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TOLERANCES AND ORDERINGS 
ON SEMILATTICES 

IVAN CHAJDA, JUHANI NIEMINEN, BOHDAN ZELINKA* 
(Received April 4,1982) 

Let 91 = (A, F) be an algebra. A binary relation R on 91 has the Substitution 
Property, briefly SP9 if R is a subalgebra of the direct product 91 x 91. We shall 
denote by A the so called diagonal {<*, x}; x e A} of 91. Clearly A has SP. By 
a tolerance we shall mean a reflexive and symmetric relation on 91 having SP. 
Denote by LJ(9I) the lattice of all tolerances on 91 ordered by set inclusion. 
Clearly Z,r(9I) is an algebraic lattice, where zl is its least and Ax A its greatest 
element; see [3] and [5]. Hence, there exists the least tolerance T(a, b) containing 
<a, by for every two elements a, b of 91. 

By an ordering on 91 we shall mean a reflexive, transitive and antisymmetric 
binary relation on 91 having SP. Let S be a (fix) ordering on 91. Following [ I ] 
and [7], 

£D(9l) = {R; A s R £ £ and R has SP on 91} 

is the lattice of all reflexive (i.e. diagonal) binary relations having SP on 91 and 
contained in g . Clearly LZ)(9l) is an algebraic lattice with respect to set inclusion. 
When a and b are two elements of 91 such that a g b, we denote by D(a9 b) the 
least element of Z,D(9t) containing (a, by. 

Let £ be a lattice and g its ordering. D. Schweigert [7] and H.-J. Bandelt [1] 
proved that the lattices LT(2) and LD(2) are isomorphic. We proceed to show that 
the situation is different for semilattices. 

Theorem 1. Let S -= (S, V) be a semilattice and S its induced ordering, i.e. 
a <! b if and only if a V b = b. Then 

(i) there Exists a subset L ofLT(<S) which is a lattice with respect to the order 
on JLr(®), and LD(Q) is isomorphic to L; 

(ii) the isomorphism of(i) is a mapping i// : LD(S) -» L, where \J/(R) -= {<.*, j/>; 
<x, x V y> e R and <y9 x V v ) e R}; 

*) The present paper was written during the scientific activity of the first of authors at the Comput
ing Center of J. E. PurkynS University of Brno, 1982. 
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(iii) L andLT(<5) have a common least and a common greatest element i.e. ^ ( = ) = 
= SxS and$(A) = A. 

Proof. Let £ :LT(<5) -> LD(<5) be a mapping given by C(J) = Tn <\ It is 
clear that £ and ij/ are order-preserving and 

£i//(R) = £({<*, y>;<x,xVy>eR and <;>, x V j ) e ^ } ) = 

= {<•*> y>; <*> ^ V j ) e and (y, x V >>> e i£} n ^ = i?. 

Hence, ^ is an order-preserving one-to-one mapping of LD(5) into LT(<5), i.e. 
£D(S) is mapped by ij/ isomorphically to a lattice L which is a subset of LT(<5). 
Finally, 

iM = ) = {<*> J>5 * = x V y a n d
 rV^XV)'} = 8X8 

and 
\j/(A) = {<*, v);x = .xVj and y = x V y} = zl. D 

Remark. The lattice of Theorem 1 need not be a sublattice of LT(<5). Indeed, 
if S is a V-semilattice of three elements a, b and c such that a V b = c, with Jit = 
= {<#, c>} u A and i£2 = {<£, c>} u zl, then clearly Rt, R2eLD(<5) and 
*K#i Vi?2) = ^ ) = 8 x S ^ {<a, c>, <c, a}, <Jb, c>, <c, fe>} u A = <K*i) V «K-R2), 
where the join on the left is formed in Z,D(S) and the join on the right is formed 
in LT(<5). 

The next theorem characterizes semilattices S for which LD(<5) and LT(<5) arc 
isomorphic. 

