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ALGEBRAIC THEORY OF FAST MIXED-RADIX
TRANSFORMS:
II. COMPUTATIONAL COMPLEXITY
AND APPLICATIONS

VITEZSLAV VESELY
(Reccived June 26, 1986)

Abstract. This is a continuation of the part I [Arch. Math. (Brno), Vol. 25, No. 3(1989),
149 —162] where new matrix opcration (generalized Kronecker product) has been introduced
for easy derivation of mixed-radix factorizations. In part II their computational complexity
is studied and the effectivity of the ncw algebraic approach is demonstrated by deriving fast
algorithm for a very general (recently introduced) concept of the parametric discrete Fourier
transform.

Key words. Generalized Kronecker product of matrices, fast mixed-radix transform, fast
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INTRODUCTION

Section 1 deals with computational complexity of fast mixed-radix transforms
which have been introduced in [6]. In Section 2 we prove, among others, that the
parametric discrete Fourier transform (DFT-P) recently introduced in [5] as an
interesting generalization of the discrete Fourier transform is a mixed-radix trans-
form, and illustrate how parametric fast Fourier transforms (FFT-P) may be derived
using the new algebraic approach.

Throughout the paper we keep the notation of part I[6]. References relating
to part I are prefixed by I.

1. COMPUTATIONAL COMPLEXITY OF FAST
MIXED-RADIX TRANSFORMS

Let us have associated with a matrix A € #(N x K) a suitable algorithm accom-
plishing the linear transform y = Ax with at most a(A) scalar additions or sub-
tractions and u(A) scalar multiplications for any input vector x. Then a(A) and u(A)
characterize additive and multiplicative complexity of the transform A if we do not
distinguish between A and the corresponding algorithm.
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V. VESELY

Hereafter A and B stand for MRT matrices defined in 1.2.7, and 0(A) and o(B),
o€ {a, u} for the computational complexity quantities of the corresponding
FMRT from 1.2.9. Thus we may write o(A) = Y o(A")) and o(B) = ¥ o(B).

i=1

i=1
As o(C) is for any matrix C invariant with respect to its row and column permuta-
tions, all FMRTs derived from A and B() by inserting factored identity matrix

have the same complexity. Specifically o(A) = o(A~) = X o(A~") and o(B) =
i=1

=o(B7) =‘Zl o(B-%). An inspection of 1.2.10 shows that each A~)(B~") may

be decomposed into elementary transforms A; i(B; ). Consequently o(A~*) =
Ki+1,m—1 Niyi,m—1
= ¥ Ny,;-10A; p)ando(B-)= ¥ K, 1-10(B; ). Thus the resulting
k=0 n=0

complexity of A and B may be expressed in terms of the complexity of elementary
transforms as follows:

m Ki4g,m—1 .
(1.1) oA)=Y Ny -y ¥ oA  withA,,=A,
i=1 k=0
and
m Nj)‘,m_‘ .
(1.2) o®B)=Y K-y Y o(®B,) withB, =B,
' i=1 R=0

AS AI,IH Bi',,e.//l(NixK,), we have a(Al',k)’ a(Bi,l) é Ni{Kl - l) and “(Al,k)’
u(B,,,) £ NK, for each k€ Zy,,, , and ne Zy,,, .- Substituting this into (1.1)
and (1.2), we arrive at the upper bounds

(1-3) O(A) é Z N‘.‘_lN‘(K' - 50,,) KH\l;m _S_'E:lNl,iKi,ll = B(”’ x)
i=1 =L
and

(14) oB) =Y Ky ;- N(Ki =0, ) Ni+1,m ;“Z‘ Ky, iNim = B, X).
=1 =

Due to the symmetry of upper bounds B(A", ") and B(o, A) in (1.3) and (1.4)
we shall deal only with (1.3) in further considerations. All stated later on will
hold also for (1.4) when exchanging the roles of A" and X, i.e. of N; and K| for
ie[l:m].

We shall now investigate the following two aspects of the algorithm 1.2.9 which
are of practical interest:

1. Is the term “fast’’ used for the algorithm 1.2.9 justified? We are going to verify
that B(', X") < NK except for unimportant special cases.
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FAST MIXED-RADIX TRANSFORMS II.

1.1 Lemma. Let Ny, N, € N then it holds

1° Ny + N, S NN, iff Ny > 1, N, > 1.

2° Ny + N, < NNN, iff Ny>1,N,>20r N, >2, N, > 1.

