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FOR PARTIAL DIFFERENTIAL EQUATIONS
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Abstract. Using a modified theory of potential operators as given in ]6], we find explicit formulas
for the construction of the potential for the given partial differential equation.
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1. PRELIMINARIES

Let X be a real Banach space, X* its dual. Let F : X — Y be a map between two
Banach spaces. When Fhasa Gdteaux differentialatapoint xe X indirection he X
we will denote it by DF(x, h). When the map h — DF(x, k) from X to Y islinear and conti-
nuous, we say that Fhasa G dteaux derivativeat the point x and we denote this map
by DF(x) and write DF(x). h for DF(x, h). When f'is a functional (i.e. ¥ = R), we
write {Df(x), h) = Df(x). h.

Definition. Let F : X — X* and let X, be a closed subspace of X. We say that F is

a po{ential operator with respect to X,, if there exists a functional f: X - R
such that:

1. Df(x) exists for all x € X.

2. {Df(x), by = <F(x), h)
Jor all xe X and all he X,. Such functional is called a potential for F with
respect to X,.

The following theorem ([6]) is an extension of the classical theorem of Vajn-
berg [5].

Theorem. Let F : X — X* have a Gdteaux-derivative DF(x) at all x € X. Let the
Sunctional {(DF(x). h, k be continuous in X for all h, k € X. Let X, be a closed subspace
of X. Then F is a potential operator with respect to Xy, if and only if

*) This article was presented in Poster session of Equadiff 6.
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1. HOROVA

(DF(x). h, k) = <DF(x). k, h)
Jor-all h,ke X, and all x € X. '

2. FORMULATION OF THE PROBLEM AND RESULTS

Let n be a positive integer, ¢ a smooth function of real variables x, y, y;,, ..., y;,...;,
where 1 <is<n 1=<j, £..5j,<n Consider a partial differential equation

0} e(x', u(x), Dju,..,D, ..Dju)=0.

Necessary and sufficient conditions for equation (1) to be variational are given
the following relations ([2]):

@ de

= (-1 6yi£ + Z (-n" ( ) djyoyondj,s—— OSZIST,

7
m=1+1 m ayjn..-jm

where du denotes the formal (= total) derivative of a function u with respect to the
coordmate x.

alx J1

Remark. As it is proved in [1] equations (2) can be satisfied only for r even. Let
us put r = 2k.

Let 2 be a domain in R", with the Lipschitz’s boundary 02, @ = Q U 99Q. Let
X = C*(2), X, = Xresp. X; = X be subspaces of functions whose partial derivatives
up to the (k — 1)st order resp. (2k — 1)st order vanish on Q2. For the equation (1)
we define an operator_4 : X — X* by the following relation

{Au,v) = ‘_g v(x)e(x’, u, ..., Dy, ... D, u) dx.

Remark. In the next we suppose ¢ to be a sufficiently smooth function.

Theorem. The operator A is potential with respect to X, if and only if conditions (2)
are satisfied.
Proof. It is necessary to prove

(DA(ua v)a W> = <DA(M, W), l7>
for all ueXand all w,v € X,. 'We have

de
ayjl

(DA(u, v), w) = j' w Z D;,...D,vdx.

Now, we integrate by parts and first we apply partial integration on the last terms.
We can find the following expression:

a
<DA(“’ v)» W>= _jdjzk(w - )Dll "'th-nv‘ix +
a2 0Yiseim
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-~

de .
+ IWT—D’“ ...D,‘,k',lvyjudS + ..
Vitedax .
de

. = Idjzk-ld.,zk(w_——)Djl e D,u_zvdx -
2 ayjl...jzk )

' o
- Idhkw(a )Dit"'Dlzk-Zy]zk-de'F
o Vitejue )

de
UYjan ds —

100 J2k-1

de

.—!-!djzk '( _—6 j )Djl...th_zvdx +
teeed2k=1

de

+ \w———D; ...
6‘!7 aij...jzk-{ .

