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Remarks on some nonlinear Dirichlet problems 
with unbounded nonlinearties* 

JUAN J . NlETO 

Abstract. We present necessary and/or sufficient conditions for the existence of solutions 
to the Dirichlet problem u" + u + g(u) = h, t-(0) = 0 = u(w), where g is a nondecreasing 
function. 

Keywords: Nonlinear boundary value problem, Dirichlet problem, duality principle, alter­
native method 

Classification: 34B15 

We consider here the nonlinear Dirichlet problem 

(1) u" + u + g(u) = h, u(0) = u(ir) = 0 

where g is continuous and h 6 C[0,7r]. 
We shall assume that 

(2) g is nondecreasing, 

(3) there exist constants 7 € [0,3),C € R such that \g(u)\ < 7 • |u| + C 

In [14], problem (1) was studied and it was proved that (1) has a solution provided 
that g is odd, lima-,oo g(u) = 00, and 7 < 0.24347. In [5] that estimate was 
improved to 7 < 0.443, and the assumption of oddness was removed. 

By integrating (1) we see that a necessary condition for (1) to have a solution is 
that 

1 / * 

u> = w(h) = X / h(x)8*nxdx € [:?(-oo),g(oo)]. 

If g is bounded, then 

(4) g(~oo) < w < g(+oo) 

is a sufficient condition for (1) to have a solution. If g is not bounded, then a 
restriction on 7 is needed since for g(u) = 3u and h(x) = sin 2a;, problem (1) has no 
solution. As a consequence of the result of [2] we have that (2), (3) and (4) imply 
that (1) has at least one solution. 

In the present paper, we prove the following result. 
The author is thankful to the referee for helpful comments and suggestions 
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Theorem. Suppose that (2) and (3) holds. If h admits a decomposition of the form 
h = h\ + h2 and there exists S > 0 with 

sin x dx = 0 (5) / hi{x)A 
Jo 

and 

(6) 0(-oo) + S < h2(x) < g(oo) - S for all x € [0, w] 

then there exists at least one solution of (1). 

As an immediate consequence, we get 

Corollary 1. If (2) and (3) holds, and g satisfies 

(7) -g(-oo) = g(oo) = co 

then (1) has a solution. 

Corollary 2. Under assumptions (2) and (3), we have: 

a) a; € Int(Rangeg) is a sufficient condition for (1) to have a solution, 
b) a; € Rangeg is a necessary condition for (1) to have a solution, 
c) if u € Bdry(Rangeg), then (1) has a solution if and only if g(0) = u>. 

Thus, we complete previous results in the following ways. 

1. The condition limsup|ttj_^00(g(u)/u) = 7 > 0 given in [5] implies (7), and 
consequently Corollary 1 is a generalization of Th. 1 in the paper of Cesari 
and Kannan. 

2. The estimate 7 < 3 is the best estimate possible as shown by the previous 
example. 

3. Corollary 2 includes some results for nonlinearities bounded only from one 
side. For instance, the cases g(u) = a u " , a < 0, [1], [7], and g(u) = eu [9]. 

4. For g monotone (either nondecreasing or nonincreasing) hypothesis (3) of [9] 
implies that u; € Ranges and we can apply Corollary 2. 

5. Corollary 2 gives necessary and/or sufficient conditions for the existence of 
solutions to (1) and cover all the possible situations. Previous results [1], 
[5—9], [14] were only partial existence results. 

6. To prove our main result we give a new proof by using a duality principle 
[3]. Although the proof of the Theorem is an adaptation of the method 
used by Brezis, we give it for the convenience of the reader and the sake of 
completeness. 

Moreover, the method is applicable to partial differential equations. For instance, 
one can use such a duality principle to study the following Dirichlet boundary value 
problem for elliptic equations: 

Au + Aju + g(u) = h in Q, u = 0 on dQ, 
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where Q, is a smooth domain in Rn and Ai is the smallest eigenvalue of the linear 
problem Au -F Au = 0 in Q, u = 0 on dQ. 
PROOF of the Theorem : We shall use a duality principle that can be found 
in [3]. Let E = L2(I),I = [0,7r], and (•,•) the usual inner product in E. Set 
D(A) = H2(I) n Hl(I), and define Au = u" + u, and Bu = g(u). Thus, (1) is 
equivalent to the operator equation 

(8) Au + Bu = h. 

