Archivum Mathematicum

Ivan Chajda; Juhani Nieminen; Bohdan Zelinka
 Tolerances and orderings on semilattices

Archivum Mathematicum, Vol. 19 (1983), No. 3, 125--131
Persistent URL: http://dml.cz/dmlcz/107165

Terms of use:

© Masaryk University, 1983
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

TOLERANCES AND ORDERINGS ON SEMILATTICES

IVAN CHAJDA, JUHANI NIEMINEN, BOHDAN ZELINKA*
(Received April 4, 1982)

Let $\mathfrak{A}=(A, F)$ be an algebra. A binary relation R on \mathfrak{A} has the Substitution Property, briefly $S P$, if R is a subalgebra of the direct product $\mathfrak{A} \times \mathfrak{A}$. We shall denote by Δ the so called diagonal $\{\langle x, x\rangle ; x \in A\}$ of \mathfrak{A}. Clearly Δ has $S P$. By a tolerance we shall mean a reflexive and symmetric relation on \mathfrak{A} having $S P$. Denote by $L T(\mathfrak{H})$ the lattice of all tolerances on \mathfrak{H} ordered by set inclusion. Clearly $L T(\mathfrak{H})$ is an algebraic lattice, where Δ is its least and $A \times A$ its greatest element; see [3] and [5]. Hence, there exists the least tolerance $T(a, b)$ containing $\langle a, b\rangle$ for every two elements a, b of \mathfrak{A}.

By an ordering on \mathfrak{A} we shall mean a reflexive, transitive and antisymmetric binary relation on \mathfrak{A} having $S P$. Let \leqq be a (fix) ordering on \mathfrak{A}. Following [1] and [7],

$$
L D(\mathfrak{H})=\{R ; \Delta \subseteq R \subseteq \leqq \text { and } R \text { has } S P \text { on } \mathfrak{A}\}
$$

is the lattice of all reflexive (i.e. diagonal) binary relations having $S P$ on \mathfrak{A} and contained in \leqq. Clearly $L D(\mathfrak{H})$ is an algebraic lattice with respect to set inclusion. When a and b are two elements of \mathfrak{A} such that $a \leqq b$, we denote by $D(a, b)$ the least element of $L D(\mathfrak{U})$ containing $\langle a, b\rangle$.

Let \mathcal{L} be a lattice and \leqq its ordering. D. Schweigert [7] and H.-J. Bandelt [1] proved that the lattices $L T(\mathbb{L})$ and $L D(\mathscr{L})$ are isomorphic. We proceed to show that the situation is different for semilattices.

Theorem 1. Let $\mathfrak{S}=(S, \vee)$ be a semilattice and \leqq its induced ordering, i.e. $a \leqq b$ if and only if $a \vee b=b$. Then
(i) there exists a subset L of $L T(\mathbb{G})$ which is a lattice with respect to the order on $L T(\Im)$, and $L D(\Im)$ is isomorphic to L;
(ii) the isomorphism of (i) is a mapping $\psi: L D(\mathbb{S}) \rightarrow L$, where $\psi(R)=\{\langle x, y\rangle$; $\langle x, x \vee y\rangle \in R$ and $\langle y, x \vee y\rangle \in R\} ;$

[^0](iii) L and $L T(\Im)$ have a common least and a common greatest element i.e. $\psi(\leqq)=$ $=S \times S$ and $\psi(\Delta)=\Delta$.

