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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
29,1 (1988)

COMPARISON OF SUBSET SYSTEMS
E. NELSON, J. ADAMEK, A. JUNG, J. REITERMAN, A. TARLECKI

Abstract: A subset system, as introduced by [ADJ], is a means for ex-
pressing a type of (Jjoin-)completeness of posets and (join-)continuity of
order-preserving maps. We compare subset systems, and we prove, essentially,
that the corresponding types of completeness coincide iff the corresponding
types of continuity do. We show how this relates to absolutely free comple-
tions of posets (for which a new description is also presented), and as a
by-product we exhibit a simplified proof of the result of J. Meseguer that
each subset system is equivalent to a union-complete one.

Key words: Subset system, complete poset.
Classification: 06A23

0. Preliminaries. Recall that a subset system Z is a rule assigning to
each poset P a collection Z(P) of subsets of P in such a way that 1. order-
preserving maps preserve Z-sets (i.e., if f:P —» Q is order-preserving, then
MeZ(P) implies f(M)e Z(Q))and 2. if @& Z(P) for some P then Fe&Z(B). A po-
set P which has joins of all sets in Z(P) is said to be Z-complete.An order-
preserving map f:P —> Q (not necessarily between Z-complete posets) is Z-con-
tinuous if it preserves all existing joins of sets in Z(P).

Examples: 1. Sn is the subset system of all non-empty subsets of cardi-
nality smaller than n. (S, complete posets are precisely the upper-semilat-
tices, and S,,-continuous maps are those preserving all existing finite, non-
empty joins.)

2. w 1is the subset system of all increasing <w-chains and all finite
chains and C is the subset system of all e« chains.

3. 4 is the subset system of all directed sets.

4, Aw is the subset system of all countably directed sets, i.e., tho-
se sets in which every countable subset has an upper bound.

5. Analogously, C,, is the subset system of all countably directed
chains.
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6. For each subset system Z, Z° is the subset system of conditional
Z-completeness, i.e. X€Z°(P) iff X «Z(P) and X has an upper bound in P.

A subset system Z is absolute if for each subposet A of a poset P, Ae
€ Z(P) implies A € Z(A). For example o is absolute, whereas the subset sys-
tem < of all bounded w -chains and finite chains is non-absolute. Furt-
her, a subset system Z is conditional if Z=Zc, that is, for every poset P,
every Z-set in P has an upper bound in P. Finally, a subset system Z is nor-
mal if for every poset P, X €Z(P) implies XeZ(XT), where XT is X with a new
top element T added.

For each poset P, we denote by J(P) the lattice of all ideals (= down-
sets) in P, ordered by inclusion. Let e:P—> J(P) be the principal-ideal em-
bedding, i.e. e(P)= {q 6 P|q<p}. We denote by 2" P the Zclosure of e(P) in
J(P), i.e., the least subposet X of J(P) containing e(P) and such that Me Z(X)
implies UMe& X. Then z#*pP is clearly Z-complete. As proved in [AN], #P is
the absolutely free Z-completion of P, i.e., the principal-ideal embedding
P —>Z* P has the universal property that each order-preserving map f:P—>Q
with Q Z-complete has a unigue Z-continuous extension 2¥t.7%p— Q.

A subset M of a poset P is said to be Z-closed if for each Xe Z(P) with
XgM and with a join VX in P we have VXeM.

Given subset systems Z1 and ZZ’ we write Zlé 22 if each Zz-complete po-
set is Zl-complete, and each Zz—continuous map between Zz—complete posets is
Zl-continuous. (Note that this is trivially true if, for each poset P,
Zl(P)S ZZ(P)') In other words,

le Z2 iff Zz—Posézl-POS
where Z-Pos is the category of Z-complete posets and Z-continuous maps. If
Zlé 22 éll, we say that Z1 and 22 are equivalent. For example wCsw « Sw ,
1
and 5., is equivalent to 53, Moreover, as it is well known, 4 and C are e-

quivalent by Iwamura’s Lemma LI1. On the other hand, AQ and C,, are not e-
quivalent:

Example: A poset P which is C @ -complete but not Ao -complete. Let

P= 17 (e, +1) with the componentwise order, and let P={feP|f(n)=cy for
opmew n

at most finitely many n§. Further, let

D={fe?|f(n)4=can for all nz1%.

We will show that D is a countably-directed subset of P. Since D has no
upper bound at all in P, this will establish that P is not Aw—complete. For
any countable subset XcD, consider, for each n € @, n#0, the set
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{f(n)|f e X$. The latter is a countable subset of @, and hence has an up-
per bound, say X in @ Define g(n)=xn for all nz1, then g is an upper
bound of X in D and hence D is countably-directed.

