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Abstract. A new operation over matrices is introduced which is a generalization of the Kronecker
(direct) product and its basic properties are derived. It is shown that matrices formed in this way
define a class of the so called fast mixed-radix transforms as a natural generalization of the mixed-
radix fast Fourier transforms. The new operation allows a straightforward and simple derivation
of the appropriate factorization associated with the fast algorithm. The paper will be continued.
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INTRODUCTION

Linear transforms x — y = Ax, where A denotes a fixed matrix and x and y
are data vectors of appropriate sizes, are widely used in various applications.
Multiplication of a vector x by the matrix A may become a crucial operation on
a computer if many such transforms are to be accomplished and/or A is a large
matrix with many non-zero elements. In such a case it is desirable to find for the
given matrix A a “fast” algorithm that reduces the amount of scalar multiplications
and additions accomplishing Ax. One is usually profiting from the knowledge
of the concrete structure of A to find such a factorization A = AMAM™-1) A1)
into sparse matrices A that Ax!~1) may be viewed with x = x(® and y = x™
as the i-th step (i = 1, 2, .... m) of a fast algorithm. Product of such matrices is
said to be a fast (linear) transform. ' '

The above approach is typical in the field of digital signal processing [1~35, 7, 8],
where the mostly used transforms are orthogonal [3]. Chief among them is the
discrete Fourier transform (DFT). A fast algorithm computing DFT is called fast
Fourier transform (FFT). Discussion of various commonly used FFTs may be
found e.g. in [1-4, 7]. ‘ '
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V. VESELY

I. J. Good [5] shows that the structure of the multidimensional FFT is character-
istic for a class of linear transforms, the matrices of which may be expressed as
Kronecker (direct) product [6], ie. A=A, ® A, ® ... ®A,,. Then it is easy to
seethat AV =1, ® ... ®I,_i A, @I, ® ... ® I, defines the i-th step of the
corresponding fast algorithm (I; denotes identity matrices of appropriate sizes)
and thus Kronecker product is a typical operation forming matrices of this class
of (fast) transforms. Similarly another class of linear transforms may be based
on the structure of another FFT, the so called mixed-radix FFT. 1. J. Good
develops in [5] the appropriate factors A? and illustrates a close relationship
between both classes of fast transforms. Hereafter we shall call transforms of the
latter class mixed-radix transforms (MRTs) and the correspondmg fast algorithms
fast mixed-radix transforms (FMRTs).

There arises a natural question whether one can find a simple algebraic opera-
tion over matrices typical for MRTs and having properties admitting the deriva-
tion of factors A of FMRT by simple and easy algebraic manipulations so as
this is in the case of the Kronecker product.

This paper gives a positive answer to this question. In Sect. 2 we define in two
ways a new operation over matrices which may be viewed as a generalization of the
Kronecker product. Several basic algebraic properties of this generalized Kronecker
product are proved which allow the desired easy derivation of the FMRTs.

1. NOTATION AND INTRODUCTORY REMARKS

1.1 Notation

— N... the set of natural numbers.

— Z ... the set of integers.

- Zy={0,1,...,N -1}, NeN.

— C ... the field of complex numbers.

— R ... an arbitrary associative and commutative ring with unity, all matrices
and vectors mentioned later on are over R if not stated otherwise.

— If A is a matrix of size N X K (N, K € N), then we shall denote A(n, k) its entry
in (n 4 1)-th row and (k + 1)-th column, ne Zy, k € Zg. The set of all matrices
of size Nx K will be denoted as #(NxK). We write A = (A"*), A" e
€ M(N, ><K2), ny c—:ZNl, k, € Zg, for a matrix A which is structured into N; X K,
blocks A™* of size N, XK, (N = NyN,, K = K,K;), n, + 1 is the row posi-
tion and k; + 1 the column position of the block A"k,

— X = (X0, X15 ++e xy-1)T, NeN denotes a column vector of length N, (¥ is
transposition).

—
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FAST MIXED-RADIX TRANSFORMS I.

— | A|...determinant of a square matrix A.

— Iy ... identity matrix of order N.

—[i:jl1=1{kli<k<j keZ) i jel, i<]j

— Let NyeN for ke[i:j], then N, ;= NN;y,...N;if i<jand N; ;=1
otherwise.
;555 0@, j) ... Kronecker’s symbol.

~ n|m ...integer nis a divisor of integer m.

— P(M) ... permutation group of the set M.

We shall not distinguish between a permutation Pe #(Zy) and the corresponding
matrix P e #(NXN), P(n, k) = J,,pg)-

1.2 Definition. A mapping 4": [i : j] — N is said to be a (finite) number system
(NS). We shall write also #” = (N;, Ni4y, ..., N;) to visualize the function values
AN (k) = N, for ke[i : j]. Alternatively the notation 4"y, ; will be used instead of A
to emphasize the index domain [i : j].