Proof. 1. Implication =: Ny =1= N; + N, =14 N, > N, = N,N,. The
same is true for N, =1 due to the symmetry. N, = N, = 2 = N; + N, = N;N,.

2. Implication <: We can assume 2 < N; £ N, without loss of generality.
Then N N, = 2N, = N, + N, 2 N, + N,. This inequality is sharp with 2 §
S Ny < N, as well as with 2 < Ny = N,. 1

1.2 Theorem. Let us consider the following conditions concerning N and X :

HhK >LK,>1..,K,..>1,N, > 1

(") Ky—y >2 or N,, > 2 or m > 2 and there exists i € [2: m — 1] such that
N; > 1.

(i) K, >, N, >1,...., Ny_y > I, N, > 1.

(ii"y Ky > 2o0r N, > 2 orm > 2 and there existsi € [2: m — 1] such that K, > 1.
Then the following holds:

(1) () or (if) = B(AN, #) £ NK. For m = 2 also the opposite is true, i.c. (i) <>
<> (il) < B(V, #) < NK.

(2) (i), (") or (i), (ii") = B(N, &) < NK. For m = 2 also the opposite is true,
i.e. (i), (i") <> (i), (ii") <> B(A", &) < NK.

Proof. We proceed by induction on m.

l.m=2: BV, ) — NK = N,K,K, + N,N,K, — N,N,K,K, = N, K,(K; +
-+ N, — K;N,) and the assertion is an immediate consequence of 1.1.

2. m > 2: First suppose that (i) is satisfied. Putting &' = (Ny, ..., N,,_;) =

= (Nz,..-,Nm)andf, = (Kl,...,Km_l),WegetB(./V, f) — NK = ZNI.(Ki.m_
i=1

m—2

- Nl,mKl,m = Nme(lZ NZ,IKf,m—-l - Nl,mKl,m—l) = Nle( Zx N;,l-—lKl,m—l '*:
=1 i=

+ Ny 2Ky + N{m—1) = N{ - 1Ky, m-1) Where N{ ;1K -1 S Ni Ky ey
for each ie[1: m — 2] and the inequality is sharp if Ny4y = N; > 1 for some
ie[l:m— 2] (cf. (). N{,m-2Kn-1 + Nim-1 = N m-2(Kp-y + Np_y) S
< N{,,-2Nn- 1K,y = Ny, ,,-1K, - by 1.1 and the inequality is sharp if X,,_, >
>2o0r N,,-y = N, > 2 (cf. (i')). Hence on the whole B(#', X)) — NK < (<) S

m-—1

= (<) Nle(‘ZlN;,lKi.m—l = NimaKim-1) = N K, (B(A"', A7)

l

= N{ ,.-1K;y,m-1) = 0. Here the former inequality is sharp if in addition to (i)
also (i) is satisfied, and the latter one holds by induction hypothesis because
A" and A" satisfy (i). If (i) holds (or in addition (ii’)) then (i) and (ii’) is converted
to (i) and (i), respectively by exchanging the roles of N, and K,,,,_, for ie [1: m],
and the assertion is an immediate consequence of the evident equation B(A4, ¥°) —
— NK = B(A's, #'s) — NK. 1
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V. VESELY

It remains to investigate the asymptotic behaviour of B(A, X)) with N, K
approaching infinity.

1.3 Theorem. Let {[m; : M]}}2, be an arbitrary but fixed sequence of intervals
such that 2 < m; £ M; < M and 1 < R £ m}[M,; is satisfied for each ie N. If
(W™ = (N, . NOOYE_, (™ = (K, .., KOY)2_,, (N = e
and {K™ = K" \»_, are sequences satisfying m; < N{™, K™ < M; for eachmeN

(m) (m) y (m) (m)
and i€[1: m] then BA™™, A7) < mM, lim B, A7)
NOK™ R™  maw  NMK™
convergence is the faster the greater is R.

=0 and the

) arom)
Proof. As N™, K™ > m; =2, we have 0 < ﬂ/%(—'—)}—\?:)——)— <1 byl2
. . ] m) r-(m

MMy,

B(™ .Ji/('")) mM

N mo, T (miM) T

'U, m-

(m > 2). From (1.3) we get further

mM

s

— 0 with m — oo because R > 1. 1

We see by 1.3 that the algorithm 1.2.9 is for large N and K the faster in com-
parison to direct computation of Ax the smalier are M,, i.e. the smaller are the
factors N{™, K™ or the greater are m;, i.e. the smaller is the range M; — m;
allowing the fluctuation of the factors N™, K™, Thus for a given {M,}{2, best
convergence rate is obtained with N, < m;, = N, = K; = M; £ N,,,, which
gives, in view of (1.3), the bound of order N log N on operation counts, namely
oA) £ Ny ... NN, + ... + N, — m5, ) < (Npax — 0o,5) MmN =
é (Nmax - 50,1) Nloglen(N)' .