Next we prove that P is C,, -complete. Let I be a chain in P with no
countable cofinal subset. Let ge P be the join of P in P; it is enough to
prove geP. If not, then g(n)= @ for infinitely many n. For each such n, we
have wn=(VI"')(n)= ch- f(n) and hence either there exists f e " with £(n)=
=w,or ™ has a cofinal subset of order type w . However, the latter can-
not happen for two different natural numbers n, and hence there are infinite-
ly many n € e for which there exists f & " with fn(n)= @ - Let Yg e con-
sist of all such n, and for each neY take f_ e " with fn(n)= w, . Then the
set {fnlneY} is not cofinal in " (since M has no countable cofinal subset)
and hence has an upper bound, say h, in I . But then h(n)= @, for all neY,
so h¢ P, a contradiction. This shows that P is Cg,-complete.

1. Completeness versus continuity. In this section, we consider the re-
lationship of the condition 22£=Z1 with the ostensibly weaker condition that
every Zl—complete poset is Zz-complete. :

Theorem 1: For any subset systems Z, and 2,,1,£ 7, iff every Z; complete
poset is Zz—complete.

Proof. Assume that every Zl—complete poset is Zz-complete. Let £:P—> Q
be a Z;-continuous map with P Zl—complete. Given A6 ZZ(P) with p=VA, we shall
prove that £(p)=V£(A). Assuming the contrary, there exists an upper bound q €
€ 0 of £(A) with f(p)§q - we shall derive a contradiction.

Since f is Z-continuous, the set M={ x&P|x£p and £(x)£q} is Zl-clo—
sed in P. Define a poset P* by adding a decreasing w-chain do> d1> d2... to
P in such a way that for xeP, i < w , we have:

x<d; in P* iff xeM,
and
d;< x in P* iff péx.

Let us verify that P* is Zl-complete. The map h:P*—» P defined by
h(di)=p (i <w) and h(x)=x (x¢ P) is order-preserving. Thus, given Be ZI(P"),
we have h(P)ng(F). Put

b=v h(B) in P,
then b is an upper bound of B in P* since h(y) 2y for all ye P¥ . Either b=
=VB, or B has the upper bound di for some i. In the latter case there are two
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possibilities:

i) Bn{dj)%<0+ ¢ and then dy=VB for a suitable j< @, or

(ii) BgM, in which case h(B)=B and hence Be& Zl(P); since M is Zl—clo_s-
sed in P, it follows that b €M and then b=VB in P* .

By assumption, it follows that P¥ is Zz-complete. However, the set Ae
€ ZZ(P* ) fails to have a join in P* , due to the decreasing chain of upper
bounds d; - a contradiction. a

For subset systems Z1 and 22, consider the following conditions:
COMPL(ZI,ZZ) every Zl—complete poset is Zz—complete
CONT(ZI,Zz) every Zl—continuous map with Zl—complete domain is Zz—con—
tinuous
CLOSED(Zl,ZZ) every Zl-closed ideal in a Zl-ccmplete poset is Zz—clos-
ed.

Remark. In the above proof, we actually proved that COMPL(ZI,ZZ) =
- CONT((Zl,Zz).This is stronger than the nontrivial implication above.

Theorem 2. For any subset system Z1 and 22’
COMPL(Z, ,Z;) é= CONT(Z,,Z,) ¢=> CLOSED(Z, ,Z,).

Proof. COMPL (Z;,27)=p CONT(Z;,Z,) has exactly the same proof as The-
orem 1; the set A considered there has an upper bound in P* , and hence be-
longs to Zg(P") but fails to have a join in P* .

CONT(ZI,ZZ)QCLUSED(ZI,ZZ): For each Zl—closed ideal A in a Zl—complete
poset P define a map

f:P—» (0,13 (0<1), by £(x)=0 iff x€A.

Since A is an ideal, f is- order-preserving, and since A is Zl-closed, f is
Zl—continuous. Consequently, f is Zz—continuous; in other words, A is Zz-clo—
sed.

CLUSED(ZI,ZZ)—D CUMPL(ZI,Zg): Let P be a Zl—complete poset, and suppose
Ae Zg(P) such that A has no join in P. Since Ae Z;(P), we know Ae Zz(P) and A
has an upper bound, a, in P. Let A be the smallest Zl—closed ideal of P cont-
aining A. Then a is an upper bound of A in P, but & has no largest element
(since this would be the join of A in P). In fact, A has no upper bound in A.

We shall verify that A is Zl-closed in the (obviously Zl—complete) sub-
set B=A u{a} of P: given Xe Z,(B) with Xs A and x=VX in P, since X& Zy(P) and
A is Zl~closed, and therefore Zz-closed, in P, we conclude that x €A and
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hence x is the join of X in B, too. By the hypothesis, A is Zz—closed in B.
However, the map P —> B which maps B identically and maps all other elem-
ents of P to a, is order-preserving, hence ACZZ(B). Now, a is the join of A
in B, and hence A is not Zz—closed in B, a contradiction.

