Archivum Mathematicum

Ivan Chajda; Josef Dalík; Josef Niederle; Vítězslav Veselý; Bohdan Zelinka How to draw tolerance lattices of finite chains

Archivum Mathematicum, Vol. 16 (1980), No. 3, 161--165
Persistent URL: http://dml.cz/dmlcz/107068

Terms of use:

© Masaryk University, 1980
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

HOW TO DRAW TOLERANCE LATTICES OF FINITE CHAINS

IVAN CHAJDA, JOSEF DALfK, JOSEF NIEDERLE, VftěZSLAV VESELÝ, BOHDAN ZELINKA
(Received October 4, 1978)

Let $\mathfrak{A}=(A, F)$ be an algebra. By a tolerance on \mathfrak{A} is meant a reflexive and symmetric binary relation on A compatible with operations from F, i.e. it is a subalgebra of $\mathfrak{A} \times \mathfrak{A}$. The set of all tolerances on \mathfrak{A} forms a lattice $L T(\mathfrak{H})$ with respect to the set inclusion, [2]. This lattice, called tolerance lattice, was studied from the point of view of its algebraic properties in the case of lattices, semilattices, semigroups etc. As our knowledge, there is no explicite method describing a construction of $L T(\mathfrak{H})$ for a given algebra \mathfrak{A}. In this paper, there is done a first attempt to solve this problem in the case of finite chains as the simplest kind of lattices.

Denote by $L(n)=\left\{x=\left[x_{0}, \ldots, x_{n-1}\right] \in \underline{1} \times \ldots \times \underline{n} \mid x_{i+1} \leqq x_{i}+1\right\}$, where $\underline{n}=$ $=\{0,1, \ldots, n-1\}$ is an n-element chain considered as a lattice with binary operations min and max. $L T(\underline{n})$ is the tolerance lattice of \underline{n} (see [1], [2]).

Lemma. $L(n)$ forms a sublattice of $\underline{1} \times \ldots \times n$.
Proof. Let $x=\left[x_{0}, \ldots, x_{n-1}\right], y=\left[y_{0}, \ldots, y_{n-1}\right]$ be two elements of $L(n)$. Then

$$
\begin{aligned}
& x \vee y=\left[\max \left(x_{0}, y_{0}\right), \ldots, \max \left(x_{n-1}, y_{n-1}\right)\right] \in L(n), \\
& x \wedge y=\left[\min \left(x_{0}, y_{0}\right), \ldots, \min \left(x_{n-1}, y_{n-1}\right)\right] \in L(n),
\end{aligned}
$$

because

$$
\begin{aligned}
\max \left(x_{i+1}, y_{i+1}\right) \leqq \max \left(x_{i}+1, y_{i}+1\right)=\max \left(x_{i}, y_{i}\right)+1 \\
\min \left(x_{i+1}, y_{i+1}\right) \leqq \min \left(x_{i}+1, y_{i}+1\right)=\min \left(x_{i}, y_{i}\right)+1
\end{aligned}
$$

The aim of this paper is to prove the following
Theorem. $L T(\underline{n})$ is isomorphic to $L(n)$.
Proof. Order homomorphisms $x: L T(\underline{n}) \rightarrow L(n)$ and $T: L(n) \rightarrow L T(\underline{n})$ will be constructed and their bijectivity proven.

Let $T \in L T(\underline{n})$. Put $x_{i}(T)=i-\min \{j \in \underline{n} \mid[i, j] \in T\}$. Clearly $x_{i}(T) \leqq i$, $x_{i+1}(T)=i+1-\min \{j \in \underline{n} \mid[i+1, j] \in T\}=i-\min \{j \in \underline{n} \mid[i+1, j] \in T\}+$ $+1 \leqq i-\min \{j \in \underline{n} \mid[i, j] \in T\}+1=x_{i}(T)+1$. Consequently, $x(T)=$ $=\left[x_{0}(T), \ldots, x_{n-1}(T)\right] \bar{\in} L(n)$. Moreover, for $T \subseteq S$ holds

$$
x_{i}(T)=i-\min \{j \in \underline{n} \mid[i, j] \in T\} \leqq i-\min \{j \in \underline{n} \mid[i, j] \in S\}=x_{i}(S)
$$