1.3 Remark. Combining a NS ", ; with a permutation p € Z([i : j]), we arrive
at a permuted NS A";, ;p = (Nyays Nyt 135 -5 Np(iy)-

1.4 Lemma. Let /" = (N, N5, ..., N,) be a number system associated with
N = Ny .. Then the mapping []y:Zy X Zy, X ... X Zy, — Zy defined as
[#1s 125 -ees ) = 11 N2m + 1,N3, + v + Ny 1Ny + 1, = n is a bijection.

Proof. We proceed by induction on m. For m=1 [.]  is an identical mapping.
Let m > 1. Clearly n = kN,, + n,, with k =[n;, ..., n,_,], and &' = (Ny,
N,,..., N,,_;). By induction hypothesis 0 < k < N;,,,-; — 1 =0 < kN,, +
4y < N—=N,+n, < N—1=>neZy. [.] is injective: n =n' = [ny, n;,"...,

cos My 1 Ny & My = Ny | (11 — 1) => Ny = 1, in view of 0 < | 1, — 1, | <
< N,, — 1. Hence [n1, 13, ..., Ny 4» = [115 135 .s npy_y]4» and by induction
hypothesis n; = n; for each ie[l:m — 1]. n

1.5 Definition. The ordered m-tuple (n;, n,, ..., n,) is called a mixed-radix
integer representation of n=[ny,n,,...,n,|, with respect to the number
system A".

Hereafter we shall omit the subscript 4" and write simply [n,ny, ..., n,)
whcnever the NS is implicitely determined from the context. In particular the NS

= (Ny, N,,...; N, associated with the factorization N = Ny,,, is assumed
1f not stated otherw1se

1.6 Lemma. Let N= N, ,, m > 2. Then for each ie[1: m — 1] it holds
[["n"za- . "i] [nH-l’nH-Za- ’nm]] [nl’nZa- a"m]
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V. VESELY

PrOOf' [nl’ co n‘] € ZNi [ [nH'l’ [XXE] nm] € zN,;pmv N = Nl,iN£+l.m =

= [[nl! LA ‘]’ [nl+1’ ooy n,,.]] = [nl, cesy n,] N‘+1,m + [n‘+1, ceey n,,,] =
("11:],2 at+mN;  +...4+n) Nivtm +m41Nisz,m + .. c = [, n25.ees
ces Ny B

1.7 Definition. Let us have a NS 4" = (N, ..., N;) and N = N, ;. We define
a mapping @4 : P([i :j]) = 2(Zy) as follows:
o 4(p) = P, where P([ny,...,n]4) = [mays - -5 Mpy) o

It holds ¢4(1) = Iy (here 1 is the identical permutation in 9’([1’ : j])). But in
general ¢ is not a homomorphism of permutation groups, e.g. N; =2, N, = 3,
p(1) =2, p(2) =1 is a counter-example.

18 Lemma. Let A;e #(N;xXK)) forie[l :m],m>2, N=N, ,, K=K, ,,

= (Nyy ..oy Np) and X = (K, ..., K,). If we put A = A; @ ... Q@ A,,

A = A1) ® .- @ Apmy> Py = @4(p) and P, = @(p) for an arbztrary permuta-

tionp € ?([l m)), then it holds A, = P +APY., or equivalently A (Py(n), Py(k)) =
= A(n, k) for each n€ Zy and k € Zy.

Proof. Ap(PJ’([nl’ eeey nm])s Px([ku ceny km])) = Ay([np(l)’ cees nP("l)]-"’P’
[Kpctys -0 Kpmlarn) = Apcy(tocrys Kpisy) -+ Apem(Ppemys Kpem) = A1(ny, ky) ...

Ap(Ms k) = A([ny, ..oy ny)s [K1s -+ .5 ky)) in view of commutativity of multi-
plication in the ring R. §

1.9 Convention. Later on we shall agree on the following notation: p; ; and 1, ;
stand for an arbitrary and identical permutation, respectively belonging to 2([i:7]);
51,7 € 2([i : j]) denotes a permutation defined by s; ;(i + k) =j — k, ke [0:j —i].
Similarly Py ; = @4, (Pi,)s I, = Ou,(1i,;) and S; ;= @4, (s,;) are the
associated permutations belonging to #(Zy, ). S ; is called the digit reversal
with respect-to the NS 4, ;. Subscripts i, j may be omitted whenever i = 1 and
Jj = m. We shall write also S, to emphasize that S, is the digit reversal with
respect to A",