Proof. Let $\zeta: L T(\Im) \rightarrow L D(\Im)$ be a mapping given by $\zeta(T)=T \cap \leqq$. It is clear that ζ and ψ are order-preserving and

$$
\begin{aligned}
\zeta \psi(R) & =\zeta(\{\langle x, y\rangle ;\langle x, x \vee y\rangle \in R \text { and }\langle y, x \vee y\rangle \in R\})= \\
& =\{\langle x, y\rangle ;\langle x, x \vee y\rangle \in \text { and }\langle y, x \vee y\rangle \in R\} \cap \leqq=R .
\end{aligned}
$$

Hence, ψ is an order-preserving one-to-one mapping of $L D(\Im)$ into $L T(\mathbb{S})$, i.e. $\boldsymbol{L D}(\mathbb{S})$ is mapped by ψ isomorphically to a lattice L which is a subset of $L T(\mathbb{S})$. Finally,

$$
\psi(\leqq)=\{\langle x, y\rangle ; x \leqq x \vee y \text { and } y \leqq x \vee y\}=S \times S
$$

and

$$
\psi(\Delta)=\{\langle x, y\rangle ; x=x \vee y \text { and } y=x \vee y\}=\Delta
$$

Remark. The lattice of Theorem 1 need not be a sublattice of $L T(\mathbb{S})$. Indeed, if \mathcal{S} is a \vee-semilattice of three elements a, b and c such that $a \vee b=c$, with $R_{1}=$ $=\{\langle a, c\rangle\} \cup \Delta$ and $R_{2}=\{\langle b, c\rangle\} \cup \Delta$, then clearly $R_{1}, R_{2} \in L D(\mathbb{S})$ and $\psi\left(R_{1} \vee R_{2}\right)=\psi(\leqq)=S \times S \neq\{\langle a, c\rangle,\langle c, a\rangle,\langle b, c\rangle,\langle c, b\rangle\} \cup \Delta=\psi\left(R_{1}\right) \vee \psi\left(R_{2}\right)$, where the join on the left is formed in $L D(\mathbb{G})$ and the join on the right is formed in $L T(\Im)$.

The next theorem characterizes semilattices \mathfrak{G} for which $L D(\mathfrak{S})$ and $L T(\mathbb{S})$ are isomorphic.

Theorem 2. Let $\mathfrak{\Im}=(S, \vee)$ be a semilattice and \leqq its induced ordering. If \mathfrak{S} is a chain, then $L D(\Im)$ and $L T(\mathbb{\Im})$ are isomorphic. If \mathfrak{G} is not a chain, then $L D(\mathfrak{G})$ is isomorphic to a proper sublattice of $L T(\mathbb{(})$.

Proof. Let ζ and ψ be the mappings of the proof of Theorem 1. When \mathbb{S} is a chain, then $\psi \zeta(T)=T$ for every $T \in L T(\Im)$, because $\psi(R)$ is the symmetric envelop of R. Applying now Theorem 1, we have $L D(\mathbb{S}) \cong L T(\mathbb{G})$.

On the contrary, suppose \mathfrak{S} is not a chain, i.e. there exist elements x, y of $\mathfrak{\subseteq}$ such that $\{x, y, x \vee y\}$ constitutes a three-element subsemilattice \mathfrak{C} of \mathbb{G}. Now we can define two different tolerances $T_{1} \in L T(\Im), T_{2} \in L T(\mathbb{S})$ such that \mathbb{C} is contained in a single block of T_{2}, but in T_{1} it is divided into two blocks one containing $\{x, x \vee y\}$ and the other $\{y, x \vee y\}$; elsewhere $T_{1}=T_{2}$ (see [3]). Then $\zeta\left(T_{1}\right)=$ $=\zeta\left(T_{2}\right)$. Suppose that there exist relations $R_{1} \in L D(\Im), R_{2} \in L D(\mathcal{S})$ such that $T_{1}=\psi\left(R_{1}\right), T_{2}=\psi\left(R_{2}\right)$. As $\zeta \psi(R)=R$ for each $R \in L D(\mathbb{G})$, we have $R_{1}=$ $=\zeta \psi\left(R_{1}\right)=\zeta\left(T_{1}\right)=\zeta\left(T_{2}\right)=\zeta \psi\left(R_{2}\right)=R_{2}$. But this implies also $\psi\left(R_{1}\right)=T_{1}=$ $=\psi\left(R_{2}\right)$, which is a contradiction. Thus at least one of the relations T_{1}, T_{2} is not an immage of a relation from $L D(\Xi)$ in the mapping ψ, and ψ maps $L D(\Im)$ onto a proper subset of $L T(\Im)$, not onto whole $L T(\mathbb{S})$.

