is a continuation of the part I [Arch. Math. (Brno), Vol. 25, No. 3(1989), 
149 — 162] where new matrix operation (generalized Kronecker product) has been introduced. 
for easy derivation of mixed-radix factorizations. In part II their computational complexity 
is studied and the effectivity of the new algebraic approach is demonstrated by deriving fast 
algorithm for a very general (recently introduced) concept of the parametric discrete Fourier 
transform. 

Key words. Generalized Kronecker product of matrices, fast mixed-radix transform, fast 
Fourier transform, factorization of matrices, computational complexity. 
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I N T R O D U C T I O N 

Section 1 deals with computational complexity of fast mixed-radix transforms 
which have been introduced in [6]. In Section 2 we prove, among others, that the 
parametric discrete Fourier transform (DFT-P) recently introduced in [5] as an 
interesting generalization of the discrete Fourier transform is a mixed-radix trans­
form, and illustrate how parametric fast Fourier transforms (FFT-P) may be derived 
using the new algebraic approach. 

Throughout the paper we keep the notation of part I [6]. References relating 
to part I are prefixed by I. 

1. C O M P U T A T I O N A L C O M P L E X I T Y O F FAST 
M I X E D - R A D I X T R A N S F O R M S 

Let us have associated with a matrix A e Ji(NxK) a suitable algorithm accom­
plishing the linear transform y = Ax with at most cc(A) scalar additions or sub­
tractions and n(A) scalar multiplications for any input vector x. Then <x(A) and /J(A) 
characterize additive and multiplicative complexity of the transform A if we do not 
distinguish between A and the corresponding algorithm. 
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V. VESELY 

Hereafter A and B stand for MRT matrices defined in 1.2.7, and o(A) and o(B), 
0 6 {a, n) for the computational complexity quantities of the corresponding 

m m 

FMRT from 1.2.9. Thus we may write o(A) = £ o(A(0) and o(B) = £ O(B(0). 
i = i »=i 

As 0(C) is for any matrix C invariant with respect to its row and column permuta­
tions, all FMRTs derived from A(l) and B ( o by inserting factored identity matrix 

m 

have the same complexity. Specifically 0(A) = o(A~) = £ o(A~(i)) and o(B) = 
1 = 1 

= 0(B~) - 2 0(B"(i)). An inspection of J.2.10 shows that each A- ( , )(B- ( , )) may 
tt-«i 

be decomposed into elementary transforms Ai.^B,,,,). Consequently 0(A_(,)) = 

= " i f Ni>^10(Ai>k)and0(B-(i))= < + £ Klt^to(BitH). Thus the resulting 
fc=O * ' » s 0 

complexity of A and B may be expressed in terms of the complexity of elementary 
transforms as follows: 

(1.1) 0(A) = £ NUi^ ,+2f °(Au) w i t h A-.o = K 
i = l Jk-=0 

and 

(1.2) 0(B) = £ KUi-*"£ 0(BM) with Bm>0 = BM. 
i = l «-«0 

As Aitk, BitneJf(NiXKi\ we have a(Ai>Jk), afB,,.) ^ N,fK, - 1) and v(Aitk), 
li(*itn) ^ NiKi for each keZKi+lm and «eZM + 1 | M . Substituting this into (1.1) 
and (1.2), we arrive at the upper bounds 

m m 

(1.3) o(A) ^ X Nltl-tNt(Kt - d.,.) A'<+.;. g I Nj,,*:-.. = B{JT, Jf) 
1=1 ' " l 

and 

(1.4) o(B) g f Kul^Nt(Kt - d.JNt+1,m £ I I-i.iiV,.. = B(*\ ^ ) . 

Due to the symmetry of upper bounds B(Jf, X) and B(X, ^ ) in (1.3) and (1.4) 
we shall deal only with (1.3) in further considerations. All stated later on will 
hold also for (1.4) when exchanging the roles of Jf and Jf, i.e. of N, and K, for 
/ e [ l :m] . 

