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ALGEBRAIC THEORY OF FAST MIXED-RADIX 
T R A N S F O R M S : 

I. GENERALIZED KRONECKER P R O D U C T 
OF MATRICES 

VfTfiZSLAV VESELV 

(Received June 26, 1986) 

Abstract A new operation over matrices is introduced which is a generalization of the Kronecker 
(direct) product and its basic properties are derived. It is shown that matrices formed in this way 
define a class of the so called fast mixed-radix transforms as a natural generalization of the mixed-
radix fast Fourier transforms. The new operation allows a straightforward and simple derivation 
of the appropriate factorization associated with the fast algorithm. The paper will be continued. 
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transform, factorization of matrices. 
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I N T R O D U C T I O N 

Linear transforms x •-• y = Ax, where A denotes a fixed matrix and x and y 
are data vectors of appropriate sizes, are widely used in various applications. 
Multiplication of a vector x by the matrix A may become a crucial operation on 
a computer if many such transforms are to be accomplished and/or A is a large 
matrix with many non-zero elements. In such a case it is desirable to find for the 
given matrix A a "fast" algorithm that reduces the amount of scalar multiplications 
and additions accomplishing Ax. One is usually profiting from the knowledge 
of the concrete structure of A to find such a factorization A = A(m)A(m"1} ... A(1) 

into sparse matrices A(0 that A(l)x(l'"1) may be viewed with x = x ( o ) and y = x ( m ) 

as the /~th step (/ = 1, 2,.... m) of a fast algorithm. Product of such matrices is 
said to be a fast (linear) transform. 

The above approach is typical in the field of digital signal processing [1—5, 7, 8], 
where the mostly used transforms are orthogonal [3]. Chief among them is the 
discrete Fourier transform (DFT). A fast algorithm computing DFT is called fast 
Fourier transform (FFT). Discussion of various commonly used FFTs may be 
found e.g. in [1 - 4 , 7]. 
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I. J. Good [5] shows that the structure of the multidimensional FFT is character­
istic for a class of linear transforms, the matrices of which may be expressed as 
Kronecker (direct) product [6], i.e. A = At ® A2 (g) ... ® Am. Then it is easy to 
see that A0) = It ® ... ® I |- i ® At <g) li+1 <g> ... <g) Im defines the i-th step of the 
corresponding fast algorithm (Ij denotes identity matrices of appropriate sizes) 
and thus Kronecker product is a typical operation forming matrices of this class 
of (fast) transforms. Similarly another class of linear transforms may be based 
on the structure of another FFT, the so called mixed-radix FFT. I. J. Good 
develops in [5] the appropriate factors A(i) and illustrates a close relationship 
between both classes of fast transforms. Hereafter we shall call transforms of the 
latter class mixed-radix transforms (MRTs) and the corresponding fast algorithms 
fast mixed-radix transforms (FMRTs). 

There arises a natural question whether one can find a simple algebraic opera­
tion over matrices typical for MRTs and having properties admitting the deriva­
tion of factors A(0 of FMRT by simple and easy algebraic manipulations so as 
this is in the case of the Kronecker product. 

This paper gives a positive answer to this question. In Sect. 2 we define in two 
ways a new operation over matrices which may be viewed as a generalization of the 
Kronecker product. Several basic algebraic properties of this generalized Kronecker 
product are proved which allow the desired easy derivation of the FMRTs. 

1. NOTATION AND I N T R O D U C T O R Y REMARKS 

1.1 Notation 

— N . . . the set of natural numbers. 
— Z ... the set of integers. 
— ZN = {09l9...9N - 1}, NeN. 
— C ... the field of complex numbers. 
— R ... an arbitrary associative and commutative ring with unity, all matrices 

and vectors mentioned later on are over R if not stated otherwise. 
— If A is a matrix of size NxK(N9Ke N), then we shall denote A(n9 k) its entry 

in (n + l)-th row and (k + l)-th column, neZN9keZK. The set of all matrices 
of size NxK will be denoted as Jt(NxK). We write A = (Ani'kl)> Anuki e 
e M(N2 x K2), nt e ZNi, kx e ZKi for a matrix A which is structured into Nt X Ki 
blocks Ani'*Vof size N2XK2 (N = N!N2, K = KiK2), nt + 1 is the row posi­
tion and kx + 1 the column position of the block Anukl. 

— x = (x0, * ! , . . . , xiV-1)T, NeN denotes a column vector of length N, (T is 
transposition). 
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FAST MIXED-RADIX TRANSFORMS I. 

— | A | ... determinant of a square matrix A. 
— IN ... identity matrix of order N. 

— [i :I] = {k\i<k %j9 k e Z}, /, jeZ9 i < j . 
— Let N*eN for k e [i:j], then Nitj = NtNi + 1 ... Nj if i <j and NitJ = 1 

otherwise. 
— î»75 S(i9j)... Kronecker's symbol. 
— n\ m ... integer n is a divisor of integer m. 
— 0>(M) ... permutation group of the set M. 

We shall not distinguish between a permutation Pe &(ZN) and the corresponding 
matrix P e J?(NxN)9 P(n9 k) = 5„tP(k). 