Theorem 2. Let S = (S, V) be a semilattice and ^ its induced ordering. If S 
is a chain, then LD(<5) and LT(<5) are isomorphic. If S is not a chain, then LD(<5) 
is isomorphic to a proper sublattice ofLT(5). 

Proof. Let £ and x// be the mappings of the proof of Theorem 1. When S is 
a chain, then iK(r) = T for every TeLT(<5), because \j/(R) is the symmetric 
envelop of R. Applying now Theorem 1, we have LD(<5) £ LT(<5). 

On the contrary, suppose S is not a chain, i.e. there exist elements x, y of S 
such that {x, y, xv y} constitutes a three-element subsemilattice £ of S. Now we 
can define two different tolerances Tt e LT(<5), T2 € LT(<5) such that (£ is contained 
in a single block of T2, but in T1 it is divided into two blocks one containing 
{x, x V y} and the other {y, x V y}; elsewhere Tt = T2 (see [3]). Then f(Ti) = 
= t(T2). Suppose that there exist relations RteLD(<5), R2eLD(<5) such that 
Tx = $(RX), T2 = #(.R2). As W(R) = R for each ReLD(<5), wethave Rt = 
« W(Rt) = C(TX) = £(T2) = £^(JR2) = R2. But this implies also +(RX) - Tx = 
« ^(U2), which is a contradiction. Thus at least one of the relations Tx, T2 is 
not an immage of a relation from LD(<5) in the mapping t//, and \jf maps £D(S) 
onto a proper subset of LT(<5), not onto whole LT(<5). D 

This theorem does not exclude the case when there exists isomorphism of LD(S) 
onto LT(<5) and onto a proper subset of LT(<5) simultaneously. In such a caseLlXS) 
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would be isomorphic to its proper subset and evidently it would be infinite. We 
have: 

Corollary 1. Let S = (S, v) be a finite semilattice and S its induced ordering. 
The lattices LD(<S) and LT(S) are isomorphic if and only if S is a chain. 

As known, the compact elements of LT0S) are finite joins of tolerances T(a9b) 
for elements a, b of 91, see [3]. Clearly the compact elements of LZ)(9l) are the 
finite joins of D(a, b) for a :g b, where 5* is the fixordering of 91. A semilattice S 
is called a tree-semilattice if the interval [a, fc] is a chain for every pair a <J b 
of elements a, b in S. If S is a finite tree-semilattice, its Hasse diagram is a tree 
in the graph theoretical sense. 

Theorem 3. Let S be a semilattice and S its induced ordering, let a £ b in S. 
Then: 

(l)^(D(a,b))^T(a,b); 
(2) il/(D(a, b)) = T(a, b) for every pair a g b of S if and only if S is a tree-

semilattice. 
Proof. If a ^ b in S, then D(a, b) = {<*, y}; x = a V c, y = b V c for c 6 } u A. 

Hence, 

xl/(D(a, b)) = {<*, y}; <x, x V j> e D(a, 6) and <j, x V ;;> e D(a, b)} « 
= {<*> y>; x = aVc,y~aVd,xVy~bVc~bVdfoi c9deS} KJ A. 

Choosing c — a and d = & we obtain, <a, 6> e ^(D(a, i)) 6 LT(<S)9 and thus 
r(fl,ft)g^(-0(fl,*)). 