This theorem does not exclude the case when there exists isomorphism of $L D(\mathbb{S})$ onto $L T(\Im)$ and onto a proper subset of $L T(\Im)$ simultaneously. In such a case $L T(\mathbb{S})$
would be isomorphic to its proper subset and evidently it would be infinite. We have:

Corollary 1. Let $\mathfrak{S}=(S, \vee)$ be a finite semilattice and \leqq its induced ordering. The lattices $L D(\Im)$ and $L T(\mathbb{\Im})$ are isomorphic if and only if \mathfrak{S} is a chain.

As known, the compact elements of $L T(\mathfrak{U})$ are finite joins of tolerances $T(a, b)$ for elements a, b of \mathfrak{A}, see [3]. Clearly the compact elements of $L D(\mathfrak{2 l})$ are the finite joins of $D(a, b)$ for $a \leqq b$, where \leqq is the fixordering of \mathfrak{A}. A semilattice \mathfrak{G} is called a tree-semilattice if the interval $[a, b]$ is a chain for every pair $a \leqq b$ of elements a, b in \mathfrak{S}. If \mathfrak{S} is a finite tree-semilattice, its Hasse diagram is a tree in the graph theoretical sense.

Theorem 3. Let \mathfrak{G} be a semilattice and \leqq its induced ordering, let $a \leqq b$ in \subseteq. Then:
(1) $\psi(D(a, b)) \supseteqq T(a, b)$;
(2) $\psi(D(a, b))=T(a, b)$ for every pair $a \leqq b$ of \mathfrak{S} if and only if \mathfrak{S} is a treesemilattice.

Proof. If $a \leqq b$ in $\mathfrak{\Im}$, then $D(a, b)=\{\langle x, y\rangle ; x=a \vee c, y=b \vee c$ for $c \in\} \cup \Delta$. Hence,

$$
\begin{gathered}
\psi(D(a, b))=\{\langle x, y\rangle ;\langle x, x \vee y\rangle \in D(a, b) \text { and }\langle y, x \vee y\rangle \in D(a, b)\}= \\
=\{\langle x, y\rangle ; x=a \vee c, y=a \vee d, x \vee y=b \vee c=b \vee d \text { for } c, d \in \mathbb{G}\} \cup \Delta .
\end{gathered}
$$

Choosing $c=a$ and $d=b$ we obtain, $\langle a, b\rangle \in \psi(D(a, b)) \in L T(\Theta)$, and thus $T(a, b) \cong \psi(D(a, b))$.