This bound is the best one with M, == N; =2, ie[l:m], which gives
(2 - 4,,,) Nlog, N for N = 2™,

2. What is the best (worst) ordering of factors in A" and A minimizing (maximizing)
the upper bound B(A", A')?

1.4 Lemma. Let p;e 2([1 : m]),ie[1 :m — 1], m = 2 stand for a transposition
of i and i 4 1. Then it holds

1° BV, X) S B pi» X) iff Ny < N, and

2° BNV, A) = BN, Ap) iff K, < K,H,
- where equality in 1° or 2° is true iff N, = N,,, or K; = K, , respectively.

Proof.

1° Ny,y = Npq1y +- Npjy for each je[l:m], j +#i implies B(A, Ji’)
= BWpis ) = Ni,i=1NiKipy = Ny i Nps Ky = Ni,im (Vi = Nivo) Kim <
SOiff N;—- N, £0. :

)
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FAST MIXED-RADIX TRANSFORMS 11.

2° follows analogically due to K, ,, = K, (pKpj+1y «-+ Kpymy J€[1:m], ] v
#i+ 1.1

1.5 Lemma. Let ¥ = (L, ..., L,),m > 2beaNSsuchthatL, S L, S ... S L,

and pe P([| : m]) an arbitrary permutation. Then there exists a sequence m =
= {Putn=0> Pn € P([1 : m]) such that p = pop, ... p,y po = 1 and for n > 0 p,
is a transposition of i, and i, + (i, € [1 : m — 1]) satisfying Ly it =
S Lyg i Gy

Proof. Forp = 1 we put n = {p,} and for p # 1 we proceed by induction on m:

l.m=2:p # 1= pisa transpos’tion = n = {py, p} is the desired sequence
because L, 1) = Ly £ L,y = L;.

2.m>2:1f p(m) =mthen p =p,, .y U 1, , (see 1.1.9) and we can put n =
= {pn U L, min=0 where 7' = {p}ieq, pre P([1:m —1]), py,m-1 = Po ... P,
is a sequence having the desired properties with respect to &' = (Ly, ..., Lp-y).
Such n’ exists by induction hypothesis. Let p(m) = i # m. Clearly p = ¢q,9, where
q, is dcfined by Lq, = (L, ..., Li—y, Li41s ... Ly, L)) and ¢q; = g2 L 1, ,, by
Lqy = (Lyrys vos Lijim-1)) = (Lp1ys s Lpm—1)) Where &' = (L{, ..., L, _4) =
= (Lyy.e.sLizyyLiyy,y ..., Ly). We put n = {p,}n=o*" where p, is a transposition
ofi+n—1landi+nforne[l:m—i]and pp_ijox =pp U Iy, for ke[l :r]
with sequence 7' = {pi}i=0» Pi€ P([1:m —1]), g3 =p{...p, having the
desired properties with respect to £’. Such =’ exists again by induction hypothesis
and p=p, ... pp_y4, because g, =po ... pu—; and g, = (po Y 1,,) ...
w. (py U 1, ). It is easy to see that all p, have the desired properties. 1

1.6 Theorem. Let Ny £ N, £ ... S N,,and K, 2 K, = ... 2 K,,. Then it holds
BN, X)) £ B(Np, Hq) £ B(AN's, A's) for each pair of permutations p, q €
e Z([1: m)).

" Proof. Let £ =(Ly,...,L,), Ly <L, <..<L,and & = (L}, ..., L},) be
arbitrary. Then by 1.4 and 1.5 we have B(¥, #') £ B(¥p, ¥') and B(¥', &) 2
2 B(#', £p) for each permutation p € 2([1: m]). Hence B(4", ') £ B(A'p, X) =
= B(A's, Nps) £ B(As(sqs), N/ ps) = B(Xqs, A'ps) = B(Np, Kq) and
B(A's, X's) = BN's, X's(sq)) = B(Ns, Hq) = B(HXgs, &) = B(H gs, N ps) =
= B(AN'p, X q). 1

2. PARAMETRfC DISCRETE FOURIER TRANSFORM
Discrete Fourier transform (DFT) is one of the most important linear transforms
that are widely used in various applications. To make clear the benefits of the new

algebraic approach, we shall give a simple derivation of the mixed-radix last
Fourier transform (FFT) algorithm for a very general DFT concept, namely for
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V. VESELY

that of the parametric discrete Fourier transform (DFT-P) which has been
introduced in [5] recently. There DFT-P is defined by means of a square matrix
over C, here we shall extend this notion to a rectangular matrix over any associative
and commutative ring R.