1.10 Theorem. Let A" = (Nl,... N,), m22andp = p;,iV Pir1,m€ P([1:m))
Sor some ie[1:m — 1]. Then ¢ (p) =P =P, i®P‘+,,,,,
. Proof. We are going to verify P = P where P—Pl,; Py, m Let n=
=[ny,...,nn)s k = [kys..., k] € Zy, . be arbitrary. Using 1.6 we get P(n, k) =
= P([[nl’ sy nl]9 [ni+l, sesy nm]]’ [[kls seny ki]s [kl+l’ LRAE km]]) = Pl,i([hl’ soey
cevy nl]’ [kh seey ki]) Pi-l-l.m([nu-j’ ssey n,..], [kt+l) LEEE] k,,.]) = 5([”19 cesy nl]a

(g, ictys ooes Kp ) 8mists oooy 1), [Kpessim(i+ 13 + o5 Koy mom]) = 6([ny, ...,
ey n,,,], [k)’u), ey kp(m)]) = aﬂ.?(l) = P(", k). [ |
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FAST MIXED-RADIX TRANSFORMS I.

1.11 Corollary. Let p, = p;,; U Livi,m and py = 1;,; Y Piyy,mthenp =py ;U
U Pit1,m = Pp1P; = P21 and P = ¢, (p) = ¢ (p1) 0 (P2) = ¢.4(P2) @+ (D1) where

ex@) =Py i @Iy, Oa(02) =Xy, O Pty m-
Proof. P = (Py,; ® In,....) vy ® Propw) = (v, © Prvr,m) Py, ®

® Iy,....) is a well-known property of ®. The factors are equal to ¢.,(p;) and

¢,(p2) due to 1.10 and by ¢JV1"(1'1,|) = IN|.| and (P-/fu-hm(lH'l;m) = IN“.;,,,, |

1.12 Corollary. Letie [1: m—1],m22 be arbitrary and S;=@,,(,Nis1,m(S)-
Then it holds @ 4(s1,m) =S = S(S1,; ® Siv1,m) = Si+1,m @ S:,) Si.

Proof. It is sufficient to show S = S;P with P = ¢,(p), p = 51,1 Y Si+1,m-
For each n=[n,,...,n,] €Zy,, we can write in view of 1.6 SP(n) =
= SP([nl, ooy n,,,]) = i([npm, ooy np(,,,)]) = ;([ng, Njgs ooy Nyy Myys M5 o0y

o ien]) = Si[[1is oo os 1]y [Pns oevs st JD = [P ++o5 P 1] (75 +ees "1]] =
= [n,,,,. ,n,] S(n). Then P =S, ; ® S;41,m by 1.10 and also S = S,PS[S,
where S,;PS{’ = S, ;,, ® Sy,; by 1.8. 8

2. GENERALIZED KRONECKER PRODUCT OF MATRICES

By definition, the Kronecker product A = A; ® A,, A; e (N, XK)), A €
€ #(N, x K,) is a matrix having block form A = (A"**) e #(NX K), N = N;N,,
K = K K, where for each n; € Zy, and ke Zg,

@1 A" R = A,(ny, ky) As.

Clearly, either of the following two equations is equivalent to (2.1):

(2.2) Anvkt AZKT'h7 X';l.kx —
= diag (Al(nl N kl)’ ooy Al(nl N kl)) € J”(Kz X Kz),
(23) . Artekt Xllu.hAz’ X:n.h —

= diag (4,(ny, k1), ..., A (ny, k1)) € M(Ny X N).

Allowing different elements to enter into the diagonal of Aj"* or Aj“M,
a Kronecker product generalized in two ways may be obtamed according to the
following definition. :

- 2.1 Definition. Generalized Kronecker product of matrices.

Let N=N,;N,, K=K,K,, A e #(N,xKK,), A,e #(N,xK,), B,€
€ #(N;N,xXK,) and B, e #(N,xK,). Then the matrix - A=A, ®zA;€
€ #(NXK)(B =B, ®.B; € #(NxK))is said to be a right (left) generalized
Kronecker product of matrices A; and A, (B; and B,) if _
A(["n "2]’ [kn kz]) = Ay(ny, [klr kz]) Ay(ny, k2) and B(["u "2], [ku kz]) =
= B,([ny, n;), k) B;(n3, k;) holds for each n, € Zy, and k, € Zy, with i = 1, 2.
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Clearly, A = (A""*') where

A 2.7 - A Am k:
(2.4) A"‘ 'kt — diag (A (n,, 2 0]), (s [k 1), -ees
Ay(ny, [ku K, - 1]))
and B, = (B"*) where

’ an vk Bm k|B ®

2.5) Bk — diag (Bl([n,,O] k,), B, ([nl, 1], ky)y -+
. s By([ny, N, — 1], ky)).