Now, let \subseteq be a tree-semilattice. Then $a \leqq a \vee d \leqq b \vee d$ and $a \leqq a \vee c \leqq$ $\leqq b \vee c=b \vee d$, whence both $a \vee c$ and $a \vee d$ lie in the interval $[a, b \vee d]$. Since \mathbb{S} is a tree-semilattice, $[a, b \vee d]$ is a chain, whence $a \vee c$ and $a \vee d$ are comparable. Then
$\psi(D(a, b))=\{\langle x, y\rangle ;\langle x, y\rangle \in D(a, b)\} \cup\{\langle x, y\rangle ;\langle y, x\rangle \in D(a, b)\} \cup \Delta=T(a, b)$.
On the contrary, if \mathfrak{S} is not a tree-semilattice, there exist elements a, b, c of \subseteq such that a and b are non-comparable and c is a lower bound of a and b. Thus $\{c, a, b, a \vee b\}$ constitutes a four-element subsemilattice of \mathbb{S}, where we denote briefly $d=a \vee b$. Since $\langle a, d\rangle=\langle a \vee c, a \vee d\rangle \in D(c, d)$ and $\langle b, d\rangle=\langle b \vee c, b \vee d\rangle \epsilon$ $\in D(c, d)$, we have $D(c, d)=\{\langle c, d\rangle,\langle a, d\rangle,\langle b, d\rangle\} \cup \Delta$, and moreover, $\psi(D(c, d))=$ $=\{\langle c, d\rangle,\langle d, c\rangle,\langle a, d\rangle,\langle d, a\rangle,\langle b, d\rangle,\langle d, b\rangle,\langle a, b\rangle,\langle b, a\rangle\} \cup \Delta$. The other parts but $\langle a, b\rangle \in \psi(D(c, d)$) are trivial, and $\langle a, b\rangle \in \psi(D(c, d))$ follows from $\langle a, a \vee b\rangle=\langle a, d\rangle \in D(c, d)$ and $\langle b, a \vee b\rangle=\langle b, d\rangle \in D(c, d)$. However, $T(c, d)=$ $=\{\langle c, d\rangle,\langle d, c\rangle,\langle a, d\rangle,\langle d, a\rangle,\langle b, d\rangle,\langle d, b\rangle\} \cup \Delta$ as we can easily see [6], [8]. Hence $T(c, d) \neq \psi(D(c, d))$, and the assertion follows.

The foregoing theorem gives a characterization of tree-semilattices by means of tolerances $T(a, b)$ and diagonal relations $D(a, b)$. In the next part we proceed to give an explicite description of $D(a, b)$.

Let \leqq be a (fix) ordering on an algebra \mathfrak{H}. We denote by $L O(\mathfrak{H})$ the set of all orderings on \mathfrak{U} contained in \leqq. Clearly also $L O(\mathfrak{H})$ is a complete lattice. Hence, if $a \leqq b$ in \mathfrak{A}, there is a least element in $L O(\mathfrak{H})$ containing $\langle a, b\rangle$, and we shall denote that element by $P(a, b)$.

Theorem 4. Let \mathfrak{S} be a semilattice and \leqq its induced ordering. If $D \in L D(\mathbb{S})$, then the transitive closure $C(D)$ of D is an ordering on \mathbb{S}, i.e. $C(D) \in L O(\mathbb{S})$.

Proof. Because $D \leqq \leqq$, also $C(D) \leqq \leqq$. Now, if $C(D)$ has $S P$, then it is an ordering on \subseteq, and thus it remains to prove $S P$ for $C(D)$. Suppose $\langle a, b\rangle,\langle c, d\rangle \in$ $\in C(D)$. Then there exist elements $x_{0}, x_{1}, \ldots, x_{m}, y_{0}, y_{1}, \ldots, y_{n}$ such that $a=$ $=x_{0} \leqq x_{1} \leqq \ldots \leqq x_{m}=b$ and $c=y_{0} \leqq y_{1} \leqq \ldots \leqq y_{n}=d$, where $\left\langle x_{i}, x_{i+1}\right\rangle \in$ $\in D$ for $i=0,1, \ldots, m-1$ and $\left\langle y_{j}, y_{j+1}\right\rangle \in D$ for $j=0,1, \ldots, n-1$. Without loosing generality we assume that $m \leqq n$, and put $x_{i}=b$ for $m \leqq i \leqq n$. Let now $z_{i}=x_{i} \vee y_{i}$ for $i=0,1, \ldots, n$. Then $a \vee c=z_{0} \leqq z_{1} \leqq \ldots \leqq z_{n}=b \vee d$ and $\left\langle z_{i}, z_{i+1}\right\rangle \in D$ for $i=0,1, \ldots, n$ because of $S P$ of D. Hence $\langle a \vee c, b \vee d\rangle \in C(D)$ and $C(D)$ has $S P$.

Theorem 5. Let \mathfrak{S} be a semilattice with the induced ordering \leqq, a, b two elements of \subseteq, and $a \leqq b$. Then $D(a, b)=P(a, b)$.