Now, let S be a tree-semilattice. Then a £ aV d £ bV d and a g a V c ^ 
£bVc = bvd, whence both a V c and a V tflie in the interval [a, i v J ] . Since S 
is a tree-semilattice, [a, £ V d\ is a chain, whence aV c and aV d axe comparable. 
Then 

ijf(D(a, b)) = {<*, >>>; <x, j>> e D(a, *)} u {<*, y>; <>>, *> e Z>(a, * ) } ^ s ^ *)• 

On the contrary, if S is not a tree-semilattice, there exist elements a, b9 c of S 
such that a and b are non-comparable and c is a lower bound of a and b. Thus 
{c, a9b9av b} constitutes a four-element subsemilattice of S, where we denote 
brieflyd=* avb. Since <a,<f> = <a V c,a Vd) eD(c,d)and (b9d} « <fcv c9bvd}e 
e D(c9 d)9 we have D(c, d) = {<c, rf>, <a, rf>, <d, d}} u 4, and moreover, $(D(c9 d))*** 
- {<c, rf>, <</, c>, <a, <*>, <4 a>, <&, rf>, <tf, &>, <a, *>, <6, a>} u A. The other 
parts but <a, d> € ̂ (D(c, J)) are trivial, and <a, fc> e \//(D(c9 d)) follows from 
<a, avby ~ (a9 d} e D(c9 d) and <6, a V fc> » <£, rf> e 2>(c, rf). However, J(c, d) « 
3:8 {<c, rf>, <<£ c>» <a> <0» <rf» «>, <*, ^>, <rf, *>} u id as we can easily see [6], [8]. 
Hence T(c9 d) ¥> $(D(c, d))9 and the assertion follows. D 
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The foregoing theorem gives a characterization of tree-semilattices by means 
of tolerances T(a, b) and diagonal relations D(a, b). In the next part we proceed 
to give an explicite description of D(a, b). 

Let <£ be a (fix) ordering on an algebra 91. We denote by LO(V) the set of all 
orderings on 91 contained in ^ . Clearly also .LO(9I) is a complete lattice. Hence, 
if a <J b in 91, there is a least element in LO(9l) containing <a, b}, and we shall 
denote that element by P(a, b). 

Theorem 4. Let & be a semilattice and S its induced ordering. If De LD(S), 
then the transitive closure C(D) of D is an ordering on <5, i.e. C(D) eL0(<5). 

Proof. Because D c = , also C(D) £ =\ Now, if C(D) has SP9 then it is an 
ordering on ©, and thus it remains to prove SP for C(D). Suppose <a, &>, <c, d> e 
eC(D). Then there exist elements x0,;Vi, ..., xm, y0, yl9 ...9yn such that a = 
= x0 S xx S ... ^ xm = * and c = y0 = yx = ... <; ^ = d, where <xi9 xi+1y e 
GD for i = 0, 1, ..., m - 1 and <y/,yy+i> GD for j = 0, 1, ..., n - 1. Without 
loosing generality we assume that m ^ n, and put xt = b for m ^ i ^ n. Let now 
zt = xtV yt for i = 0, 1, ..., n. Then aVc = z0 £ zt S • •• S zn = b V d and 
<Zj, zl+1> G D for i = 0, 1, ..., n because of SP of D. Hence <a V c, 6 V d> e C(D) 
and C(D) has SP. • 

Theorem 5. £cf <Z be a semilattice with the induced ordering S, a,b two elements 
of ©, a«d a ^ b. Then D(a, b) = P(a, b). 

Proof. Evidently, D(a, b) = « a V x,b V xy; x e &} v A. We shall prove the 
transitivity of D(a, b). Let c, d and e be elements of (5 such that c ^ d <£ c and 
<c, d>, <d, e> G D(a, b). If c = d or d = c, there is nothing to prove. Suppose 
that <c, d> = <a V x, b V x> and <d, c> = <a V y, b V j> for some elements 
x j e S . Then d=bVx = aVy, and moreover, d= dvd= aVbVxVy = 
= bVxVy^bVy = e. Because d <̂  c and d ^ c, we have d = c, whence also 
<c, c> = <c, d> G D(a, b), and thus D(a, b) is transitive. Then D(a, b) e LO(S) 
and the equality D(a, b) = P(a, b) is evident. • 

Theorem 6. Let <Z be a treesemilattice and S its induced ordering. If a, be S 
and a <, b> then D(a, b) = {<x9 by; a ^ x S b} u A. 