Note that B = VJ, where J is a C1 convex function on E. We have that 
N(A) = (f) where £(x) = sinx, and R(A) = {u € E : (u,£) = 0}. Thus, A : 
D(A) n .R(.A) —> J£(A) is one-to-one and onto and K = A""1 is defined from R(A) 
to D(A) n R(A). 

Now, for u € JEJ, define Pu = c£ where c = c(u) = (u, £)/(£,£). We shall denote 
by || • ||p the usual norm in LP(I), 1 < p < oo. 

The solutions of (8) correspond to the critical points of the functional 

t/>(v) = ±(Kv,v) + J\v + h) 

subject to the constrain v € R(A), provided that B is one-to-one and onto. Here, 
J* is the conjugate convex function of J. 

For e > 0, consider the perturbed equation 

(9) Au + ge(u) = h 

where ge(u) = g(u)+eu. Let fe be the inverse function of ge, and define the function 
Ge(u) = /0* fe(t) dt. Thus, (9) has a solution if the functional 

ipe(v) = i HKVKX) • v(x) dx + T Ge(t;(x) + h(x)) dx 

has a critical point subject to the constrain v € R(A). 
Reasoning as in [3, Lemma 1], we see that x/>e has a critical point provided that 

e < 3 — 7. Therefore, (9) has a solution. 
Now, for any solution ue of (9) we have the estimates 

(10) | |«e | | l<o l , U"eh < Cu ||ff(««)||2 < d 

where C\ is a constant independent of e. 
We write ue = u l e + U2e with u l e € R(A) and U2e € N(-4). The operator K is 

bounded as an operator from R(A) f) Ll(I) to R(A) f\ L°°(I). Hence, there exists 
a constant Ci such that Huil)-*, < C2. On the other hand, uie = c(u2e)£> and (10) 
implies that c(u2«) is bounded, that is, there exists C$ such that ||u2e||oo < O3- In 
consequence, ||ue|| < C% -F Cz. Using these estimates, we see that there exists a 
sequence {en} "~* 0 and w € E such that {uen} —• u (weakly in E),{A(uen)} —> Au 
(weakly in E), and {u ien} —> ui (in E). Now, using the theory of monotone 
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operators we can conclude that u is a solution of (8), that is, (1) has a solution. 
This completes the proof of the theorem. • 

PROOF of Corollary 1: Obvious from the Theorem. • 

PROOF of Corollary 2: Part b) follows by integrating (1), and c) can be proved 
as in [10, Th. 2] (see also [11]). Hence, we shall only prove part a). We shall 
distinguish three cases: 

I) g is bounded (7 = 0). We can proceed as in the proof of Lemma 2 of [10] by 
using the alternative method [4]. 

II) g is bounded only from one side, that is, either 
i) g(-oo) = - 0 0 , 0(00) < 00, or 

ii) <7(—00) > —00, 0(00) = 00. 

If (i) holds, then we can choose e > 0 such that u = g(oo) — e > u>, and consider 
the problem 

(11) u" + u + G(u) = # , tz(0) = U(TT) = 0 

where G(u) = g(u) — u and H(x) = h(x) — u. Note that (11) and (1) are equivalent. 
We have that u>(H) = u(h) - u. Hence c (# ) = 4u>(H)/n < 0. Now, we write 

# = # x + #2 where # 2 = PH = c(#)£ and Hx = # - # 2 . Thus, we get that 
c (# ) < H2(x) < 0 and G(-oo) = - 0 0 < c(H) < H2(x) < 0 < e = G(oo). 
Therefore, (5) and (6) are satisfied and by the previous theorem we can conclude 
that (11) has at least one solution. This proves a) of Corollary 2 in case Il-i). 

Case ii) is similar if we define G(u) = g(u) — u and H(x) = h(x) — fi with 
u = <jf(—oo) + e such that 0 < e < u> - g(—00). 

Ill) Condition (7) holds. Then u; E Int(Rangegf) = R, and we can apply Corol­
lary 1. • 
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