1.2 Definition. A mapping Jf'. [i : j ] -• N is said to be a (finite) number system 
(NS). We shall write also Jf = (N{, Ni+1,..., N;) to visualize the function values 
jr(k) = Nk for ke [i: / ] . Alternatively the notation Jfitj will be used instead of Jf 
to emphasize the index domain [/ :j~], 

1.3 Remark. Combining a NS -/T^ with a permutation p e 0>([i:;]), we arrive 
at a permuted NS ./V^p = (Np(i)9 Np(i+i)9..., Np0)). 

1.4 Lemma. Let Jf = (N t, N2,..., Nm) be a number system associated with 
N = Nlfm. The« /he mapping [ . ^ i Z ^ x Z ^ x . . . X ZNm ~> Z^ defined as 
[nl9n29...9 nm]jf = «!N2,m + «2N3,m + ••• + nm-xNm + nm = n is a bijection. 

Proof. We proceed by induction on m. For m = 1 [.]^ is an identical mapping. 
Let m > 1. Clearly w = kNm + nm with & = [«! , . . . , w m - i ] ^ , and ^V' = (N t, 
N2,..., Nm-i). By induction hypothesis 0 < k < Nif m_t - 1 => 0 ^ A:Nm + 
+ wm < N ~ Nm + nm < N- 1 =>neZN. [.]^ is injective: n = «' = [« i ,n 2 , . . . , 
..., «m-!]^Nm + «w => Nm | (nm - nm) => nm = ww in view of 0 < | nm - nm \ < 
< Nm - 1. Hence \nl9nl9...9 «m-i],r = [wj, «2» •••» *m-i]-r and by induction 
hypothesis «f = n[ for each /e [1 : m — 1]. I 

1.5 Definition. The ordered m-tuple (nl9 n29..., nm) is called a mixed-radix 
integer representation of w = [«i, n2 , . . .»wJU w ^ r e s P e c t t 0 the number 
system ^V. 

Hereafter we shall omit the subscript Jf and write simply [ni9 n29..., nm~] 
whenever the NS is implicitely determined from the context. In particular the NS 
Jf = (Nt, N2,..., NOT) associated with the factorization N~Ni9m is assumed 
if not stated otherwise. 

1.6 Lemma. Let N == N1>m, m > 2. Tften /or each *e[ l : m - 1] it holds 
[[ni9n29...9ni]9[ni+l9ni+29...9nmJ] = [n l f n 2 , . . . ,«»]-
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V. VESELY 

Proof. [nl9 . . . , W|] e Z* l t l, [ifl+lf . . . , nm] e ZNt+i9m9 N = NltiNi+Um => 
=> [[«!, ..., h j , [n l + 1 , ..., „w]] . = [Wl, ..., W|] N.+1,M + [ni+l9 ..., wm] = 
= ("l-Yz.i + w2#3,< + ... + nt) Ni+Um + ni+lNi+2tm + ... + flm = [«!, « 2 , . . . , 
...»«»]• • 

1.7 Definition. Let us have a NS ^T = (Ni9..., N,) and N = -V,.y. We define 
a mapping <jtv : 0>([i :j"]) -• ^(Z*) as follows: 
<rV(/>) = ^ wfaere />([*„..., n^) = [« p ( 0 , . . . , npW"]^p. 

It holds <rV(I) = lN (here 1 is the identical permutation in ^([i :/])). But in 
general ^v is not a homomorphism of permutation groups, e.g. IV-. = 2, N2 = 3, 
p(l) = 2, p(2) = 1 is a counter-example. 

m> 1.8 Lemma. Let At e ^(NtxKt)for ie [1 : m], m ^ 2, JV = Ni,w, K = Ki 
JT = (N t, ..., NJ and X = (K,, ..., KJ. If we put A = A, '® ... ® Am, 
Ap = Ap(1) ® ... ® Ap(m), P^ = <?v(P) twd P^ = cpjr(p) for an arbitrary permuta­
tion p e &([l : w]), /fie/z // Zio/ds Ap = P^APj-, or equivalently Ap(P^(n)9 P#(k)) = 
= A(n9 k) for each neZN and keZK. 

P r O O f . Ap(PA[*l> •••> "m])» -*V([*1» ••> *m])) = ^p(["p(D» •••> MP(m)],Tp> 

[^J»(l)> • • • ' **(«)]*>) "^ ^P(1)(WF(1)» ^P(l)) " • ^p(m)(wp(iii)> kp(m)) — ^l(>*l> &l) ••• 

... Am(nm> km) = >4([/*i,..., «m], [fci,..., A:m]) in view of commutativity of multi­
plication in the ring R. I 

1.9 Convention. Later on we shall agree on the following notation: pitJ and \itJ 

stand for an arbitrary and identical permutation, respectively belonging to 0>([t :j~\); 
sitJ 6 0>([i :j]) denotes a permutation defined by sitJ(i + k) = j — k9 ke [0:j - i]. 
Similarly PitJ = <Pjriti(Pi,j)> I*,,, = 9jrUiiltJ

 a n d s u = <PjrUi(stj) a ^ the 
associated permutations belonging to &(ZNi $). SitJ is called the digit reversal 
with respect to the NS Jrij* Subscripts i9j may be omitted whenever / = 1 and 
j= m. We shall write also S^ to emphasize that Sjr is the digit reversal with 
respect to JT. 