Proof. By Theorem 5, D(a, b) = P(a, b), and thus D(a, 6) is the least ordering 
on ® containing the ordered pair a ^ b. Let .R = {<x9 by; a S x S b} u A. By 
putting x = a, we obtain <a, &> G JR, and according to the definition of R9 R S 
g D(a, b). It remains to prove that R has SP. Suppose <yl9zty9 <y29z2yeR9 

and if <yi,Zi>, <y29z2yeA9 there is nothing to prove. If <yl9z{yeA and 
<y2> 2%} 6 R\A> then yt = zl9 z2 = 6 and a ^ y2 £ *• These fact imply that 
<yi V y i , ^ Vz2> = <yt Vy29ytVby. If yt 3 6, then a g j>, Vy2 = 6 and 
z,V z2 = y! V 6 = b9 and thus d V yl9 zt v z2> e R. In the opposite case 
ytV b > b. On the other hand 6 and yi V j>2 belong to the interval [y2, yx V * ] , 
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and because S is a tree-semilattice, b and yt v y2 are comparable. The inequality 
yt v y2 ^ b implies that y% S b, which is a contradiction. Thus ytV yz> b, and 
moreover, yt v y2 « yt V 6. Hence, 0^ V y2, Zi V z2> « <yi V j 2 , yt V £> e 4 £ 
c P . 

If <ylf zx> e U\4 and <y2, z2> e F\A, then according to the proof above we 
have <yt V y2, zt V j>2>, <zt v y2, z2 V j>2> e P. Because P is trivially transitive, 
we obtain (yt v y2,ztv z2> e P, and thus R has SP. D 

Theorem 7. Let 5 be a tree-semilattice with the induced ordering jg a/a/ P 
a reflexive binary relation on S contained in <£. T/ien PeLD(<5) if and only if 
<a, 6> e P implies <x, 6> e P/or a/iy elements a,b,xe<5 such that a <> x <£ b. 

Proof. If PeLD(<5) and (a,byeP, then for any x,a £ x S b, <x, 6> « 
= ( f l V x , i V x ) e P , and the first part of the proof follows. 

Conversely, suppose that P has the property <a, ft> e P implies <JC, i> e P for 
any a, b, x e S with a «£ x g 6. We shall prove SP of P. Let <a, &>, <c, d} e P. 
If 6 and d are incomparable, then av c =* bv d, because S is a tree-semilattice, 
and thus <a V c, b V d} e _4 £ P. If e.g. 6 <J d, then bv d- d and c <; a V c £ 
^ A V </ * d. But then <c, rf> e P implies <a V c, 6 V d} -= <a V c,dyeP according 
to the property of P. The case */ ^ b is analogous. • 

Corollary 2. Let 5 be a tree-semilattice with the induced ordering <£ a/u/ P 
a reflexive, antisymmetric and transitive binary relation on S with P £ g . TAe« 
P 6 LO(S) if and only if <a, by eP implies <x, by eP for any elements a, b9 x 
of S w/tA a ^ x S b. 

Remark. Theorem 7 and its Corollary give a possibility to describe the join 
operation in LD(<5) and in LO( S), respectively, when S is a tree-semilattice. 

The join V in LD(<5): P, Qe LD(5) => P V Q = P u g. 
The join V in L0(S): P, Ue L0(5) =-> P V t/is the transitive closure of P u J7. 
The remaining part of the paper is devoted to the extension properties of rela

tions of LD(<5) and LO(S). The first attempt to study the extension property of 
other relations than congruences was done by Chajda in [2] for relations of LT(S). 
We recall first briefly the necessary concepts: 

A class (£ of algebras satisfies the Tolerance Extension Property (briefly TEP) 
if for every 2t e £ and every subalgebra A of % each tolerance Ton fl is the restric
tion of some tolerance T* on 21, i.e. T = T* n (flxfl). 