2.1 Notation. If A, € #(N,xK,) and A, € #(N, xK,) then A; @ A, means
that A; and A, have equal elements in the first N = min (N;, N,) rows and K =
= min (K, K;) columns.

2.2 Definition. Parametric discrete Fourier transform.

Let Wy € R be N-th'root of unity in R(WNI, Ne =N, N = 2) and @ a rational
parameter such that W§ exists in R. Parametric discrete Fourier transform (with
parameter 0) is defined by a matrix Wy o or Wy y = W,f,'.e of size N x N where
Wy o, k) = Wi**9 for each n, k € Zy. If ® = 0 then we get the standard DFT
and write simply Wy instead of Wy g or Wy y. A matrix A € #(N'xN"), N',N" <
< Nis said to define a rectangular DFT-P if A = Wy g or A = Wy .

2.3 Theorem. Let A~ = (Ny, ..., N,)), /' = (Ny, ..., N,)), A" =(Ny, ..., N,
N=N, N =Nj ,and N = N{ , (m22)where Ny, N < N;and N, = N| =
= N forie[2:m]. Thenitholds Sy Wy ¢ = A, ®z ... ®r A,,=A and Wg S, =
~ B, Q... ®. B, =B where B,=A] and A; € #(N/xN;,), i € [1:m]
are matrices having elements A,(n;, [k;, ..., k) 47.) = fol’: ~~~~~ Kmlf, m*€) Wy, .=
= WN*~*. In particular A,, = Wy o and B,, = We. N, ,

Proof. We proceed by induction on m.

1. m = 2 W[nz m¥ e (k1 2]V +6) u/(nzN: n1) (k1 k2] ¥ +€) Wm([k; k;]J’+O‘ .

an(k,Nz+k;+9) Wm([khkz).ﬁ’ +8) an(k;+8) — A1("1, [klv kz]m ) Az(nz. 2) —
= A(["n nz]m > [ku kz],o

2.m > 2: By induction hypothesis: STy, », .,Wy,0 = A, @A, where Wy, 4 =
= A€ Jt(N,_,,xN,,,,), ST mA; = A, ®g ... ®A,,. Hence by 1.2.6 ST, . .

Wye = A ®rS; mA; ®x--- ®rA,) = (Iy; @ Sz,m) SAl Qr .- A,
and conscquently (Iy ® ST ,,.) SWN 6 2 A ®r... ®r A, S€ A(N|N, ,xN),
S S(N, N2+ But (Iy; ® ST ) S are the first N{N, ,, rows of (Iy, ® ST m) -

S(N, Ni.o) = S% in view of 1.1.12 and due to the block diagonal form of
IN: ® Sz.m '

2.4 Corollary. Fast parametric discrete Fourier transfarm (FFT-P).

A=A® A= AD gnd B = BMB?) || B™ where forie [1: m] B =
=ANT A = pOWD; DO = I,  ® DD, D® = diag (DY, ..., D _))
= ’ ’ 1,4-1 Tt “t,m— 1/
Dgl)hkl Wm(k+8)’ n,eZN ’ kEZNHl m w(l) = IN| -1 ® WN« ® INI+I m? WNc
€ M(N; x N, ), Wy, & Wy,. The elementary transforms attain the form: A, , =
= Di,thn D = diag (D[o Kl Du Ky e D[N..-l,k]) and B, = Al.k forie
E[l M], kEZNIu,-(A 0 = A., B-. = B,).
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FAST MIXED-RADIX TRANSFORMS II.