An order homomorphism $x: L T(\underline{n}) \rightarrow L(n)$ was constructed.
Now, let $x=\left[x_{0}, \ldots, x_{n-1}\right] \in \bar{L}(n)$. Define a binary relation $T(x)$ on n as follows: $[i, j] \in T(x): \Leftrightarrow x_{\max (i, j)} \geqq|i-j| . T(x)$ is clearly a tolerance relation on \underline{n}. Its compatibility will be shown. Let $[i, j],\left[i^{\prime}, j^{\prime}\right] \in T(x)$, i.e. $|i-j| \leqq x_{\max (i, j)}$ and $\left|i^{\prime}-j^{\prime}\right| \leqq x_{\max \left(i^{\prime}, j^{\prime}\right)}$. Relationships

$$
\left|\min \left(i, i^{\prime}\right)-\min \left(j, j^{\prime}\right)\right| \leqq x_{\max \left(\min \left(i, i^{\prime}\right), \min \left(j, j^{\prime}\right)\right)}
$$

and

$$
\left|\max \left(i, i^{\prime}\right)-\max \left(j, j^{\prime}\right)\right| \leqq x_{\max \left(\max \left(i, i^{\prime}\right), \max \left(j, j^{\prime}\right)\right)}
$$

are to be proven. At least one of the following four cases will arise:

1. $i \leqq i^{\prime}$ and $j \leqq j^{\prime}$,
2. $i \leqq i^{\prime}$ and $j^{\prime} \leqq j$,
3. $i^{\prime} \leqq i$ and $j \leqq j^{\prime}$,
4. $i^{\prime} \leqq i$ and $j^{\prime} \leqq j$.

The third case is equivalent to the second one and the fourth case is equivalent to the first one.

In the first case,

$$
\begin{gathered}
\left|\min \left(i, i^{\prime}\right)-\min \left(j, j^{\prime}\right)\right|=|i-j| \leqq x_{\max (i, j)}=x_{\max \left(\min \left(i, i^{\prime}\right), \min \left(j, j^{\prime}\right)\right)} \\
\left|\max \left(i, i^{\prime}\right)-\max \left(j, j^{\prime}\right)\right|=\left|i^{\prime}-j^{\prime}\right| \leqq x_{\max \left(i^{\prime}, j^{\prime}\right)}=x_{\max \left(\max \left(i, i^{\prime}\right), \max \left(j, j^{\prime}\right)\right)} .
\end{gathered}
$$

In the second case, four subcases are to be distinguished:
2.1. $i \leqq j^{\prime}$ and $j \leqq i^{\prime}$,
2.2. $i \leqq j^{\prime}$ and $i^{\prime} \leqq j$,
2.3. $j^{\prime} \leqq i$ and $j \leqq i^{\prime}$,
2.4. $j^{\prime} \leqq i$ and $i^{\prime} \leqq j$.

In the first and the second subcases,

$$
\begin{gathered}
\left|\min \left(i, i^{\prime}\right)-\min \left(j, j^{\prime}\right)\right|=\left|i-j^{\prime}\right|= \\
=|i-j|-\left(j-j^{\prime}\right) \leqq x_{j}-\left(j-j^{\prime}\right) \leqq x_{j}=x_{\left.\max \left(\min , i, i^{\prime}\right), \min \left(j, j^{\prime}\right)\right)}
\end{gathered}
$$

In the third and the fourth subcases,

$$
\begin{gathered}
\left|\min \left(i, i^{\prime}\right)-\min \left(j, j^{\prime}\right)\right|=\left|i-j^{\prime}\right|= \\
=\left|i^{\prime}-j^{\prime}\right|-\left(i^{\prime}-i\right) \leqq x_{i i^{\prime}}-\left(i^{\prime}-i\right) \leqq x_{i}=x_{\max \left(\min \left(i, i^{\prime}\right), \min \left(\rho, j^{\prime}\right)\right)}
\end{gathered}
$$

In the first and the third subcases,

$$
\left|\max \left(i, i^{\prime}\right)-\max \left(j, j^{\prime}\right)\right|=\left|i^{\prime}-j\right| \leqq\left|i^{\prime}-j^{\prime}\right| \leqq x_{i}=x_{\max \left(\max \left(i, i^{\prime}\right), \max \left(j, j^{\prime}\right)\right)}
$$