Proof. Evidently, $D(a, b)=\{\langle a \vee x, b \vee x\rangle ; x \in \mathbb{S}\} \cup \Delta$. We shall prove the transitivity of $D(a, b)$. Let c, d and e be elements of \mathfrak{S} such that $c \leqq d \leqq e$ and $\langle c, d\rangle,\langle d, e\rangle \in D(a, b)$. If $c=d$ or $d=e$, there is nothing to prove. Suppose that $\langle c, d\rangle=\langle a \vee x, b \vee x\rangle$ and $\langle d, e\rangle=\langle a \vee y, b \vee y\rangle$ for some elements $x, y \in \mathbb{S}$. Then $d=b \vee x=a \vee y$, and moreover, $d=d \vee d=a \vee b \vee x \vee y=$ $=b \vee x \vee y \geqq b \vee y=e$. Because $d \leqq e$ and $d \geqq e$, we have $d=e$, whence also $\langle c, e\rangle=\langle c, d\rangle \in D(a, b)$, and thus $D(a, b)$ is transitive. Then $D(a, b) \in L O(\Im)$ and the equality $D(a, b)=P(a, b)$ is evident.

Theorem 6. Let \mathfrak{S} be a tree-semilattice and \leqq its induced ordering. If $a, b \in \mathbb{S}$ and $a \leqq b$, then $D(a, b)=\{\langle x, b\rangle ; a \leqq x \leqq b\} \cup \Delta$.

Proof. By Theorem $5, D(a, b)=P(a, b)$, and thus $D(a, b)$ is the least ordering on \subseteq containing the ordered pair $a \leqq b$. Let $R=\{\langle x, b\rangle ; a \leqq x \leqq b\} \cup \Delta$. By putting $x=a$, we obtain $\langle a, b\rangle \in R$, and according to the definition of $R, R \subseteq$ $\subseteq D(a, b)$. It remains to prove that R has $S P$. Suppose $\left\langle y_{1}, z_{1}\right\rangle,\left\langle y_{2}, z_{2}\right\rangle \in R$, and if $\left\langle y_{1}, z_{1}\right\rangle,\left\langle y_{2}, z_{2}\right\rangle \in \Delta$, there is nothing to prove. If $\left\langle y_{1}, z_{1}\right\rangle \in \Delta$ and $\left\langle y_{2}, z_{2}\right\rangle \in R \backslash \Delta$, then $y_{1}=z_{1}, z_{2}=b$ and $a \leqq y_{2} \leqq b$. These fact imply that $\left\langle y_{1} \vee y_{2}, z_{1} \vee z_{2}\right\rangle=\left\langle y_{1} \vee y_{2}, y_{1} \vee b\right\rangle$. If $y_{1} \leqq b$, then $a \leqq y_{1} \vee y_{2} \leqq b$ and $z_{1} \vee z_{2}=y_{1} \vee b=b$, and thus $\left\langle y_{1} \vee y_{2}, z_{1} \vee z_{2}\right\rangle \in R$. In the opposite case $y_{1} \vee b>b$. On the other hand b and $y_{1} \vee y_{2}$ belong to the interval $\left[y_{2}, y_{1} \vee b\right]$,
and because \subseteq is a tree-semilattice, b and $y_{1} \vee y_{2}$ are comparable. The inequality $y_{1} \vee y_{2} \leqq b$ implies that $y_{1} \leqq b$, which is a contradiction. Thus $y_{1} \vee y_{2}>b$, and moreover, $y_{1} \vee y_{2}=y_{1} \vee b$. Hence, $\left\langle y_{1} \vee y_{2}, z_{1} \vee z_{2}\right\rangle=\left\langle y_{1} \vee y_{2}, y_{1} \vee b\right\rangle \in \Delta \subseteq$ $\subseteq R$.