1.10Theorem. LetJT = (JV l f..., Nm)9 m^landp = pui vpi+ltme&>([l :m]) 
/or jome ie [1 : m - 1]. Tfte/i <p^(p) = P =-P1#J ® Pi+ifm-

. Proof. We are going to verify P = P where P = P l f i ® P i + 1 , m . Let n = 
= [n l f . . . , nm], fc = [kl9..., fcm] e Zjy, m be arbitrary. Using 1.6 we get P(n9 k) = 

= ^[[»n-"»«i] . [«i+i ." 
..., w,], [fclf ..., fcj) P i+i.m([w i+1, . . . , i i j , [fci+i, . . . , km~\) == <5([Wl, ..., n,], 
L*#i,i<t)V •*•» ^Fi.iCOJ) ^([rtf+l* ••'•» Wm]» [^pJ + i.m(C+ 1)> •••» *Pt + i,m(m)]) = ^ ( [ « l , • • . , 

-••» «m]> [fep(l)» *••> *p(m)]) == 5».P(k) = Pi** ^)- • 
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FAST MIXED-RADIX TRANSFORMS I. 

1.11 Corollary. Let px = p 1 ( , u l ,+ i ,ma«dp2 = l i , , up i+ i ,» then p = P i . , u 
u Pi+1,m = piP2 = />2pi a"** i" == <ZV(/?) = <pAPi) <PS(P2) = V-rCPi) <PJT(PI) where 
<P*(Pl) = Pl.i ® IjV, + ,.m, «>^02) = Iff,., ® P(+l,m-

Proof. P = (P l f l ® IN,+1,J aW|., ® P |+I .J = 0-W.., ® P|+l.m)(Pl.| ® 
® IJV,+1, J is a well-known property of ®. The factors are equal to <Ps(pi) and 
<pAPi) due to 1.10 and by 4>,r.„Oi,.) = IWl„ and <?V,+,.m(1.+i.m) = h,+Um' • 

1.12 Corollary. Let i e [1 : m - 1], m ^ 2 fee arbitrary and S, = <j->(/¥,,, .»,+,,«)(*). 
Tft«*n ft Mdy ^ ( 5 1 ( J = S = S,(S.,, ® S,+ 1 , J = (S,+1 .m ® S,,,) S,. 

Proof. It is sufficient to show S = S,P with P = q>Ap)> P = si,t u si+i,m-
For each n = [nlf . . . ,«m] e ZNl m we can write in view of 1.6 s,P(n) = 
= SiPilni, ...,«m]) = si(["P(i), •••,«p(m)]) = s.([«i>«.-i> •.•,"i»nm>w»-i»...» 
•••» "i+i]) = s,([[«„ -.., «i], [«m, ••-, «,+i]]) = [[«m» -..» "i+i]» [".> •••• «i]] = 
= [««.•.., «i] = s(«). Then P = S.,, ® S,+1,m by 1.10 and also S = S,PSfS, 
where S,PS,T = S,+1,m ® S l t , by 1.8.' I 

2. G E N E R A L I Z E D K R O N E C K E R P R O D U C T OF MATRICES 

By definition, the Kronecker product A = Ax ® A2, A. e *#(JV". x Kt), A2 e 
€ M(N2 xK2) is a matrix having block form A = (A""*') e Jt{NxK), N = NXN2, 
K = KtK2 where for each nl e ZNi and fcj. e ZKl 

(2.1) A^^A&^kJA,. 

Clearly, either of the following two equations is equivalent to (2.1): 

(2.2) A""*1 = A2A?-*', A?'*' = 
= diag (Aiifii, kt),..., ,4,(«., fc.))e M(K2 xK2), 

(2.3) A"1-*' = A?'*'A2, A?"*1 = 
= diag (^ (n . , kt), ..^A^, kt)) e J((N2xN2). 

Allowing different elements to enter into the diagonal of A?1'*1 or A"t
ukl

9 

a Kronecker product generalized in two ways may be obtained according to the 
following definition. 

2,1 Definition. Generalized Kronecker product of matrices. 
Let N = NXN29 K = KtK29 Ax e Jt(Nx xKxK2\ A2 e M(N2 X K2)9 Bxe 

e Jt(NxN2 X Kx) and B2 e Jt(N2 x K2). Then the matrix A = At <&R A2 e 
e JK(NxK)(B = Bj ®L B2 € Jt(NxK)) is said to be a right (left) generalized 
Kronecker product of matrices Ax and A2 (B% and B2) if 
A\rtu n2"\9 \kl9 k2]) = Ax(nl9 \kl9 k2]) A2(n29 k2) and B(\ni9 n2}9 [kt9 k2]) » 
=-= Bx([nX9n2~\9 kx)B2(n29 k2) holds for each nteZNi and kteZKi with / = 1, -L 
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Clearly, A - (A"1'*4) where 
- * • 

J^nulci __ j ^ Zonula 

(2.4) A"/'*' = d i a g ^ . f o , [ f c j . O ] ) , ^ , [*», 1]),,.., 

- , ^ i ( « i , [ * i . - f 2 - 1])) 
and B2 = (B""*1) where 

(2.5) B""*1 = diag (*.([«., 0], *.), JJ.([«i. 1], *i). •••» 
• • • , M " i v ^ 2 - l ] . * i ) ) -

» 
2.2 Remark. Kronecker product eg) may be considered as a special case of both 

<g)K and <g>L writing instead of A = At cg> A2 either A = AltR eg)* A2 or A = 
= A l fL ®LA2 where A,*(«!, [fci, fc2]) = _4i,L([wi, n2\ kx) = A±(nl9 kx). 