2.2 Remark. Kror'lecker product ® may be considered as a special case of both
®r and ®, writing instead of A = A, ® A, either A = A; r Qr A, or A =
= Ay,L ® A, where 4;,r(ns, [ky, k;]) = Ay, ([n1, n2)s k1) = Ay(ny, ky).

2, 3 Lemma For A, e #M(N, ><K1K2) andB € .ll(NlNz x K,) it holds A ®R Ix, =
= Al = (A"‘ Yy andB, @Iy, = B = (B"‘ k1) where A"‘ k¥t gnd B"‘ k1 gre diagonal
matrices of (2.4) and (2.5), respectively. Moreover Sy, K,,AIS(KI, ko) = diag (A o,

Ay s ooy Ay g,-1) and S(N,,Nz)Bxs(TK,,Nz)=diag(Bl,Oa Bi,i, «oos By ny-1)
where A, .,, B, ,, € #(Ny X K,), A, ,,(ny, ky) = As(n;, [ky, k;]) and
Bl nz(nl, 1) = 1([}11, nz] kl) for each n; e ZN‘ and k € ZK(’ i= ] 2

Proof. By definition 2.1, Al([nl,kz] [kys ko] = As(ny, [k, k2]) 8ils, is
the element positioned in (k, + 1)-th row and (k, + 1)-th column of the block

A'{’ k1 which says that A’;"k‘ is exactly the diagonal matrix of (2.4). At the same
time it is the element in ([K;,7,] + 1)-th row and ([k, k,] + 1)-th column of

Scv., k2yA1S(k,, kay» Which means that the only non-zero blocks of size Ny X K; are
- those with k, = k;, i.e. 4,(n;, [k, k,]) is the element in (#; + 1)-th row and

(k4 + 1)-th column of (k, + 1)-th diagonal block A, ;,. For Bl is the argumenta-
- tion analogical. &

2.4 Theorem. Duality principle.

Under assumptions of definition 2.1 it holds (A; ®x A;)" = A] ®,A] and
(B; ®.B,)" = B] ®B].

Proof. A=A, ®z A; = A"([ky, k;]}, [ny, nz]) = A([ny, n,], [kl, k] =
= Al(nu [ku kz]) Ay(nz,s kz) == AT([kla kz] n1) Az(kzs n)) = AT = A1 QL AZ.
BNT=B=B, ®.B,= (B e ®L (B3)" = (B} ®x B})" = B" = B{ ®;B]. #

We shall prove some basic properties of @z and @, analogical to those of the
ordinary Kronecker product ® (cf. [6]). Moreover, these properties of ® are
obtained by 2.2 as-a special case of the correspondmg properties of ®R or ®y
(see 2.5, 26 2.11 and 2.12).
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FAST MIXED-RADIX TRANSFORMS I.

2.5 Theorem. Either of the operations Qg and Q. is associative and distributive:
1°If A;e #M(N;XK; ;) and B;e M(N; s xK;) for i = 1,2, 3 then

(A; ®rA2) ®rA; = A Qr(A; g Ay),
By ®LB;) L B; = B, ®, (B, ®L B3).
2° If A;, Aje M(N;XK; ,) and B;,B;e M(N; , xK;) for i = 1,2 then
(A1 +A) ®rA; =A; @z A; + A; ®r Ay,
A, ®r(A2+A)) =A; ®rA, + A QrA,
(Bl + B;) KL Bz = B1 ®LB2 + Bll ®LBz,
B, ®. (B, +B;)=B, ®.B, + B, ®.B,.
Proof. We shall prove the assertion only for ®z because for ®, it follows by
the duality principle.
1° Ay e M(N,XK,\K, 3), A, € M(N,; XK, 3) = B~— A; ®z A2 € M(Ny,, X
XKiKy,5). Ay € M(N; XK K;), Ay € M(N3 X K3) = B = A, ®g As € M(Ny, 3%
XK, 3). Hence A = B ®z A; € M(Ny,,N3 XKy ,K;) and A = A, @ B €
€ M(N N, 3 X KK, ;) are correctly defined matrices of the same size Ny 3 X K; ;.
We are going to prove A = A. In view of 1.6, B([ny, n,), [[k1> k2] ka)) =
= B(["n ”2]s [kl’ [kza ks]]) = Ay(n,, [kn [kz’ ks]]) Ay(ny, [kz, ks])- Thus
A([[nl’ n2]: n3]’ [[kla kz], ks]) = B(["u n2]> [[kla kz], k3]) A3(n39 ka) =
=~(A1(n1, [kls [k2s ks]]lAz(nza [kz, ks])) As(ns, k3) = Ay(ny, [kl’ [kza ks]]) .
. B([nz,n3], [k2, k3]) = A([ny, [n2,n5]], [k1, [z k3]]) holds by the associativity
of multiplication in the ring R. Using 1.6 once more, we get A([n,, ny,ns],

[ku kz, ka]) = A([”1 s M2, ns]p [kx, kz, k3]).
2° follows immediately by definition 2.1 and by the distributivity of multiplica-
tion in the ring R. 1 .