In the second and the fourth subcases,

$$
\left|\max \left(i, i^{\prime}\right)-\max \left(j, j^{\prime}\right)\right|=\left|i^{\prime}-j\right| \leqq|i-j| \leqq x_{j}=x_{\max \left(\max \left(i, i^{\prime}\right), \max \left(j, j^{\prime}\right)\right)}
$$

The compatibility of $T(x)$ was proven. Clearly. $T: L(n) \rightarrow L T(\underline{n})$ is an order homomorphism, because $x \leqq y$ implies

$$
[i, j] \in T(x) \Leftrightarrow|i-j| \leqq x_{\max (i, j)} \Rightarrow|i-j| \leqq y_{\max (i, j)} \Leftrightarrow[i, j] \in T(y)
$$

Bijectivity will be shown by verifying $x . T=i d, T . x=i d$

$$
\begin{gathered}
x_{i}(T(x))=i-\min \{j \in \underline{n} \mid[i, j] \in T(x)\}=i-\min \left\{j \in \underline{n}| | i-j \mid \leqq x_{\max (i, j)}\right\}= \\
=i-\min \left\{j \in \underline{n}| | i-j \mid \leqq x_{i}, j \leqq i\right\}=i-\left(i-x_{i}\right)=x_{i} .
\end{gathered}
$$

Conversely, $[i, j] \in T(x(T)) \Leftrightarrow|i-j| \leqq x_{\max (i, j)}(T) \Leftrightarrow|i-j| \leqq \max (i, j)-$ $-\min \{k \in \underline{n} \mid[\max (i, j), k] \in T\} \leftrightarrow[i, j] \in T$.

The Theorem enables us to draw tolerance lattices of finite chains. Denote $V_{i}(n)=$ $=\left\{x \in L(n) \mid x_{n-1}=i\right\}$ and call $V_{i}(n)$ the i-th layer of $L(n)$. Then we can draw $L(n)$ as follows:
$L(1)$ is the one-element lattice consisting of one layer. For constructing $L(n)$ we take n copies of $L(n-1)$, draw $L(n-1) \times \underline{n}$ and construct $V_{i}(n)=\{[x, k] \epsilon$ $\in L(n-1) \times \underline{n} \mid k=i$ and $x \in V_{j}(n-1)$ for some $\left.j \geqq i-1\right\}$ for $i=0, \ldots, n-1$
$L T(1)-V_{0}(1)$

Fig. 1

Fig. 2

Fig. 3

For the number of elements of $L(n)$, it holds the formel

$$
|L(0)|=1, \quad|L(n)|=\sum_{k=0}^{n-1}|L(k)| \cdot|L(n-k-1)| \quad \text { for } n \geqq 1
$$

Proof can be easily done by the reader.
Example. $|L(1)|=|L(0)| \cdot|L(0)|=1.1=1$,

$$
\begin{aligned}
& |L(2)|=|L(0)| \cdot|L(1)|+|L(1)| \cdot|L(0)|=1.1+1.1=2, \\
& |L(3)|=5,|L(4)|=14,|L(5)|=42,|L(6)|=132,|L(7)|=429 \ldots
\end{aligned}
$$

Fig.4

The diagrams of the lattices $L T(\underline{n})$ for $n=1,2,3,4,5$ are visualized in Fig. 1, Fig. 2, Fig. 3, Fig. 4, Fig. 5, respectively.
Added in proof. Tolerance lattices of finite distributive lattices are characterized in [3].

REFERENCES

[1] Chajda I.: Lattices of compatible relations, Arch. Math. (Brno), 13 (1977), 89-96.
[2] Chajda I., Zelinka B.: Lattices of tolerances, Casopis pro pèst. matem. 102 (1977), 10-24.
[3] Niederle J.: On skeletal and irreducible elements in tolerance lattices of finite distributive. lattices. To appear.

Ivan Chajda, Lidových milici 22, 750 Přerov, Josef Dalik, Náměstí SNP 18, 61300 Brno, Josef Niederle, Sady Osvobozeni 5, 60200 Brno, Vitézslav Veselý, Čejkova 74, 61500 Brno,
Bohdan Zelinka, Komenského 2, 46117 Liberec, Czechoslovakia