If $\left\langle y_{1}, z_{1}\right\rangle \in R \backslash \Delta$ and $\left\langle y_{2}, z_{2}\right\rangle \in R \backslash \Delta$, then according to the proof above we have $\left\langle y_{1} \vee y_{2}, z_{1} \vee y_{2}\right\rangle,\left\langle z_{1} \vee y_{2}, z_{2} \vee y_{2}\right\rangle \in R$. Because R is trivially transitive, we obtain $\left\langle y_{1} \vee y_{2}, z_{1} \vee z_{2}\right\rangle \in R$, and thus R has $S P$.

Theorem 7. Let \mathfrak{S} be a tree-semilattice with the induced ordering \leqq and P a reflexive binary relation on \mathcal{S} contained in \leqq. Then $P \in L D(S)$ if and only if $\langle a, b\rangle \in P$ implies $\langle x, b\rangle \in P$ for any elements $a, b, x \in \subseteq$ such that $a \leqq x \leqq b$.

Proof. If $P \in L D(\Im)$ and $\langle a, b\rangle \in P$, then for any $x, a \leqq x \leqq b,\langle x, b\rangle=$ $=\langle a \vee x, b \vee x\rangle \in P$, and the first part of the proof follows.

Conversely, suppose that P has the property $\langle a, b\rangle \in P$ implies $\langle x, b\rangle \in P$ for any $a, b, x \in \mathbb{S}$ with $a \leqq x \leqq b$. We shall prove $S P$ of P. Let $\langle a, b\rangle,\langle c, d\rangle \in P$. If b and d are incomparable, then $a \vee c=b \vee d$, because \subseteq is a tree-semilattice, and thus $\langle a \vee c, b \vee d\rangle \in \Delta \leqq P$. If e.g. $b \leqq d$, then $b \vee d=d$ and $c \leqq a \vee c \leqq$ $\leqq b \vee d=d$. But then $\langle c, d\rangle \in P$ implies $\langle a \vee c, b \vee d\rangle=\langle a \vee c, d\rangle \in P$ according to the property of P. The case $d \leqq b$ is analogous.

Corollary 2. Let \subseteq be a tree-semilattice with the induced ordering \leqq and P a reflexive, antisymmetric and transitive binary relation on \mathfrak{S} with $P \subseteq$. Then $P \in L O(\mathcal{S})$ if and only if $\langle a, b\rangle \in P$ implies $\langle x, b\rangle \in P$ for any elements a, b, x of \subseteq with $a \leqq x \leqq b$.

Remark. Theorem 7 and its Corollary give a possibility to describe the join operation in $L D(\Im)$ and in $L O(\Im)$, respectively, when \subseteq is a tree-semilattice.

The join \vee in $L D(\mathcal{G}): P, Q \in L D(\Im) \Rightarrow P \vee Q=P \cup Q$.
The join \vee in $L O(\Im): R, U \in L O(\subseteq) \Rightarrow R \vee U$ is the transitive closure of $R \cup U$.
The remaining part of the paper is devoted to the extension properties of relations of $L D(\mathcal{S})$ and $L O(\mathcal{S})$. The first attempt to study the extension property of other relations than congruences was done by Chajda in [2] for relations of $L T(\mathcal{S})$. We recall first briefly the necessary concepts:

A class © of algebras satisfies the Tolerance Extension Property (briefly TEP) if for every $\mathfrak{A} \in \mathbb{C}$ and every subalgebra \mathfrak{L} of \mathfrak{A}, each tolerance T on \mathfrak{L} is the restriction of some tolerance T^{*} on \mathfrak{A}, i.e. $T=T^{*} \cap(\mathfrak{L} \times \mathfrak{R})$.

Proposition. (Theorem 2 and the Example in [2]) Every class of tree-semilattices satisfies TEP. The variety of all semilattices does not satisfy TEP.