This completes the proof of Theorem 2. O

Remark: The condition CUNT(ZL,ZZ) does not, in general, imply

CDMPL(Zl,ZZ): consider Zl= wc, and 22= w . Every wC-continuous map is w -
continuous, and hence CDNT(Zl,Zz) is true, whereas COMPL(Zl,Zz) is false.
These conditions are equivalent under additional hypotheses:

Theorem 3: For subset systems Z,and ZZ’ if either Z, is absolute or Z,
is conditional then

Zzs Zldﬁ COMPL(ZL,ZZ)@ CONT(ZI,ZZ)

Proof. It is only necessary to prove that CDNT(ZI,ZZ) —)CDMPL(ZI,Zz).
For the case Z2 is conditional, this follows from Theorem 2. So, assume Z1 is
absolute, and let P be a Zl—complete poset. Assuming that there is a set A €
€ Z (P) which does not have a join in P, we shall derive a contradiction. Let
R denote the least Z,-closed ideal of P containing A. Then A does not have
a largest element (smce this would clearly be the join of A). Let IT be the
extension of & by a largest element T: the absoluteness of Z1 guarantees that

il is z ,-complete. Further, let 7S be an extension of &' by an element S<T

which 15 an upper bound of A. The absoluteness of 21 quarantees that the inc-
lusion map e: A — ITS is Zl-contmuous if a Zl—set B of K contains T, then
T=VB, and if T¢ B then VBe A (because Be Z) (R)), and in both cases, e(VB) =

=V e(B). Consequently, e is Z,-continuous. Nevertheless, VA T in K whereas
Ve(A)=s in A" - a contradiction to A6Z, (A1) Luse £:P—>A', f/A=id, £/P-A%T].

Remark. The following condition strengthens CLOSED(ZI,ZZ) above.

CLOSED*(ZPZZ): Zl-closed sets are Zz~closed (in each Zl—complete poset).

These two conditions are equivalent, whenever Z2 is normal. (Recall that
every subset system is equivalent to a normal one, [ANR].) To see this, assu-
me CLDSED(Z ) and let us prove CLOSED* (Z Z ). Let P be a Z 1~complete
poset. For each Zl—closed set Ae P and each B; ZZ(F) with join b= VB in P we
prove that BE A implies be& A as follows. Let B= {x € A|x 4 bju{b}. Then B is
clearly a Zl-complete poset, and BnA is a Zl—clnsed ideal of B. Consequent-
ly, BaA is Z,-closed in B. Since Z, is normal, we have BeZz(ﬁ) and
BeBnA. Thus, beA.
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On the other hand, if 22 is not normal, CLDSED(Zl,Zz) need not imply
CLOSED * (21,22): Consider the subset system Z1 of all subsets having a least
element, and Z2 of all subsets having a lower bound. It is obvious that Z1 is
equivalent to 22. However, in the 4-point Boolean algebra {0,1,a,7%§ the Zl—
closed set {a,3% is not Zz—closed.

Example 1. The assumption that the domain be Zl—complete in the above
condition CONT(Zl,Zz) is essential. Consider the absolute, equivalent subset
systems S3 and S, . There is an S}—continuous map which is not Sg,-continu-
ous: consider the following poset P

The map f:P —» P defined by f(x)=x for all x«d, £(d)=T, is not S ,-continu-
ous because it does not preserve the join V {a,b,c} =d; however, f is 83-con—
tinuous (by default).

This shows that the above CONT(Zl,Zz) is not equivalent to the follow-
ing (more natural) condition:

CUNT(ZI,ZZ)’: every Zl-continuous map between arbitrary posets is Zz-
continuous

Consider furthermore the following conditions:
CLDSED(ZI,ZQ)': every Zl—closed ideal in any poset is Zz-closed,
cLosep® (ZI,ZZ)’ : every Zl-closed subset of any poset is Zz—closed.

For all Z,,Z,, CONT(Z;,Z,)" e CLOSED(Z;,Z,)® , and for Z, normal, the-
se are equivalent to CLDSED'(ZI,ZZ)'; the proof is like that of Theorem 1.

2. Saturated subset systems

Definition. The saturation of a subset system Z is the following subset
A
gystem Z: For each poset P,

M cf(P) itf for each order-preserving map h:P—» Q, if Q is Z-complete
then Vh(M) exists.

A subset system Z is saturated if Z=2.

Corollary 1. Each subset system is equivalent to its saturation.
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In fact, Z-completeness and i—-completeness are clearly equivalent, and
hence, Theorem 1 can be applied.