2.6 Theorem. Let Aje #M(M;xXN)), A;e #(N;xXK, ,), B,e M(N,; ,xK;) and
Bje M(K;x L)) for i = 1, 2. Then it holds '

(A{ ® A;) (A, @z A;) = AA; g AzA,,

(B, ®.B,) (B, ® B;) = BB, ®,B,B,;.

Proof. Let us denote A=A ®Ae .//l(MlexN1N2), A=A R®rAe
€ "”(NINZ xKle), A1 = A Al € ‘//{(Ml XKle) and A2 A2A2 € u”(Mz sz)
We see that C=A'A and C= A1 ®=r A2 are correctly defined matrices of the
same size M; M, x K, K, . We are going to show C = C.As A’ ([my, m3], [y, n D=

= Al'(mla ny) A;(mz, n;) by 2.2 and A(["u. "2]’ [ku kz]) = A,(ny, [ku kz])
Ni—1Nz2-1

. Ay(ny, k;) by 2.1, we have C([mls mzi], [kn kz]) Z Z (Ax(mxs ny).

n1=0 n2=0
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’, . Ni—1 ,
.« Ay(ma, 1)) (A4y(ny, [ky, k) Ax(ny, k) = (Y Ay(my, ny) Ay(ny, [k, k2] .
© Na—1 - n=0 N N
- ( z Ay(m;, ny) Ax(ny, k) = Ay(m,y, [kn kz]) Ay(my, k) = C([mu mz],

n2=0
[ky, k:]) by 2.1 and in view of commutativity, associativity and distributivity
of multiplication in the ring R.
The assertion for ®, is easy to prove by the duality principle:
(B, ®.B;) (B, ® B;) = (B, ® B,)” (B, ®,B,)")" =
= ((B," ® B;") (B] ® B)))” = (B,"B] ®x B,"B})" =
= ((B4B;)" ®x (B;B;)")" = B,B; ®, B,B;. 1

The associativity of ® and ®; allows one to extend the notion of the generalized
right and left Kronecker product to m factors (m = 2):

2.7 Definition. Mixed-radix transform.

Let N=N; ., K=K nm=2), A;e #(N,xK,,,) and B,e H#(N; ,XK)
forie[1 : m]. Then the linear transform defined by the matrix A = A; ®z A; Q...
. Qr A€ M(NXK) or B=B; @, B, ®... @B, € #(NXK) is said to be
a mixed-radix transform (MRT).

2.8 Remark. It is easy to see by induction on m and in view of 1.6 that A =
= A, O A; Ox ... O Ap iff A1y, vs Ml [K1s ooor kn]) = Ay(nys [Kry oo
vos k) Az2(ny, [k2soevs km)) oo Ap(fims k) for each n; € Zy, and k; € Zg, i €
€ [1: m]. Similarly B = B; ®; B; ®; ... Q. B, iff B([ny, ..., My)s [k1,.--s
cees k) = Bi([ny5 ..o mm)s k1) Bo([n2s - s M)y K2) - o Byt k) foOr each nge Zy,
and k,e Zg,, ie[1: m].

2.9 Theorem. Fast mixed-radix transform. .
If A and B are MRT matrices defined in 2.7 then the following factorizations,
called fast mixed-radix transforms (FMRTSs), take placeﬁ
A= AMACD AD gnd B = BMIBP ... B™ where for ie[1:m]
AD = IN;,;-: ® (A; ®r IK|+1,1||) € v”(Nl,iKHl,mXNLi-lK:,m) and
B =1Ig,,., @B, OLly,, )€ MK, (- 1Ny XKy Nisq,m)

Proof. First we shall prove the factorization of A by induction on m.

1.m=2: APAD = @y ® Ar) (A, ®rlxy) =IvA; ®rAly, = A; ®rA, =
= A is an immediate consequence of theorem 2.6.