We can define the extension property analogously for relations of $L D(\mathfrak{H})$ and $L O(\mathfrak{H})$:

Definition. Let \mathbb{C} be a class of ordered algebras such that every \mathfrak{A} of \mathbb{C} is ordered by a fixordering $\leqq \mathfrak{C}$ satisfies the Extension Property of Orderings if for every
$\mathfrak{A} \in \mathbb{C}$ and for every subalgebra \mathfrak{L} of \mathfrak{A}, each $P \in L O(\mathbb{L})$ is the restriction of some $P^{*} \in L O(\mathfrak{H})$. \mathbb{C} satisfies the D-Extension Property if for every $\mathfrak{A} \in \mathbb{C}$ and for every subalgebra \mathfrak{L} of \mathfrak{A}, each $D \in L D(\mathbb{L})$ is the restriction of some $D^{*} \in L D(\mathfrak{A})$.

Theorem 8. The variety of all semilattices has the D-Extension Property.
Proof. Let \Im_{0} be subsemilattice of a semilattice $\mathfrak{S}, D_{0} \in L D\left(\Im_{0}\right)$, and let us consider the relation $D=D_{0} \cup \Delta \cup\left\{\langle a \vee x, b \vee x\rangle ;\langle a, b\rangle \in D_{0}\right.$ and $\left.x \in \mathbb{S}\right\}$. Then clearly $D_{0}, \Delta \subseteq D$, and we shall prove that $D \in L D(\mathbb{S})$. If $\langle c, d\rangle,\langle e, f\rangle \in D_{0}$, then $\langle c \vee e, d \vee f\rangle \in D_{0} \subseteq D$ according to $S P$ of D_{0} and the definition of D. If $\langle c, d\rangle \in D_{0}$ and $\langle e, f\rangle \in \Delta$, the proof follows from the definition of D, as well as in the case $\langle c, d\rangle,\langle e, f\rangle \in \Delta$. Thus suppose $\langle c, d\rangle=\langle a \vee x, b \vee x\rangle$ for $\langle a, b\rangle \in$ $\in D_{0}$ and $x \in \mathbb{S}$. If $\langle e, f\rangle \in D_{0}$, then $\langle c \vee e, d \vee f\rangle=\langle a \vee e \vee x, b \vee f \vee x\rangle$, where $\langle a \vee e, b \vee f\rangle \in D_{0}$, whence $\langle c \vee e, d \vee f\rangle \in D$. If $\langle e, f\rangle \in \Delta$, the proof is trivial. Thus, let $\langle e, f\rangle=\left\langle a^{\prime} \vee x^{\prime}, b^{\prime} \vee x^{\prime}\right\rangle$ for some $\left\langle a^{\prime}, b^{\prime}\right\rangle \in D_{0}$ and $x^{\prime} \in \mathbb{G}$. Then $\langle c \vee c, d \vee f\rangle=\left\langle a \vee a^{\prime} \vee x \vee x^{\prime}, b \vee b^{\prime} \vee x \vee x^{\prime}\right\rangle$, and on the other hand, by $S P$ of $D_{0},\left\langle a \vee a^{\prime}, b \vee b^{\prime}\right\rangle \in D_{0}$. Therefore, $\langle c \vee e, d \vee f\rangle \in D$, and the $S P$ of D follows. But then $D \in L D(\mathbb{G})$, and so it remains to prove that $D \cap\left(\Theta_{0} \times \mathbb{S}_{0}\right)=$ $=D_{0}$. Let $\langle a \vee x, b \vee x\rangle \in D$ such that $\langle a, b\rangle \in D_{0}$ and $x \in \mathbb{S} \backslash \mathfrak{S}_{0}$. If $a \vee x \in \mathcal{S}_{0}$, then $b \vee a \vee x=(b \vee a) \vee x=b \vee x$, because $a \leqq b$, and thus $b \vee x \in \mathbb{S}_{0}$. Hence $\langle a \vee x, b \vee x\rangle \in D_{0}$ and $D \cap\left(\Im_{0} \times \mathfrak{S}_{0}\right) \subseteq D_{0}$. The converse is trivial, and the desired property follows.