2.3 Lemma. For A, e Jt(Nx xKxK2) andBt e J((N1N2xK1) it holds At <g>R IK2 = 

= Ax = (A?'*1) andBj <g)L INa = Bi = (BJ1'*1) where A\ukl andBn
x
ukl are diagonal 

matrices of (2.4) and (2.5), respectively. Moreover S(NuK2)A1SjKlfK2) = diag (A l f0, 

A l f l , ..., AlfK2_i) and S ^ ^ B i S ^ ^ = diag (B l j 0 , B l f l , ..., B l fNa-1) 
where Alfka, Blflla 6 Jt(N± X Kt)9 AUkl(nl9 k1) = A1(nl9 [kl9 k2]) and 
Bx,n2(nii ki) = #i(["i» "i]» fci) for each nt e ZNi and kt e ZKi9 i = 1, 2. 

-> 
Proof. By definition 2.1, Ax([nl9 k2], [kl9 fc2]) = A ^ i , [&i, k2]) 5t.jfka is 

the element positioned in (k2 + l)-th row and (k2 + l)-th column of the block 
-*• -> 
A*1'*1, which says that A"1'*1 is exactly the diagonal matrix of (2.4). At the same 
time it is the element in ([k2, nx"\ + l)-th row and ([k2, &i] + l)-th column of 

-*• 
S(NlfJKa)^iS5rlf£a)» which means that the only non-zero blocks of size Nt xKt are 
those with k2 = k29 i.e. Ax(nl9 [kl9 k2]) is the element in (nt + l)-th row and 
(kx + l)-th column of (k2 + l)-th diagonal block Alfjk2. For Bj is the argumenta­
tion analogical. I 

2.4 Theorem. Duality principle. 
Under assumptions of definition 2.1 it holds (At <g)R A2)T = A[ <g>L AT and 

(B1(g>LB2)
T = B T ® R B j . 

Proof. A = Ai <g>* A2 => AT([kl9 k2\ [nl9 «2]) = A([nl9 n2\ [kl9 fc2]) = 
= Ai(ni9 [kl9 k2]) A2(n2> k2) = -4T([fci, k2\ nx) A

T
2(kl9 n2) => AT = AT <g)L AT. 

(BT)T = B = Bi <g)L B2 = (BT)T <g>L (BT)T = (BT ®R BT
2)

T => BT = BT ®R BT. I 

Wfc shall prove some basic properties of <g)R and <g>L analogical to those of the 
ordinary Kronecker product <g> (cf. [6]). Moreover, these properties of ® are 
obtained by 2.2 as a special case of the corresponding properties of ®R or <g)L 

(see 2.5/2.6, 2.11 and 2.12). 
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2.5 Theorem. Either of the operations ®R and ®L is associative and distributive: 

1° lfAieJi(NiXKit3) and Bte Jt(Nit3xKi) for i = 1,2,3 then 

(At ®R A2) ®R A3 = Ai ®* (A2 ®R A3), 
(Bi ®L B2) ®L B3 = B t ®L (B2 ®L B3). 

2° 7f A„ A; e M(NX xKit2) and Bi5B; e M(Nit2 xKt) for i = 1, 2 then 

(Ai + A[) ®R A2 = A1 ®R A2 + A{ ®JR A2, 
Ai ®R (A2 + A2) = Ax ®R A2 + At ®R A2, 
(Bi + B[) ®L B2 = Bx ®LB2 + B; ® L B 2 , 
B I ®L (B2 + B2) = Bx ®L B2 + Bx ®L B;. 

Proof. We shall prove the assertion only for ®R because for ®L it follows by 
the duality principle. 

1° Ai e Jt(N1xK1K2t3)9 A2 e M(N2xK2t3) => B = Ax ®RA2e Ji(N1%2X 
xK1K2t3). A2 e Ji(N2xK2K3)9 A3 e M(N3xK3) => B = A2 ®R A3 e M(N2t3x 
XK2t3). Hence A = B ®R A3 e Jt(Nlt2N3xKlt2K3) and A = Ax ®R B e 
e M(N1N2t 3 x KiK2,3) are correctly defined matrices of the same size Nlt3xKlt3. 
We are going to prove A = A. In view of 1.6, B([nl9 n2\ [[kl9 k2"]9 &3]) = 
= B([nl9 n2\ [kl9 [k29 k3J}) = Ax(nl9 [kl9 [k29 k3J]) A2(n29 [k29 k3"]). Thus 
A([[nl9 w2], w3], [[kl9 fc2], k3]) = B([nl9 n2\ [[kl9 k2\ k3~\) A3(n39 k3) = 
^JA^(nl9 [kl9 [k29 k3J\)^A2(n29 [k29 k3*])) A3(n39 k3) = At(nl9 [kl9 [k29 k3J\). 
. B([n2, n3\ [k2, k3]) = A([nx, [n2, «3]], [kx, [k2, k3]]) holds by the associativity 
of multiplication in the ring R. Using 1.6 once more, we get A([nl9n29n3\ 