22m>2:A=A, QrA’ where A’ = A; ®z... @y A,,. By induction hypo-
thesis A= A"("')A'(""‘l) See A'(z) With A'“) = IN:,c-n ® (Ai ®R IKut.m), A=
= Uy, @ A) (A; Qr Iy,,) =y, ® A) AV and I, @ A’ = Iy, ®
@ (A™WA™™D  A®) L (Iy, @ A™) (Iy, ® A" D) (Iy, ® A'®) where

1, @AY =1, ® T, @ (A4 @ Iy, om) = In,, ® (A @r gy, m) = AV
for ie[2:m]. : v ,
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FAST MIXED-RADIX TRANSFORMS I.

The factorization of B is an immediate consequence of the factorization of A
when putting A = BT, A; = B and using the duahty prlncnple (N; and K; inter-

change their roles): B = (B, ®, Bz ®L B,)))" = (B] ® B] @ --- ®x
®x Bp)" = (A, ®r A; @k - m)’r = AT = (AmARD AT =
A(I)TA(Z)T .

. AMT where B(z) — A(I)T — (Ixh' , ® (Ai ®r IN‘” m))T —
IK.,( -1 ® (Al ®L INH[ "l) IKl,l 1 02y (B ®L lNnym) 1

Similatly as for FFTs (see [4, p. 88]), still more FMRTs may be obtained by
inserting & factored identity matrix between two factors of the appropriate matrix
product of A or B. E.g., if P; € 97’(ZN1 .- Ki,m) 18 not an identity permutatlon for
allie[2: m] then A — AMPT A _ p, +1AYPl ie[2:m — 1] and AW —
= P,A") define another FMRT. We have A = AMEM=1D XD pecause P/P,
is an identity matrix which, being inserted between factors A’ and A¢~1), leaves
the matrix product unchanged.

As in fact the factorization of B in theorem 2.9 is obtained by matrix transpose
of A = B7, all FMRTs may be derived from the factorization A = AMAM™~1
... A by inserting factored identity matrix and/or by matrix transpose.

Due to 2.3 the structure of the generating factors A” may be presented in a very

simple form as a block diagonal matrlx with N 1i-1 identical blocks A‘ along the

- -

dlagonal i. e AY — diag (A;, A, ... ) where A =A,andforie[l:m — 1]
each A, = (A”‘ ky e MNK; 41, ,,,><K, =) 1S @ matrix with N;x K, dlagonal blocks

A;'""' = diag (A(n;, [ki, 0)), Ay [kis 1] ooy Afmi, [kiy Kipy m—1])e€
€ MKir1,mXKis1,m)- .

We shall now derive an important FMRT by inserting identity matrices factored
by the permutation of the digit reversal (see 1.9). The resulting factorization attains
a more compact form if it is applied rather to the modified matrices A~ = S,ASY -
and B~ = S,BSY obtained by writing rows and columns of A and B in digit-
reversed order than for the A and B themselves. That is why the linear transform
defined by A~ or B~ will be termed digit-reversed MRT (DRMRT) and the cor-
responding fast algorithm fast digit-reversed MRT (FDRMRT). '

2.10 Theorem, Fast digit-reversed MRT.

LetA~ =S ,AST and B~ =S, BS] where &' = (Ny,..., N,), ¥ = (Ky,..., K,)
and A and B are MRT matrices defined in 2.7. Then the following factorizations,
called fast digit-reversed MRTs, are true: A~ = A"MA-(m=1 A=) gngd
B = B WB~® ... B™™, where A" = diag (A0 Avar)y o

o AiaiKey g, m-1)) ® Im,. .» B~ = diag (By, g0y Bi,s11)s -+ Bl,ﬁ((NH-x.m- ) ®
®lx...  forie[l:m—1],A" ™ =A, ®Iy,,_ ,and ™ =B, I, ..
A; . (B,,,) are matrices of size Ny X K associated with A, (B) accordmg to lemma 2.3,
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but arranged along the diagonal in digit-reversed order by a] = ¢, ,, . (Si+1,m) (B T=
= Qprv1, mS1+1,m)). For i = m — 1 this ordering is natural because o, and B,,_,
are identical permutations.

Proof. As the factorization of B~ is easy to be derived by that of A~ in view
of the duality principle, we shall be concerned with A~ only. We can write by
theorem 29 A™ =S, AS) = A"MA-=1 A=) where A=W = SU+DANSOT
and S = ¢ ,«(s) is the digit reversal with respect to /' = (N, ..., N;_;, K;, ---,

K,) for each ie[1:m + 1. A™™ = 8™+D(Iy @ A,)S™T =A, ®
® Iy,,,.., by 1.8. Letie[1 : m — 1] be arbitrary and let us denote A"; = N =
= (Kiy o005 Kp)y Nj = N3P = (N, Kivygs oor Kp) and S; = @4 (S1,m)s St =
= @4;(5;,m) the associated permutations. First we shall prove that A~ =
= Si(A; ®rIg,,,,) ST ® Iy,,,.,. For F=1 this is evident because A~ ) =
= S@(A; ®rIx,,,) SMT and S@ — S; and S® = §,. For i > 1 one can split
S¢+1D and ST into two parts using 1.12, namely S('“) = SIS, -1 ®S)
and ST = (ST, ® S]) ST where SO, = o, . . ko)) SED =
= q"(_fx.t LNKm(®)  and Sy g = @4, 1(51 i-1)- Hence A~ (l) =

S§ “0(S1,0-1 @ 8D Uy, ® (A Brlyy,,,) (STios ® s,)S“’T = s§Ip.