P[’OOf A. (f’l,, [k s m]) Wﬂi(klN(+! mbfete1, o kml+0) Wm([k(n.‘...km]-ire)
Wik for i e [L:m — 1] and 4,(n,, k,) = Wipkm+€) aneankm = A
=D, \W},. Hence and by 1.2.3 we get immediately A, ®z Iy,,, . = A- =

3

= D“’(WA ® Iy,,,.), and finally by 1.2.9 AD = Iy, ® (A; ®z Iy, .) =
- (I’Vl i-1 ® D“)) ‘IN'ji 1 ® WN( ® INI+1 m) l

2.5 Applications of special cases of 2.3 and 2.4

1.8 = 0, R = C: standard DFT X = Wyx, Wy = exp (+i2n/N), i = /— 1.
We have D™ — 1, in this case.

a) Ny = N| = N;: Wy =S, ,AMAM-1 AN js the so—called decimation
in frequency FFT (DIF FFT) algorithm, known also as Sand—Tukey’s FFT. Wy =
= Wy = BOB®, B™SY is the decimation in time FFT (DIT FFT), known
atso as Cooley—Tukey’s FFT (cf. [1, 2, 3]).

b) N{ < N,, N{ = N;: DIF FFT with decimation on output or DIT FFT with
decimation on input. Usually N| =1, which gives A=(I; ® (A, Q... ®rA,)) .
DVIWL @ Iy, ) where Wy, =(1,1,...,1)e #(1xN,) and D =1, or
equivalently A = (A, @z ... ®g A,) Iy, -..» Iyn,), which means that only
one FMRT of order N/N, is to be accomplished. The decimated values X([n,,,, .
<.y 13, 0]) = X(nN,), ne Zy, are obtained on output. B =AT = (Iyy,, ...,

, IN.,NI)T(BZ ®L ... ®, B,) = X is obtained repeating N,-times the transform
result of length N/N;.

¢) N{ = N,, N{ < N,: DIF FFT with truncation on input (the last N — N" =
= (N; — Nj) N, ,, elements of input vector x are zeros) or DIT FFT with trunca-
tion on output (cf. [2; p. 188]). Usually Ny = 1, which gives A = (Iy, ® (A, ®x ...

.. @z A,)) DV(WL @ Iy, )where W, = (1, 1, ..., )T e M(N, x1) or equiva-
lently A = (A;Dyq, A'D{, s AJDN _)PT with A, = A, Q... Rz A, and
D, = diag (D{;) o)» --- D(,,“N,N‘ 1)), ny € Zy,. Clearly Dg = IN,M and D[,l o) =
= 1. Thus X may be processed in parts performing the FMRT A, of order N/N,
N,-times, successively with data vectors Dox’, DX/, ..., Dy, _ X’ where x’ denotes
~ the truncated input vector x. B = AT = (D,B,, D,B,, ..., Dy,_;B,) where B, =

Ni—1

.

+A;”" =B, ®,.. ®, B, = the truncated output X' = Y D, X,, where X,
n =0

are outputs of FMRTs B, applied N,-times on successive blocks of length N/N,
of the input vector Sx. Thus X’ may be processed in parts again.

d) N, < Ny, N{ < Ny: DIF FFT with decimation on output and truncation on
input or DIT FFT with truncation on output and decimation on input.

2.6 >0, R=C, N, = N{ = N,: DFT-P introduced in [5].
Let K€ N, then we have Wi/ i = Wkt — pRarkEn - areon’ @ = kIK
for each k € Zy and n, ' € Zy. Hence Wiy = Sik,n) Weg,ns We ns oons
Wer...N)"" € M(KNxN) is DFT with truncation on input and similarly
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V. VESELY'

Win = (Wy, 600 Wh,0,5 s Wh, ok ) S(TK,N) € #(NxKN) is DFT with truncation
on output. So we see that DFT with truncated input or output may be obtained
in parts again, but this time performing K-times fast DFT-Ps of size N x N,
successively with parameters @¢, O, ..., Ok _,.

3. All what has been stated in 1. and 2. for R = C is also true for number theoretic
transforms (R = Z,, or R = Galois field) and for polynomial transforms
(R = residue ring of polynomials) — cf. [3, 4].

There arises a neiural question: Which of the methods Ic) and 2 is computationally
more effective if one wants to compute DFT of size N{N; . %N, , or of size
Ny,m*xN(N, ,? By 24 FMRTs for A; and Wy, o have the same structure
except for the amount of multiplicative factors D{i) o; # 1, i€ [2:m], n;€Zy,.
D$) o1, m > 0 is equal to unity for A;(© == 0) but not equal to unity for Wy, o,

m

k > 0(O, > 0). This means that the method 2 requires y, = (N; — 1) > Ny ;_; .
2

i=

.(N; — 1) more such multiplications than method Ic). On the other hand Ic)
requires in comparison to 2 y; = (N, — 1) (N,,,, — 1) extra multiplications by

D;, ceey D}’V["l' But ZNZ,I"*I(NI' - 1) = Z NZ,( - ZNZ i = Nz,m - ] implles
i=2 i=2

ity = p, and thus both methods have the same computational complexity.
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