2k .
0
cee = Z 5P§i|),---.]|)vD]1 vee DhW dx +
1=0 Q2

2k 2k

+Y Y [P4uiisvDy, ... DDy, ... Dywy,,,, dS,
r=1r<I,ms2k 09

Dy in-, 98 + ...

where 7 1S j, component of the outer unit normal vector and P =
D,u, D;,Dj,u, ..) are defined by the following reccurence relations:

; e
PUL e d2) -
(0) ’
. ayfnn.]zk
_. de _ )
P%‘)' ShaRt ) - dhk—ln Pg{’l)’ st ’
0Yj1...jk-2
112k -1, :
Ul.-u-.i -r-1) — (J1ye0s J2k=7) (J1s ey J2Kc=7)
3 P(hk-l- --z-flzk—lr) - —P(j;k-h -ik.hk-rn) - d!zk—n lP(J;k-th:‘m.fzk—r"' 1)’

0<I1<2%—-r, O0=<rs2k

Since v € X,, w € X,, all boundary terms vanish. From (3) we can obtain

. 2k ae
PR iy =(=1) + Y ( d!lu -4y,

a}’j; Jr - m=1+1

ay!l Jm ’

e, u,

From here it follows the symmetry condition is valid if and only if the condmons @)

are satisfied.

»

Lemma. Functions PJt-0, 1 < r <2k —1,r 1, m < 2k, do not depend on . -

derivatives of the order greater than 2k.
Proof is an immediate consequence of reccurence relations (3).

Our problem consists in constructing a potential for A with respect to X,. In the
paper [6], the potential is constructed by means of a projection operator. We shall
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I. HOROVA

try to construct the potential without a definition of a projection operator, Our main
result can be formulated as follows:

.....

rslbmsg 2k — 1 do not depend on the 2k-th dertvatwes
The functional f defined by the relation

1
i
f(u) = 6(ds“!' ue(x', su, sDyu, ..., sDj, ... D; u)dx —
1 1 2k—-1 2k-1 X .
—j'sdsjds_[ Z S PL IO su, .
0o o

=r I,m=r+1
.sD; ...D; _u,ss'D; ...D;u, ...,ss'D; .. u)D; ...D;uD; _...D;uy;, dS.

12k 1

is the potential for A with respect to X,, i.e.
<Df(u), v) = <Au, v)

forallue X andve X,.
Proof. We shall write the functional fin the form

O S@w) = fi(w) — f2(),

where

1 .
fl(u) = IdS .[ us(x', S, .0 SD]l . Jzku) dx

2k—1 2k—1

fo(w) = Isdsfdss D PE:: st X

r=k l,m=r+

x(x', su, ..., ss'D;, ... Dy, ‘u) Dj, ... DjruDjm ... D;uy;,,, dS.

’Now, we calculate the Giteaux derivative of f;. We get

1
{ Df, (u),v) = {dslj;ve(x", s, ..., sD;, ... D;,u)dx

1 2k as

ds
(!s X'! = anjx Ji

Dj,...D

. ;v dx.

As we apply a partial integration for the second term and use the symmetry conditions
(2) we can write

{Dfy(w), v) = ]!ds j ve(x', su, ..., sD;, ... D;, u)dx +

+ jsdsj Z ... Dju + boundary terms =
2 a Viyoin

1
=f a[fvs(x, S, ..., sD;, ... Dy u)dx] ds +
0 2

+ boundary terms = {Au,v) + boundary terms.
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ON THE VARIATIONAL PRINCIPLES

For boundary terms (BT) we have

1 2k-1 2k-1
BT =(sdsf Y Y Pg,‘" oyt C A TR

(1] R r=01l,m=r+1
ws8Dj 5 s Dy ) Dy, ... D; 0D, ... D; uyj,., 4S.
For xe X,, itis BT = 0 and
(Dfy(u), v) = {Au,vd, ueX,velXi.
Now, we can define an operator 4 : X —» X* as follows:

{Au,v) = BT

forall v, ue X.