We shall now investigate the following two aspects of the algorithm 1.2.9 which 
are of practical interest: 

1. Is the term "fast" used for the algorithm L2.9 justified? We are going to verify 
that B(Jf> X) < NK except for unimportant special cases. 
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1.1 Lemma. Let Nx, N2 e N then it holds 
1° Nl + N2 -- NXN2 iffN, > 1, N2 > 1. 
2° Nt + N2 < N!N2 iff Ni > 1, N2 > 2 0r Nx > 2, N2 > 1. 
Proof. 1. Implication =>: Nx = 1 => Nt + N2 - 1 + N2 > N2 == NjN2. The 

same is true for N2 = 1 due to the symmetry. Nx = N2 == 2 => Nt + N2=NiN2. 
2. Implication <=: We can assume 2 ^ Nt ^ N2 without loss of generality. 

Then NtN2 ^ 2N2 = N2 + N2 ^ Nt + N2. This inequality is sharp with 2 ^ 
__ N! < N2 as well as with 2 < Nt = N2. I 

1.2 Theorem. Le/ us consider the following conditions concerning Jr and X: 
(/) K, > 1,K2 > U.— K^i >UNm> 1. 

(/') Km_i > 2 or Nm> 2 or m > 2 and there exists ie [2: m — 1] such that 
Nt > 1. 

(//) Kt > 1,N2 > l , . . . , N m _ i > l,Nm > 1. 
(//') Kt > 2or N2 > 2 or m > 2 and there exists i e [2: m - l ] such that Kt > 1. 

The/i the following holds: 
(1) (/) or (//) => B(.yV, Jf) g NK. For m = 2 also the opposite is true, i.e. (/) o 

o (//) o B(JT9 Jf) ^ NK. 
(2) (/), (/') or (//), (//') => B(Jf, X) < NK. For m = 2 a/so /he opposite is true, 

i.e. (/), (/') «> (//), 07') <-> B(^V, ^f) < NK. 
Proof. We proceed by induction on m. 
1. m = 2: B(^V, X)- NK = N!K,K2 + NiN2K2 - N!N2K!K2 = NxK2(Kt + 

+ ^2 — K\N2)
 ar1d the assertion is an immediate consequence of 1.1. 

2. m > 2: First suppose that (/) is satisfied. Putting Jf' = (Nj, . . . , N^-j) = 

.=-1 

- iVlj(11A-,,lfl = At^_,( j]JV_,.*,,,__, - At2,m^1,m_1) = tf^ I *{ . ,__* , .«_ , -fc 

+ (!V,'.m-2^_-1 + # ; . „ -_ ) - ^ i . , , - . * . . , , . - . ) where _VJ .,-_*,'.,,,-! :_ A t i , ,£, .-_, 
for each / e [1 : m — 2] and the inequality is sharp if At,+1 = N't > 1 for some 
/ e [1 : m - 2] (cf. (/')). N[,m.2Km.t + N'itm^ = J V ^ - a t * - - . + _v;__) ^ 
= Nim-2Nm-iKm-i = At;,m_,tfm_t by 1.1 and the inequality is sharp if # „ _ . > 
> 2 or _v;_. = _Vm > 2 (cf. (/')). Hence on the whole 5OT, Jf) - iVA: ^ ( < ) ^ 

g ( < ) NiKJ^N^K,^^ - # ; , „ _ , * . _ _ . ) = A t . ^ t y r , ' J f ) -

- ^ V i . w - i ^ ^ . j ) ^ 0. Here the former inequality is sharp if in addition to (i) 
also (/') is satisfied, and the latter one holds by induction hypothesis because 
JT and X' satisfy (/). If (//) holds (or in addition (//')) then (ii) and (//') is converted 
to (i) and (/'), respectively by exchanging the roles of N, and Km+t-t for ie [ l : ni\9 

and the assertion is an immediate consequence of the evident equation B(Jf9 X) — 
- NK = B(Xs9 Jfs) - NK. I 
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It remains to investigate the asymptotic behaviour of B(Jf, X) with N, K 
approaching infinity. 