The first attempt to characterize the Extension Property of Orderings was done in [4] for a single algebra $(\mathbb{C}=\{\mathfrak{A}\})$. The next theorem solves the problem of Extension Property of Orderings on semilattices:

Theorem 9. The variety of all semilattices has the Extension Property of Orderings.
Proof. Let \mathbb{G}_{0} be a subsemilattice of a semilattice \mathfrak{G} and $P_{0} \in L O\left(\mathcal{S}_{0}\right)$. Let $P=P_{0} \cup \Delta \cup\left\{\langle a \vee x, b \vee x\rangle ;\langle a, b\rangle \in P_{0}\right.$ and $\left.x \in \mathbb{G}\right\}$ and $C(P)$ be the transitive closure of P. According to Theorems 4 and $8, C(P) \in L O(G)$ and $P_{0} \subseteq C(P) \cap$ $\cap\left(S_{0} \times \mathcal{S}_{0}\right)$. Thus it remains to prove that $C(P) \cap\left(\mathcal{S}_{0} \times \mathcal{S}_{0}\right) \subseteq P_{0}$. Let $c, d \in \mathfrak{S}_{0}$ and $\langle c, d\rangle \in C(P) \backslash P$. According to the proof of Theorem $8,\langle c, d\rangle \notin P \backslash P_{0}$. Therefore, there exist elements $y_{0}, y_{1}, \ldots, y_{n}$ such that $c=y_{0} \leqq y_{1} \leqq \ldots \leqq y_{n}=$ $=d,\left\langle y_{i}, y_{i+1}\right\rangle \in P$ for $i=0,1, \ldots, n-1$ and at least one pair $\left\langle y_{j}, y_{j+1}\right\rangle \notin P_{0}$. Then by the proof of Theorem $8, y_{j} \notin \Im_{0}$. Hence also $\left\langle y_{j-1}, y_{j}\right\rangle \notin P_{0}$ and $y_{j-1} \notin$ $\notin \mathfrak{S}_{0}$. By induction we conclude that $y_{k} \notin \mathfrak{S}_{0}$ for all $k \leqq j$, and thus $c \notin \mathfrak{S}_{0}$, which is a contradiction. Accordingly, $P_{0} \supseteqq C(P) \cap\left(\mathbb{S}_{0} \times \mathbb{S}_{0}\right)$ holds, and the theorem follows.

REFERENCES

[1] Bandelt, H.-J.: Tolerance relations on lattices, Bull. Austral. Math. Soc. 23 (1981), 367-381. [2] Chajda, I.: On the tolerance extension property, Casop. pěst. mat. 103 (1978), 327-332.
[3] Chajda, I.: Recent results and trends in tolerances on algebras and varietes, Colloq. Math. Soc. Janos Bolyai 28: Finite Algebra and Multiple-Valued Logic, North Holland 1981, 69-95.
[4] Chajda, I.: The extension property of orderings, Acta Math. Acad. Sci. Hung. 34 (1979), 253-255.
[5] Chajda, I., Zelinka, B.: Lattices of tolerances, Časop. pěst. mat. 102 (1977), 10-24.
[6] Nieminen, J.: Tolerance relations on join-semilattices, Glasnik Mat. (Zagreb) 12 (1977), 143 to 146.
[7] Schweigert, D.: Compatible relations on modular and orthomodular lattices, Proc. Amer. Math. Soc. 81 (1981), 462-464.
[8] Zelinka, B.: Tolerance relations on semilattices, Comm. Math. Univ. Carolinae 16 (1975), 333-338.
I. Chajda, třida LM 22, 75000 Přerov, Czechoslovakia
J. Nieminen, University of Oulu, 90570 Oulu 57, Finland
B. Zelinka, Katedra mat. VŠST, Komenského 2, 46117 Liberec, Czechoslovakia

[^0]: *) The present paper was written during the scientific activity of the first of authors at the Computing Center of J. E. Purkyně University of Brno, 1982.