(S1 i-151.i-1 ® Si(A; Q& I,....) SD S§'_){ = Sj(A; ®z g, ..) ST ® Iy,ooy
by 1.8. It remains to verify Sj(A; ®rIx,,,,,) ST =diag (A; 4,0y --» Ai, aKir1,m=1)-
S) and S] may be split using 1.12 once more: §; = (af ®1Ly) S; and ST =
= ST, ® Ix,) where S, = Oy Kies, () and S, = Q(ki, Kyiv1,m)8)- Hence by 2.3
(G, ® INl) SI(A( ®R IK“.l ,,.) S (ai ® IKi) = (al 2 IN;) dlag (Al [} 1 15 **°»
Al Ke+1, m-1) (@ ® Ix,) = diag (A, a(0)s +++s Ay, ai(Ki+ 1, m— 1)) 1

2.11 Corollary. If /" = X then

. ,
|[A|=|A"|= E1(| Aol 1A ]| Ai,NHl,,,.-l I)N""l, A, o= A,

and

m
|B|=|B" | = iI—-[l(l Bi,o | Bi,l oo I Bi vyt DY, B, o,=B,.
In particular A (B) is mverttble iff Ai,n (B, ,) are invertible for each ie[l:m]
and ne Zy,,,, .-

Proof./V xfand|sl|sT|—1=>|A|_|S||A||sT|-|A-|_

—_-i[]1| A~ @D where | A~®| = Apuoy | TA gyl o | Ai.m(N.“.,,.—nl)M'"’ -
=(Aol |AL1l o | ANy m—1 DY The same holds for |B|. Finally,
a square matrix over a commutative ring R with unity is invertible iff its deter-

minant 1s an invertible element i in R, 1
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+2.12 Corollary. Let /" =X and A (B) be an invertible MRT matrix. Then
A~! (B™") is an MRT matrix uniquely determined by A™* = A} @, A} ® ... @,
®L Ay (B™! = B} ®g B} Qg ... @ By) where Ai([n, ..., n,], n) =

= Ai?[:un ..... n.,d(ni’n;) (Bf(n;’ [ni’ ""nm]) = Blj[‘llun....,n,.](n;’ nl)) fOl' iE[l m-— 1]
and Ay, = A;' (BX =B, "). ' :

Proof. Let A* = AT ®, A} ®; ... ® Ap. As Af, = A} for each ie[1:m]
and neZy,,, (A o=Apand A, o = A,), we have A"WA*~® — 1 for each
i € [1:m], which means that A~A*~ =I. Consequently AA* =STA~SSTA*"S =
= STAA*"S = S7S = I . A*A = I, follows analogically. The same argumenta-
tion may be applied to B. 1

2.13 Remark. As ® is a special case of both ® and ®, in the sense of 2.2,
lemma 1.8 suggests with P, =S, and P, = S, another definition of the so
called digit-reversed generalized Kronecker product ®@g- or ®p ., namely by
S,ASy = A~ where A=A, ®g ... Qg A, and A~ = A,, ®p_ ... ®g- AT or
by S,BSy =B~ where B=B, ®; ... ®.B,, and B" =B, ®;_ ... ®,- B].
Accepting the symmetrically reversed number systems A's and ) s as the basic
ones, we can adopt A~ ([, ... 1], [kms -5 k1]) = Am(ts kyp) A 1(tm— s
[kms km=1]) - ATy, [y -.os ki]) and B™([Rp, oo mi]s [Kpy ooy Ky]) =
= By, (N> k) Brg - 1([Mms P11y Km—1) oo B{([Ns ..., 1], k;) as the defining rela-
tions for ®R. and ®; -, respectively (cf. 2.8).