1.3 Theorem. Let {[m,- : M^]}^L1 be an arbitrary but fixed sequence of intervals 
such that 2 g m{ g Mt ^ M and 1 < R g raf/M, /s satisfied for each i e N. //" 
{^(-) =- (jvj-),..., N^>)}-=2, {jr(m) = (K (^,... , K£">)}*=2, {N(m) = N™}™=2 

and{K(m) = K^m}^i are sequences satisfying mt g N[m>, K}m> g Mt for each mefi 
, . r, *i ' i # ( ^ ( m \ ^ ( m ) ) ^ wM f. B(^(w), Jf(w)) A , , and i e [1 : m\ then —-—-—- ^ < , lim ——, ' , = 0 and the 

convergence is the faster the greater is R. 

Proof. As NJm>, KJm> > m(. > 2, we have 0 < BW" ^m"> < j b y L 2 
jy(»)j^(w) ^ 
»t 

(w > 2). From (1.3) we get further ——, ' , - <• —- < ; <• 
A'(m\K^ ~ " , ~ (m,2/M,) ~ 

11 '"* 
i = 1 

• 0 with m -» oo because K > 1. • 
IT 

We see by 1.3 that the algorithm 1.2.9 is for large N and K the faster in com­
parison to direct computation of Ax the smaller are Mx, i.e. the smaller are the 
factors NJm), K(m) or the greater are mf, i.e. the smaller is the range Mt - mx 

allowing the fluctuation of the factors N|m), K\m), Thus for a given {Mjr=i best 
convergence rate is obtained with Nmin g m{ = Nx = A',- = Mt ^ Nmax, which 
gives, in view of (1.3), the bound of order Nlog N on operation counts, namely 
o(A) g Nx ... Nm(N! + ... + Nm - m80J g (Nmax - 5.J mN ^ 
^(Nmax~S0JN\ogNmJN). 

This bound is the best one with M( = Nt = 2, i e [ l : / w ] , which gives 
(2 - 5#,a) Nlog2 N for N = 2m. 

2. IVha/ is /he fees/ (worst) ordering of factors in Jr and X minimizing (maximizing) 
the upper bound B(Jf, X)l 

1.4 Lemma. Let Pi e 0>([l : m]), i e [1 : m - 1], m ^ 2 stand for a transposition 
of i a/id i + l. The/i it ho/ds 

1° #C/V, Jf) ^ JB(->f>„ X) iffNi ^ Ni+] and 
2° B(JT, X) £ B(JT9 XPi) iffKi ^ Ki+,, 

. where equality in 1° or 2° is true iff Nt = Ni+i or Kt = Ki+1, respectively. 
Proof. 
1° NlfJ ~ Np,(-) ••• A/><u) for each je [1 : m], j ^ i implies B(Jf, X) -

- B(JTpt> X) « N^NiK^ - Niti^Ni+,Kitm = l ^ . , - ^ , - N*+1) *,.„, ^ 
^Oi f fN^ -N i+ i ^ 0 . 
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2° follows analogically due to KUm = KptU)KptU+i) ... KPt(m)9 je [1 : m ] J * 
T - / + V I 

1.5 Lemma. Let S£ = (Lx,..., Lm), m > 2beaNS such thatLx i% L2 <£ .. . <; Lm 

a/id pe ^( [1 : mj) an arbitrary permutation. Then there exists a sequence n =-
= {P»}«-o> P» e ^ ( [1 : m]) 5uch /ha/ p = popi ... pr, p0 = 1 ow^ for n > 0 pm 

is a transposition of in and in + \(in e [1 : m — l]) satisfying Lpo_Pn_tQn)£ 

= ^PO-.pn-i Vn+\)' 

Proof. For p = 1 we put n = {p0} and forp ?- 1 we proceed by induction on m: 
1. m = 2: p 7- 1 => p is a transpos:tion ^ n = {p0,p} is the desired sequence 

because Lpo{1) = Lx S Lpo(2) = L 2 . 
2. m > 2: If p(m) = m thenp = pi,m_i u lm>m (see 1.1.9) and we can put n = 