[fci, k2, k3]) = A([nt, n2, n3], [kx, k2, k3]). 
2° follows immediately by definition 2.1 and by the distributivity of multiplica­

tion in the ring R. I 

2.6 Theorem. Let A; e Jt(M{ x N,), A, e Jt(Nx x Ki% 2), B* e Jt(Nit 2 x K<) and 
BJ e J?(KiXLi) for i = 1, 2. Then it holds 

(Aj ® A2) (Ax ®R A2) = Ai'Aj ®R A2A2, 
(Bi ®L B2) (Bi ® B^) = BiB; ® L B2B^. 

Proof. Let us denote A' = A[ ® A2 e Ji(MxM2xN1N2)9 A = Ax ®R A2e 
e Ji(N1N2 xKiK2), Ai = A^Ai e Ji(M1xK1K2) and A2 = A2A2 eJt(M2xK2). 
We see that C = A'A and C = Ai ®R A2 are correctly defined matrices of the 
same size MXM2 x KXK2. We are going to show C = C. As A'i^m1, m2], [n1, n2]) = 
=- A[(ml9 nt) A2(m29 n2) by 2.2 and A([nl9n2\ [kl9 k2\) = At(nl9 [kl9 k2]). 

iVi- l iVa- l 

-A2(n29k2) by 2.1, we have C([ml9 w2], [kl9 fc2]) = £ I U i K , « i ) . 
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/ iVl~1 

. A2(m2, n2)) (Ax(nl9 [ki9 k2]) A2(n2, k2)) = ( £ At(ml9 nx) Ax(nl9 [kl9 k2])). 
"--- , „ ni=° „ 

. ( E ^(m2> w2) A2(n29 k2)) = ^1(m1, [fc^ fc2]) -42(m2, fc2) = C ^ , m2], 

[fci,fc2]) by 2.1 and in view of commutativity, associativity and distributivity 
of multiplication in the ring R. 

The assertion for ®L is easy to prove by the duality principle: 

(Bi ®L B2) (B; ® B2) = ((B; ® B ^ (Bt ®L B2) r) r = 
= «Bj[r ® B?) (B[ ®K BT))T = (B;rB[ ®* B 3 * I ) r = 
= ( (B !B ; ) T ®* (B'2B'2)

T)T = B ^ ; ®L B2Bi. I 

The associativity of <g>R and ®L allows one to extend the notion of the generalized 
right and left Kronecker product to m factors (m ^ 2): 

2.7 Definition. Mixed-radix transform. 
Let iV = N1>m, K = K1>m(m^2), Ate Jt(NtxKUm) and B fe Jt(NUmxKt) 

for 1 e [1 : m]. Then the linear transform defined by the matrix A = At ®R A2 ®R . •. 
••• ®* Am e J((NxK) or B = Bx ®L B2 ®L ... ®L BM e J((NxK) is .said to be 
a mixed-radix transform (MRT). 

2.8 Remark. It is easy to see by induction on m and in view of 1.6 that A = 
= A! ®R A2 ®R ... ®* Am iff A([nl9 ..., nm\ [kl9 ..., km"]) == Al^/h, [fclf ..., 
..., fcm]) ^2(n2, [k29 . . . , fcm]) ... >4m(«m, fcm) for each .n, 6 ZNi and *, e ZK|, / e 
€ [1 : m]. Similarly B = Bt ®L B2 ®L ... ®L Bm iff B([nl9 ..., w j , [kl9 ...9 

.. • • km]) == ^^ [n ! , . . . , nm], feO 52([«2 , . . . , w j , k2)... 5m(«m, fem) for each ^ e Z ^ 
and kteZKi9 ie[l : m]. 

2.9 Theorem. Fort mixed-radix transform.. 
If A and B are MRT matrices defined in 2.7 then the following factorizations9 

called fast mixed-radix transforms (FMRTs), take place: 
A = A^A 0 " -^ ... A(1) and B = B(1>B(2)... B(m> where for i e [1 : m] 
A(0 - I*.,--. ® (Ac ®Klic l+1 ,m)e^W,A+i,mXiV1 , i .1K f>m) <md 
B (0 - 1* , ,^ ® (B, ®L^ t + 1 Je^(K 1 > ^ 1 N j , m xK 1 > < N i + 1 > m ) . 

Proof. First we shall prove the factorization of A by induction on m. 
1. m « 2: A(2)A(1) = (1^ ® A2) ^ ®* 1^) = I ^ A / ®* A2IX2 = Ax ®* A2 = 

* A is an immediate consequence of theorem 2.6. 
2. m > 2: A = At ®R A9 where A' =- A2 ®jR ... ®* Am. By induction hypo­

thesis A' - A ' ^ - ^ ... A'(2> with A'(0 - I* . , . , ® (A, ®* IKi+ltm)9 A = 
** d*t ® A') (At ®* l f c J =. 01 ® A') A(l> and INi ® A' = INi ® 
0 (AfMAfim^ . . . A'(2>) =̂  (I*t ® A'(»>) (I*, ® A'^-1)) ... (INt ® A'(2>) where 
h% ® A'(i> = 1^ ® 1 ^ , ^ <g> (A, ®* /£|+1,m) =-= I N i ^ ® (A | ®* IX|+ltM) = A(<> 
for fe [2 :mj . 