The following relations between ® R and Qr- (®L and ®,.), or more prec1se]y
between A and A™ (B and B7), are easy to establish:

(1) A;7(B;) is obtained by writing columns (rows) of A, (B,) in digit-reversed
order, i.e. A = A;Sk, . (B =S, B); specifically for i =m we get A, =

(2) Let ie [I:m - 1]- Then Ai.,_k - A?,au(k)’ ke ZKl+l,m' and B':_" = Bi'ﬂ‘("),
ne Zy,,,,, where «;and B; have been defined in 2.10, and 4;” (... xey 1 (1, k) =
= Al_(n‘i’ [km’ tet ki]) and Bl'—.[nm.....m“] (ni’ kl) = Bi_([nm’ seey ni], ki)

(3) Letie [l : m—1]. Thenthe matrices A, (B,) arise from the family of matrices -
(A deezy, |, _({By,u}nezy,,, ) by grouping all columns (rows) with the same
position in each A, (B,,,,) mto blocks, more precisely A; = (A; o, Ay, .-
At,x.“,,,.—‘l) S(Ki,KHx.m.)‘(Bl' = S(TI\I.,N“x,m)(Bi',Oa Bi,‘li ey Bi,N;“,...—l)BT Wh_‘?re
BT stands for transposition of whole blocks). . i

On the other hand, the matrices A" (B ) are ob@ined from {A‘Tk}“zxm .
({Bia}nezy,,, ) by placing all A;, (B;,) side byside into one row (column),

.(fl:"l _ _ » » y _ ‘ B
more precisely A; = (ALos s Al Kivism-1) B =.(Bloy ooy B, m-1)"")

(4) Following the analogy of (2.4) and (2.5), we have for m = 2: A~ = (A~"*%3).
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and B~ = (B™"**) where A" = 4,(n,, k;) AT, and B~"™* = B,(n,, ky).
.By s which may serve as the starting-point motivation for the definition of
®r- and ®,., similarly as (2.4) and (2.5) did for ®; and ®;. :

From (4) we get immediately Iy, ® - AT = diag (AT g, ---» Al x,—1) and Iy, ®
®y- By = diag (B¢, ..., B{y,~1) as an analogy of 2.3. Thus ®z. and Q.
provide an algebraic method of forming block diagonal matrices with generally
different blocks of equal sizes along the diagonal, which is a natural extension of
Ix, ® A;(Iy, ® B,) where all blocks A7 ,,(B7,,) are equal to A;(B,). Using this
and (2) it is easy to rewrite A~ and B-® of the FDRMRT from 2.10 in terms
Of ®R~ and ®L- as fOllOWS. A M = (IKxH,m ®R- Ai ) ® IN:,!—H B~ o =
= Uy QL-B) QI . forie[l:m —1]and A~™ = A, @ Iy, .. .,
B™™ =B, ®I,,.._, in view of (1).

It is easy to establish properties of ®y- and @, . analogical to those stated by
2.4-2.6, 2.11, 2.12 for @ and ®_, either applying the relations (1) —(2) directly
or paraphrasing the appropriate proofs.

In the sense of lemma 1.8 ®z, ®; and ®g-, .- may be viewed as operations
-associated with 1 e Z([1 : m]) and s € 2([1: m)), respectively. In general of course
one can associate an operatlon Qr O or ®;, with any permutatxon pPE 97’([1 m))
by the formula PJ,AP, = A? = Al;) ®g, - Ogr, Abm) OF P,BPL —B? =
= Bj(1) ®L, -+ ®r, Bjm and derive a fast algonthm by inserting identity matrices
factored by means "of PO — @ u(p) so as this was done in the proof of 2.10
with P® = S, But for most permutations p a complex structure of the resulting
factors A?™ or B”™ is to be expected, which makes the appropriate ®g, and ®,,
less attractive for practical applications. Let us observe that it was exactly the
property 1.12 of the digit reversal that has brought about the neat form of the

factors.

2.14 Remark. Multidimensional MRT.

A=A ®A, ®..Q®A, is said to be a matrix of an r-dimensional MRT
(r 2 2) if each Aje #(N;xKj) is an MRT matrix. Clearly A’ = A'@A'¢-1 |
W AW where AV =1y, ®A® Ix;“,,, je [1:r]. Each A’U) may be ‘again
decomposed according to 2.9: Assume N; = «N,, K =K, ...K, and A} =
=A; ®g - QrA,, Ae A(N;XK; ) for a ﬁxed j. Then A"”—I Ny @
QR A™ . AW ® Iy;..,, , =A™ .. AD where AP = I; N ® (A ®x
®rIkisi,m) ® Iki,,,, is One step of the final fast r-dimensional MRT. In view
of 2.3 we can write also A =1Iy; ..., ® (A, ®x L+ tomk]sy,r) Where A e
€ M(NXK; K], ) is obtamed from A, repeating Kj, , ,-times the entry of each
column in A;. In this way steps of fast multidimensional MRT have the same
structure. as those of fast one-dimensional MRT. We can proceed similarly if
A.II =, B1 '®L ser ®L Bm'
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