Then
(5) <Df1(u), U>‘ = <Au’ l)> - <1u; U)
for all u,ve X.
The operator A is potential with respect to X,, Df;(u) is potential with respect to
every subspace and then A is potential with respect to X,.

We shall prove that the potential for 4 is the functional f>(u).

Let us compute {Df,(u), v)>

It is
1 1 2k-1 2k-1
(Dfy(w),v) = [sdsfds'{ ¥ ¥
0 (1] o r=k IL,m=r+1
k—1 (...) 2k—-1 (...)
opPg: 0P
{[Z 5 £ spy, 0+ s % e Dh...th]Dh...
p=1 OVji..jp P=k Vireip
e D.irqum b D.I'lu?fr+l + P(:“)DJI e D ruD]m b Djlvyjr*l +
+ P{)D;, ... D;oD;,. ... Dhuyj,“} ds.

For v € X, we obtain : .
. T 2k=1 2k-1

1 1
(Dfy(u), vy = Js ds OI s'f ¥ ¥

o r=k l,m=r+1~

2k , aP{;
[Zss a Dji “‘Djvaj]"'DjruD]m“' Dj,u‘}’],“ +
+ Pf.;Djl b D]erjm b Djluyjr+ l] dS =

1 1 d 2k—-1 2k—-1 -
=6fsdsdf—[z DI 0 2 iy S

r=k l,m=r+1 069

i ’
(x', su, ..., sD; ...D; _u,ss'D; ...Dju,...,s8 Dn

W)D; ...D;vD; ...Djuy; dS] ds’.
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From here it follows:
(6) (Dfy(u), vy = {Au,v)

forallﬁeXandveXo.
Combining (4), (5), (6) we get our final result

(Df(u), v) = <Df(u), v) — <Df(u), v> = {Au,v) + {Au,v) — {Dfpu,v)
and forallue Xand ve X,:
- {Df(u), v) = {Au, v).

Examples. We shall illustrate the preceding theory on some examples. In all cases
conditions (2) are satisfied and we shall only construct the potential.

.9 2 Ou 0 ) 2 0u)
1 W(Igradu —(’)Y)—W(lgrddul Fy')_o (x, ).

The potential is of the form

fw) = f1() - f,(w),

where _
1 0 Ou 0 u\ ,
— 3 __v 20uy) 0 2
fi(w) = (_)[s dsJ u{ I (l grad u | ax) 5 (I grad u | oy dx dy.
1 1 ] au
fr(u)y= [sds[ds'| I:uszs'2 |gradu|*—1y, +
0 o oal- 0x
ou )’ ou [ ou\?
2,2 ’ 2.2 )
: +2ss (ax)uy1+2uss Fr (——ay)yl + ‘
2.2 2 2.2
+ us“s’“|gradu | 3y Y2 + 2575 u(——ay) y, +
2.2 au au 2 . _ 1 2 au
+25%s oy \ox ) 72 ds = Z—a‘_gulgradu| =, 5.
Then for f(u) we have

1 | ou\> (ou)? \2
10 =5 5 (&) + (5] Yarr
In the following examples the potential is constructed in a similar way.
2. O (| ou)_ 0 (lou
) ox \| 0x 0x dy \| dy

The potential takes the following form

*=2 Ju :
—a-;)=0 (x,)eQ, p> 2.

1 loulr |oul?)
f(“)—?g{—a—; + W }dxdy.
3. w'u® 4wy + é—u"z =0, x €40, 1).
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The potential is

l 1 1 1
f)=—{2Ju"u'dx + — [u"udx;.
3176 )

0

(=]

i{____l 0_“}__‘3_{ 1 2‘_}_ (x, y)eQ
0% \/l+|gradu|2 0x 9y \/1+|gradu|2 oy
The potential is of the form

ou \? ou\?
) =!;\/1 + (E> N (75;‘) dxdy.
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