* $ * 
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The factorization of B is an immediate consequence of the factorization of A 
wheii putting A = B r , A, = B r and using the duality principle (N, and K, inter­
change their roles): B = ((B, ®L B2 ®L ... ®t Bm)r)r = (B[ ® K Bj ®K ... ®* 
®A Kf = (Ai ®* A2 ®* ... ®* A J r = AT = (AWA*-" ... A(1))r = 
= A ( 1 ) ' A ( ^ ... A™T where B«> = A"T = (I, , , , . , ® ( A | &R INt+um)f = 
= -I*,..-.| ® ( ^ ®LlN,+ 1 , J = I*,.,-, ® (B, ®LlNl + 1,J. I 

Similarly as for FFTs (see [4, p. 88]), still more FMRTs may be obtained by 
inserting ft factored identity matrix between two factors of the appropriate matrix 
product of A or p. E.g., if P, e ^(ZNlti^lKitm) is not an identity permutation for 
all i 6 [2 : m] then A(m) = A(m)P£, A(l> = P, + -A^P* i e [2 : m - 1] and A(1) = 
= P2A(1) define another FMRT. We have A = A^A0""1*... A(1) because P,rP, 
is an identity matrix which, being inserted between factors A(0 and A(l""1}, leaves 
the matrix product unchanged. 

As in fact the factorization of B in theorem 2.9 is obtained by matrix transpose 
of A = B r , all FMRTs may be derived from the factorization A = A(m)A(ff,~1}... 
... A(1) by inserting factored identity matrix and/or by matrix transpose. 

Due to 2.3 the structure of the generating factors A(/) may be presented in a very 

simple form as a block diagonal matrix with Nlf,_! identical blocks A, along the 
—*• -*• ~*> —• 

diagonal, i.e. A(0 = diag (A,, A,, . . . , At) where Am = Am and for i e [1 : m — 1] 

each A( = (A"',kt) e Jf(N,Kl+ltmxKitm) is a matrix with At,x .£, diagonal blocks 

A?"*' = diag {Afrt, [*„ 0]), Afa, [kt, 1]), ..., At(nt, [*(, Kl+Um-l]))e 
6 ^ ( K , + l j O T XK , + 1 > m ) . 

We shall now derive an important FMRT by inserting identity matrices factored 
by the permutation of the digit reversal (see 1.9). The resulting factorization attains 
a more compact form if it is applied rather to the modified matrices A" = S^ASj-
and B~ = S^BSj- obtained by writing rows and columns of A and B in digit-
reversed order than for the A and B themselves. That is why the linear transform 
defined by A" or B~ will be termed digit-reversed MRT (DRMRT) and the cor­
responding fast algorithm fast digit-reversed MRT (FDRMRT). 

2.10 Theorem* Fast digit-reversed MRT. 
Let A~ = SsASlrandB- = S^BS£where Jf = (N l9...,Nm), Jf = (£-, . . . ,Km) 

and A and B are MRT matrices defined in 2.7. Then the following factorizations, 
called fast digit-reversed MRTs, are true: A"" = A~(m)A*~(m~1)... A~(1) and 
B~ = B- (1)B~ (2) ... B"(w), where A"(f) = diag (Au<(0), A,,..(1), . . . , 
—. Au,<*,+1,m-i>) ® Iffi-,-t» B~ ( 0 = diag ( 8 , ^ , ^ , 8 , , ^ ! ) , ...,B,>/r<(Ari+1#m-l)) <g> 
® I*.,-, for * e [1 : m - 1], A"™ = Am ® / , „ . . , and B ^ - BM ® 1 ^ , ^ . 
A*,fc (B,,„) are matrices of size N, x K, associated with A, (B,) according to lemma 2.3, 
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but arranged along the diagonal in digit-reversed order by aj = cpXt+x f m(si+i,m) (pj = 
== ^<+i,mC$*+i,m)). for / = m - 1 ffcto ordering is natural because am-! and /?„._! 
are identical permutations. 

Proof. As the factorization of B" is easy to be derived by that of A"" in view 
of the duality principle, we shall be concerned with A" only. We can write by 
theorem 2.9 A~ = S^ASj = A'MA'im"^ ... A~(1> where A~(0 = S(l + 1)A(l)S(l)r 