= {P'n v lm,mK_0 where nf = {p'n}
r
n~0, p'ne &>([\ : m - 1]), pUm-t = p0 ...pi 

is a sequence having the desired properties with respect to S£' = (Lx, . . . ,L W . 1 ) . 
Such n exists by induction hypothesis. Letp(m) -= i ?- m. Clearly p = ^ ^ 2 where 
qx is defined by S£qx = (L t , ..., L ,_ . , L i + 1 , ...,Lm,L{) and ?2 = ? . u lw,m by 
S£ q'7 — (L'q'2{X), ..., L^ (m_1}) = (LP(1), ..., L p ^ . ^ ) where Sf' = (L(, . . ^ L ^ . j ) = 
= (L{, ..., Lf_ j , L / + ! , ..., Lm). We put n = {p„}^_"o+r where pH is a transposition 
of / + w — 1 and / + n for n e [1 : m - /] and pm-*+k = p* u lm>m for A: e [1 : r] 
with sequence 71' = {p*}/c=o> Pk e ^ ( [ - : ™ - *])> #2 = Po ••• Pr having the 
desired properties with respect to S£'. Such n' exists again by induction hypothesis 
and p =Po ... pm_f+r because qx = p0 ... pm-t and #2 = (p0 u lm>w) ... 
••• (fr u !-,»,)• ^ is easy to see that all prt have the desired properties. I 

1.6 Theorem. Le/ Nx ^ N2 ^ ... _i Nm a/idKt ^ K2 _t ... ^ Km. Then ft ho/dy 
B(.yV, Jf) ^ B(Jfp, Xq) <> 2?C/Vs, Jfs) for each pair of permutations p, q e 
c- M[\ : m]). 

Proof. Let^f = ( L 1 , . . . , L J , L t ^ L2 £ . . . . <> Lm and if' = (LJ, . . , L ; ) b e 
arbitrary. Then by 1.4 and 1.5 we have B(S£, S£') _S B(S£p, S£') and B(S£\ S£) £ 
^ _?(JSf', jSfp) for each permutation p e ^ ( [ 1 : m]). Hence B(Jf, X) £ B(Jfp, X) = 
= B(Xs, Jfps) ^ B(Xs(sqs), Jfps) = B(Xqs, Jfps) = JBW>, Ka) and 
BGVs, Xs) ^ B(^Vs, Jfs(sq)) = BiJfs, Xq) = B(Xqs, Jf) £ B(Xqs, Jfps) = 
= B(Jfp, Xq). I 

2. P A R A M E T R I C D I S C R E T E F O U R I E R T R A N S F O R M 

Discrete Fourier transform (DFT) is one of the most important linear transforms 
that are widely used in various applications. To make clear the benefits of the new 
algebraic approach, we shall give a simple derivation of the mixed-radix last 
Fourier transform (FFT) algorithm for a very general DFT concept, namely for 
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V. VESELY 

that of the parametric discrete Fourier transform (DFT-P) which has been 
introduced in [5] recently. There DFT-P is defined by means of a square matrix 
over C, here we shall extend this notion to a rectangular matrix over any associative 
and commutative ring R. 

2.1 Notation. If At e Jt(N± xKx) and A2 e Ji(N1 xK2) then Ax ___ A2 means 
that A | and A2 have equal elements in the first N = min (Nt, N2) rows and K — 
= min (KA, K2) columns. 

2.2 Definition. Parametric discrete Fourier transform. 
Let WN e R be N-th root of unity in R (W%\, N e = N, N ^ 2) and <9 a rational 

parameter such that W% exists in R. Parametric discrete Fourier transform (with 
parameter S) is defined by a matrix Wjyia or Vt0tN == W ^ ^ of size NxN where 
WNt9(n9 k) = WJ,(*+*> for each n, fc e ZN. If 6) = 0 then we get the standard DFT 
and write simply \WN instead of WNt e or W d t N . A matrix A e Ji(N' x N"), N'9 N" g 
_§_ N is said to define a rectangular DFT-P if A ___ WN e or A ___ We#iV. 