Proposition. (Theorem 2 and the Example in [2]) LVery class of tree-semilattices 
satisfies TEP. The variety of all semilattices does not satisfy TEP. 

We can define the extension property analogously for relations of LD($C) 
andLO(SI): 

Definition. Let & be a class of ordered algebras such that every Wofdis ordered 
by a fixordering ^ . <£ satisfies the Extension Property of Orderings if for every 
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91 e £ and for every subalgebra £ of 91, each PeL0(2) is the restriction of some 
P* 6 £0(91). <E satisfies the D-Extension Property if for every 91 e C and for every 
subalgebra fl of 91, each DeLD(Q) is the restriction of some D* eZ.D(9l). 

Theorem 8- The variety of all semilattices has the D-Extension Property. 
Proof. Let S 0 be subsemilattice of a semilattice S, D0 eZ.D(S0), and let us 

consider the relation D = D0 u A vj {<a Vx, i v x ) ; <a, 6> e D0 and x e S}. 
Then clearly D0, A g D, and we shall prove that D e LD(S). If <c, </>, <c,f> e D0, 
then <c V e, d Vf> e Z)0 g D according to SP of D0 and the definition of D. 
If <c, </> e D0 and <c,f> e A, the proof follows from the definition of D, as well 
as in the case <c, dy, <c,f> e J. Thus suppose <c, </> = <a V x, & V x> for <a, £> e 
e Z)0 and x e S. If <c,f> e D0, then (cV e,d Vf> = <a V c V x, b VfV x>, where 
(a v e, 4 Vf> e Z)0, whence (cV e, d Vf> e D. If <c,f> e id, the proof is trivial. 
Thus, let <c, O = <a' V x', V V x'> for some <a', 6'> e D0 and x' e S. Then 
(cv c,d Vf> = <a V a' V x V x', b V 6' V x V x'>, and on the other hand, by SP 
of D0, <a V a', A V A'> e D0. Therefore, <c V c, J Vf> e D, and the SP of D 
follows. But then D 6 LD(<3), and so it remains to prove that D n (S 0 x S0) = 
« D0. Let <a V x, b V x> € D such that <a, £> € D0 and x e S \ S 0 . If a V x e S 0 , 
then b V a V x ~ (b V a) V x *= b v x, because a ^ b, and thus bvxe S 0 . Hence 
(flVx, 6 V x> e D0 and D n (S 0 x S0) g D0. The converse is trivial, and the 
desired property follows. • 

The first attempt to characterize the Extension Property of Orderings was done 
in [4] for a single algebra (G = {91}). The next theorem solves the problem of 
Extension Property of Orderings on semilattices: 

Theorem 9. The variety of all semilattices has the Extension Property of Orderings. 
Proof. Let S 0 be a subsemilattice of a semilattice S and PoeZ,0(So). Let 

P = P0 u A u {<a V x, b V x>; <a, by e P0 and x e S} and C(P) be the transitive 
closure of P. According to Theorems 4 and 8, C(P) € L0(<5) and P0 g C(P) n 
n (S 0 x S0). Thus it remains to prove that C(P) n (S 0 x S0) g P0. Let c, de S 0 

and <c, rf> e C(P)\P. According to the proof of Theorem 8, <c,</>^P\P0. 
Therefore, there exist elements y0, yl9 ..., yn such that c = y0 ^ yx g ... £ yn = 
m <*> O w . + i > eP for i = 0, 1, ..., n - 1 and at least one pair <yj9yJ+iy^Po. 
Then by the proof of Theorem 8, yj £ S 0 . Hence also <jj-1, y;> £ P0 and y^ v $ 
$ S 0 . By induction we conclude that yk £ S 0 for all k <> j , and thus c £ S 0 , which 
is a contradiction. Accordingly, PQ 3 C(P) n (S 0 x S0) holds, and the theorem 
follows. • 
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