and S ( 0 = (pjrm(s) is the digit reversal with respect to Jf(0 = (Nx,..., Nt __ t , Kt,..., 
..., KJ for each / e [1 : m + 1]. A~(m) = S ^ 1 ^ ^ ® AJ SMT = Am ® 
® ^i.w-i by 1.8. Let i e [1 : m - 1] be arbitrary and let us denote Jf% = jVf% = 
= (Ki9 ..., KJ, Jf\ = JT^V = (Ni9 Ki+1, ..., KJ and S, = **&.*), SJ = 
= <pyt(Si,m) the associated permutations. First we shall prove that A (l) = 
= SJ(Af ®RIKI+U J S T ® INiti_i. For i = l this is evident because A~(1) = 
= S(2)(At ®RIK2t J S(1>r and S(2) = Sj and S(1> = Sx. For i > 1 one can split 
S(* + 1) and S ( i )r into two parts using 1.12, namely S(i+1> = S^V^Si t-± ® S',) 
and S(»r = (S* , - ! ® Sj) S?l\ where S ^ = 9vut_uKum{s)9'S^P = 
= ^<tfi,i-i,tf.K<+1i.m)C*) and S l f ^ ! = <P^lti^(siti-ii Hence A ( 0 = 
= si'^Si.i.i ® s;) (i^,., ® (A| ®* i*1+1, j ) (ST.,., ® sj) s£I = s(<+{>. 
. ( s ^ - s l . , - , ® SKA, ®* iKt+u j sT) s £ r = SKA, ®* i*l+lf j sf ® i ^ ^ 
by 1.8. It remains to verify SKA, ®RIKi+i, J S?=diag (A l f. l (0),..., Alf„(*l+lf „,.-.,). 
Si and S r may be split using 1.12 once more: SJ = (aT ® Î f) SJ and S r = 
= Sfo, ® IKi) where S{ = q>(Nt,Ki+i,m)(s) and S, = 9(*lf*l+lfm)(-*). Hence by 2.3 
(«? <8> W S{(A, ®* I^+lf J S/fo ® IKi) = («T ® 1 )̂ diag (Alf0, A l f l , ..., 
• •> A|,jct+1,m-i)(*i ® IjJ = diag(Aiftfi(0), ..., Aitat(Kt+um_l)). I 

2.11 Corollary. If JT ^ X then 

I A | - I A- | - fl (| A£f0 | | A M | ... | AitNt+um_t | ) " - - Amf0 = Am 

and 

I B | =- | B" | = fi(| B,,o I I B,,. | ... | B , , ^ ^ . , |)"«—, Bm,0 = Bm. 

In particular A (B) w invertible iff A,,B(B,,I1) are invertible for each i e [ l : m] 
and neZNi.Um. 

Proof. ^ = JT and | S | | ST | = 1 => | A | = | S | | A | | S r | = | A" | = 

- fi| A-<» | where | A"<'> | = (| A,„,{0) | | A,,w(1) | ... | A , ,^ , , , . . , . . , |)w"«- = 

-(IA1.0I !A..il - | A,..,,,.,.-! I)^"-1. The same holds for | B | . Finally, 
a square matrix over a commutative ring R with unity is invertible iff its deter­
minant is an invertible element in R. I 
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• 2.12 Corollary. Let Jf = X and A (B) be an invertible MRT matrix. Then 
A"1 (B""1) is an MRT matrix uniquely determined by A"1 '= A* ®L A* ®L ••• ®L 
®L Aj (B""1 = B* ®* B* ®* ... ®R BJ) where ,**([*,, ..., „„,], „,') = 
- 4 . I * * I nmi("i^;)(Bf(^,[wi,...)wm]) = BL[J<+1 nmM*ni)) forie [ l : m - i ] 
W A ^ A - ^ B ^ B ^ 1 ) . 

Proof. Let A*=-A? ® L A£® L . . . ®LA*. As A,% = A,7 * for each ie[l:m] 
and ne ZN<+ltm(A*t0 = A* and Am,0 = AJ , we have A-(£>A*~«> = IN for each 
i e [l:m], which means that A"A*"" = 1 * . Consequently AA* = STA*"SSTA*~S = 
= STA~A*~S = STS = 1̂  . A*A = lN follows analogically. The same argumenta­
tion may be applied to B. I 

2.13 Remark. As ® is a special case of both ®n and ®L in the sense of 2.2, 
lemma 1.8 suggests with P^ = S^ and Pjr = S* another definition of the so 
called digit-reversed generalized Kronecker product ®£_ or ®L_, namely by 
S^AS7- = A*" where A = Ax ®R ... ®R Am and A~ = A~ ®*_ ... ®K_ AJ or 
by S^BS^ = B" where B = B t ®L ... ®LBm and B~ = B~ ®L_ ... ®L_ B7. 
Accepting the symmetrically reversed number systems Jfs and X s as the basic 
ones, we can adopt A'([nm9 ..., nx\ [km9 ..., kx~) = A~(nm9 km) A--t(nm-l9 

[km9 km-{\) ...A~{nl9 [km9 ..., kx~) and B~([nm9 ..., wx], [km9 ..., kt]) = 
= B~(nm9 km) .Bw-i([«M, wM-,], fcm-,) ... -?7([wm, ..., /ii], kt) as the defining rela­
tions for ®a_ and ®L_, respectively (cf. 2.8). 

The following relations between ®K and ®K_ (®L and ®L_), or more precisely 
between A and A" (B and B~), are easy to establish: 

(1) A7(B7) is obtained by writing columns (rows) of A( (B() in digit-reversed 
order, i.e. A," = AjS^ m (Bf~ =_ S^^B,); specifically for / = m we get A~ = 
= Am(B~ = Bm). 