2.3 Theorem. Let JV = (N1$ . . . , N J , ./T - TN;, ...,N„_), Jr* = (N"l9 ..., AQ, 
N= Nltm9N

f = N[tmandN" = N'ltm(m^2)whereN'i9N'l ^ Ni aw/N. = N/ -
=-=N ; f0Me[2:m]. Then it holds S^V/Nt9 ^ At ®R ... ®* Am — A and W^iArS^___ 
= B, <g)L ... ® L Bm = B where Bt = A,r and A, e .#(N/ xN ,"J , / e [1 : m] 
are matrices having elements Ai(ni9 \ki9 ..., ^m]^:;m) = W^'' • ' ^ ^ ; , m + e ) ) ^ A r = 
= W # - - 1 . In particular Am = W„m,* and Bm = W 0 / V w . ' " 

Proof. We proceed by induction on m. 

= ^ ( [ « i . "2]^ '»[^1 > *_]_"•)• 
2.m > 2: By induction hypothesis: SlNuN2 m)WNt0 =_; A, ®RA2 where WN. m e = 

= A2 6 J<(N2tmxN2tm), ST
2tmA2 = A2 ®R ... ®RAm. Hence by 1.2.6 S(NlN2m). 

.W w > # s. A, ®RS2 > M(A2 ®R ... ® R A J = (Ijvj ® S2>m) (A. ®R ... ® R A J 
and consequently (I*; ® S j , J SW„<, s A, ®R ... ®R Am, S e Jf(N[N2tmxN), 
S 8. S j , . w. __. But (IJV; ® Sj", J S are the first N'lN2>m rows of (I*, ® S_", J . 
•SjvI>W2m) = Sj- in view of 1.1.12 and due to the block diagonal form of 

-_, ® s£„. • 
2.4 Corollary. Fa_f parametric discrete Fourier transform (FFT-P). 

A = A<"). A<m-U ... A (1 ) and B = B ( 1 ) B ( 2 ) ... B(M) where for / _ [1 : m] B ( , ) = 
= A ( o r A (o = D(«)W(«). D (o __ I w , ( i 0 D (o , D (0 __ d i a g ^(O, ..., j j ^ _ , ) , 

- $ . - ] - - ^ f ^ . » « e Z " ; - fceZN,.,.J W<«> = _„;._, ® WNl ® IN ( . . ,m , WN,e 
eJUN'fXN^T), WjV, = WW(. _7it- elementary transforms attain the form: Ai§k = 
= D l > t w ; „ D,.» = diag (_>$„, £><{>„, ..., £$',-,.*,) and B(>„ = A,% / . ^ / e 

e [ l : m], t e Z ^ . j ^ A ^ . o = AM, B«>0 = B J . 
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FAST MIXED-RADIX TRANSFORMS II . 

P r o o f . A{(ni9 fk . , . k ] ) = wni{kiN%*Um+lM*r *-!+») __ jj/n.(t*< + , /c-i+e) 

• W$l for i 6 [1 : m - 1] and AJnm, km) = W " ^ e ) = ^ ? ^ f " => A ^ = 

= D M W ^ ( . Hence and by 1.2.3 we get immediately A, ®R I^<+) m = Af = 

= D(i)(W;, ® I w | + i _ j , a n d finally by 1.2.9 A«> = I r , , , . , ® (Af s T l . w J -
= (-*<,..-. ® D<") ( I r , , , . , <g> W ; ( <g> I w , + l i J . I 

2.5 Applications of special cases of 2.3 and 2.4 
1. © = 0, R = C: standard DFT X = WNx, WN = exp (±i2n/N), i = / ^ T . 

We have D (w) = 1^, in this case. 
a) N[ = N'; = Nx: W„ = S^A ( m )A ( m- l ) ... A (1) is the so—called 'decimation 

in frequency FFT (DIF FFT) algorithm, known also as Sand—Tukey's FFT. WN = 
= WN = B ( 1 )B ( 2 ) , ..., B (m)Sj- is the decimation in time FFT (DIT FFT), known 
also as Cooley—Tukey's FFT (cf. [1, 2, 3]). 

b) N; < Nt, N'l = Nj: DIF FFT with decimation on output or DIT FFT with 
decimation on input. Usually N[ = 1, which gives A — (I , ® (A2 ®R ... ® # A J ) . 
. D ( l )rW^ t ® IN2i J where WNl = (1, 1, ..., 1) e Ji(\ xNt) and D ( 1 ) = INl tm or 
equivalently A = (A2 ®R ... 0 * A J (1N/Nl, ..., IN/Nl)9 which means that only 
one FMRT of order N/N, is to be accomplished. The decimated values X([wm, ..., 
..., n2, 0j) = X^Nj), ne ZNlm are obtained on output. B = AT = (IN / N l , ..., 
• ••* 1NIN{)