(2) Let / e [ l : m - 1]. Then A£k = Ai)(Xi(k)9 keZKt+Um and B~n=-Bitfitin)9 

ne Zjvl+1,m where at and pt havebeen defined in 2.10, and At ,[*m,...,*,+,] (fy, kt) = 
= A~(nu [km9 ..., ki]) and BJt[nm Ij+1, (ni9 kt) ~= Br([nm9 ...,/i|],fc|). 

(3) Let 1 e [1 : m - 1]. Then the matrices Af (Bt) arise from the family of matrices 
{A, k}keZr ({Bi.n}nezNt ' ) by* grouping all columns (rows) with the same 
position in each Aitk(Bif„) into blocks, more precisely Ai = (A i |0, A M , . . . 
Af,*l+1,m-i) &(Kt,Kt+itm) (Bi = S(.v,,jv,+1,m)(Bi,o> B| t i , • •-, Bi,N<+1,m-i) where 
BT stands for transposition of whole blocks). 

On the other hand, the matrices AT (B~) are obtained from {A^k}keZK 

({?'7»}««Ztfl+ltm) by placing all A~k (B~n) side by side into one row (column), 
more precisely Af « (A70, ..., A~^^J (BJ ~ (B~o> •«. Bi7iVi+i,m-i)Br^ 

(4) Following the analogy of (2.4) and (2.5), we have for m = 2: A^ =- (A"*2'*2) 
£ 
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and B~ == (B^'*2) where A~n2>k2 = A2(n2, k2) AXtk2 and B~n2>k* _= B2(n2, k2). 
. BXn29 which may serve as the starting-point motivation for the definition of 
®a_ and ®L_, similarly as (2.4) and (2.5) did for ®* and ®L. 

From(4) we get immediately1K2 ®JJ_ A^ = diag (A^o* ••-, &UK2-I) and 1^ ® 
®L_ Bx = diag (B^0, ..., B ^ - i ) as an analogy of 2.3. Thus ®^_ and ®L_ 
provide an algebraic method of forming block diagonal matrices with generally 
different blocks of equal sizes along the diagonal, which is a natural extension of 
1*2 ® ^iO-N2 ® ^i) *where all blocks A f̂c2(B7,„2) are equal to A^BJ. Using this 
and (2) it is easy to rewrite A"(0 and B"(0 of the FDRMRT from 2.10 in terms 
of ®*_ and ®L_ as follows: A~ (0 = (lKi+Um ®«- Af) ® I*-,,.., B " ( 0 = 
= fliVl+lim ®L- Bf) ® I*, . . . f 0 r i e V : m ~ J] a n d A"(W> = Am ® iNum-t* 
B~(m) = B~ ® Ij-^^. in view of (1). 

It is easy to establish properties of ®K_ and ®L_ analogical to those stated by 
2.4-2.6, 2.11, 2.12 for ®R and ®L, either applying the relations (l)-(2) directly 
or paraphrasing the appropriate proofs. 

In the sense of lemma 1.8 ®R, ®L and ®R_, ®L_ may be viewed as operations 
associated with 1 e &>([l : m]) and s e ^([1 : m]), respectively. In general of course 
one can associate an operation ®Rp or ®Lp with any permutation p e &>([l : m]) 
by the formula P^AP£ -= A* = A*(1) ®*J> ... ®„F A£(m) or P^BP£ = B* = 
= B£(1) ®Lp ... ®L B£(m) and derive a fast algorithm by inserting identity matrices 
factored by means of P ( 0 = <rV<i>(P) so as this was done in the proof of 2.10 
with P ( 0 = S(0. But for most permutations p a complex structure of the resulting 
factors Ap(m) or B*(M) is to be expected, which makes the appropriate <g>Rp and ®Lp 

less attractive for practical applications. Let us observe that it was exactly the 
property 1.12 of the digit reversal that has brought about the neat form of the 
factors. 

2.14 Remark. Multidimensional MRT. 
A' = A[ ® A2 ® ... ® Ar is said to be a matrix of an r-dimensional MRT 

(r £ 2) if each AJ€ J!(NjxKj) is an MRT matrix. Clearly A' =_. A'^A'0"1* ... 
... A'(1) where A'(» -= I*;,,., ® Aj ® I*;+I,r, je [1 : r]v Each A'(i) may be again 
decomposed according to 2.9: Assume N} = N?... Nm, Kj = Kx ... Km and AJ = 
- A , ®R... ®*Am, AteJT{NtxKttJ for a fixed j. Then A'(i) = I*;, t ® 
®A(«)...A(1)®Ix;+1,r = Ar)...A(1) where Af = I , ; i H j f i , M i 0 (A, ®K 
®*Iitl+1,m) ® I_;tllr

 i s o n e steP o f the final fast r-dimensional MRT. In view 
of 2.3 we can write also Aj° = INitJ_iNui^ ® (A; ®K Ix<+1,mK;+1,r) where A, e 
6 J((NtxKitmK'J+ltr) is obtained from A, repeating Kj+i,.-times the entry of each 
column in At. In this way steps of fast multidimensional MRT have the same 
structure as those of fast one-dimensional MRT. We can proceed similarly if 
A; = Bi ®L . . . ®LBm. . 
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