T(^2 ®L ••• ® L B J => X is obtained repeating Nrtimes the transform 
result of length N/Nt. 

c) N; = Nt, N'l < Nj: DIF FFT with truncation on input (the last N - N" = 
= (N[ — N'i) N2.m elements of input vector x are zeros) or DIT FFT with trunca­
tion on output (cf. [2; p. 188]). Usually N'l = 1, which gives A = (lNl ® (A2 ®R ... 
... ®R A J ) D ( 1 )fW^ ® INa J where VfNl = (1, 1, ..., \)JeJt(Nx x 1) or equiva­
lently A = (A2D0 , A 2D;, ..., A_D;,1_1)B7' with A2 = A2 ®R ... ®K Am and 
D ; = diag (D&>oj. •••» -OSJ.iv/N,-!])- *i e Z N l . Clearly D0 = IN/N| and £[„% = 
= 1. Thus X may be processed in parts performing the FMRT A2 of order N/Nl 

Ni-times, successively with data vectors D0x', D2x', ..., DNi^tx' where x' denotes 
the truncated input vector x. B = AT = (D 0B 2 , DJB 2 , ..., Di^1_1B2) where B2 = 

t V i - l 

= A 2
r = B2 ® L ... ® L Bm =* ^ e truncated output X' = ]T D^Xrtl where X,,. 

t i i = 0 

are outputs of FMRTs B2 applied Nj-times on successive blocks of length N/Nx 

of the input vector S^x. Thus X' may be processed in parts again. 
d) N\ < N!, N'l < Nt: DIF FFT with decimation on output and truncation on 

input or DIT FFT with truncation on output and decimation on input. 

2, O > 0, R = C, N; = N'l = N,: DFT-P introduced in [5]. 
Let Ke N, then we have W{^N

k]n' =- W^+k)n' = W^+klK)n' = W^+Sk)n\ Ok = k/K 
for each keZK and n9 ri e ZN. Hence WXN = S(KtN)(W0QtN> W 6 l | N , ..., 
^ • K - i , N ) * r e J!(KNxN) is DFT with truncation on input and similarly 
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V. VESELV 

W ^ S (WN i e o , WNil>l, ..., WN ,eK_ t) S?KtN)eJt{NxKN) is DFT with truncation 
on output. So we see that DFT with truncated input or output may be obtained 
in parts again, but this time performing K-times fast DFT-Ps of size NxN, 
successively with parameters (90, 0 t , ..., 0K~{. 

3. All what has been stated in 1. and 2. for R = C is also true for number theoretic 
transforms (R = ZM or R = Galois field) and for polynomial transforms 
(R = residue ring of polynomials) - cf. [3, 4]. 

There arises a natural question: Which of the methods Ic) and 2 is computationally 
more effective if one wants to compute DFT of size NiN2,mxN2>m or of size 
-V2.wX-V.-V2.,,,? By 2.4 FMRTs for A2 and W^,miflfc have the same structure 
except for the amount of multiplicative factors D[^,0] 7-= 1, ie [2 : m], n{ e ZNi. 
D ^ o ] , nx > 0 is equal to unity for A2(S == 0) but not equal to unity for WN2 w>0k, 

w 

k > 0 (<9k > 0). This means that the method 2 requires fi2 = (Nx — 1) ]T N2,.-i • 
i = 2 

. (Nf. — 1) more such multiplications than method lc). On the other hand lc) 
requires in comparison to 2 fx1 = (Nx — 1) (N2>m — 1) extra multiplications by 

w w w — 1 

D; , . . . , D ^ _ . . B u t X # - . . _ . ( # . - l) = I i V 2 > l -Y.N2.i~N2.rn - 1 implies 
i = 2 i = 2 i = l 

ft{ = /f2 and thus both methods have the same computational complexity. 
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