Observe that f is the largest subset system, under inclusion, equival-
ent to Z (where the inclusion ZISZ2 means that ZI(P)SZZ(P) for each poset

P). Also, for subset systems Z‘i and 22’

. A
2417, itf 262,

Examples: 1. /) is saturated, and moreover, is the saturation of C.
2. §,, is not saturated; ga) consists of those sets that have a finite
cofinal subset.

Proposition 1. For a saturated subset system Z,

7* P=3(P)n 2(P),

i.e. , the Z-closure in J(P) of the set of principal ideals consists of all

ideal Z-sets in P.

Proof. Since Z is saturated, all principal ideals are clearly Z-sets,
and hence, the set X=J(P)n Z(P) contains e(P). We shall prove that Me Z(X)
implies UMeZ(P). (It is then clear that X is the least subset of J(P) with
the above properties.) Thus, we are to show that Vh(UM) exists in each 2-
complete poset Q for each order-preserving map h:P-—— Q. Define a map

h":3(PYAZ(P)—» Q, by h'(I)=Vh(I) for Ie I(P)A Z(P).

Since h™ is clearly order-preserving, we have h (M)e Z(Q). Thus, the set h'(M)
has a join. Obviously,

(M)= Vh(I)= .
V h'(M) I}/M (I)=vh(UM) a

Remark. Recall [ADJ] that a subset system is called union complete iff
for JZ(P)= all Z-generated ideals in P, if McZ(JZ(P)) then UM e JZ(P). If Z
is saturated then JZ(P)=J(P)(\ Z(P), and the above proof actually verifies that
every saturated subset system is union-complete. Together with Corollary 1
this yields the following result, proved (much more technically) by J. Mese-
guer [M]): Each subset system is equivalent to a union-complete subset system.

Note that union complete does not imply saturated: Z=5w is a counter-
example. It does imply if Z fulfils (MGP, N&ZP cofinal in IM)= M&ZP.

In our opinion, the role that union-completeness was intended to play,

that is, to obtain a description of free Z-completions via ideals, can be ac-
complished more naturally using the concept of saturation.
The equivalence of the first two conditions in the following result is
- 175 -



essentially due to Meseguer [M, Prop. 3.13], where the proof relies on the
fact that every subset system is equivalent to a union complete one.

Proposition 2. For arbitrary subset systems Z1 and 22’ the following

are equivalent:
Z1 4 Z2

INCL(Zl,ZZ): Zl'PsZZ#P (for each poset P); i.e., the Zz—closure of e(P)
in J(P) contains its Zl—closure.
FREE(ZI,ZZ): For each poset P there is a Zrcontinuous map aP’Zt(P)“

-—»Z’;(P) such that the following triangle commutes:

z*cp) z*(P)

Proof. By Proposition 1 we have Z‘P J(P)n? (P), and, as remarked ear-
lier, Zl*P is the absolutely free Z —completmn of P, and analogously with
22. Since Z < 22 is equivalent to Zng the implications

Zlé 22 = INCL(ZI,ZZ) = FREE(Zl,Zz)
follow immediately.

To prove FREE(Z Z ) == 7 éZz,
ficient to prove that P is Z ‘complete - this 1mphes Z éZ by Theorem 1.
For any AeZ (P), put a=Ve (A) in Z’P by (FREE) we have -'l\P(a) VﬁPe (A) in
Z.2 P. Since P is Zz—complete, there is a unique Z ~continuous map f: Z{ P—» P
with fee,=idp. We claim that VA=£(Ap(a)) in P:

(i) xeA implies x=f(e2(x))=f(-7\P(e1(x))£f(ﬂp(a)),

let P be a Z —complete poset. It is suf-

and
(ii) each upper bound b of A in P fulfils el(a)éel(b) in Z{P and hence,
£(Ap(a)) & £(A pe, (b))=f(e,(b))=b. OO

Remark. Analogous considerations concerning colimits in categories are
presented by M.H. Albert and G.M. Kelly [AK]. Given a collection A of small
categories and a small category J, they investigate conditions under which
the existence of A -colimits always implies the existence of A U {3¥-colim-

its. They obtain a characterization theorem analogous to the equivalences
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2,4 7, 4= COMPL(Z,,Z;)4=> INCL(Z;,Z,) above. The role of * is, in the ca-
tegorical context, played by the A-colimit closure of a category P in its

Yoneda embedding into Setpop. Note, however, that although an absolute subset
system Z can be viewed as a special collection of categories (viz., of all
posets P with Pe€ Z(P)) the categorical result does not imply the order-theo-
retic one, not even for absolute subset systems: if Zlé 22, then Zz-cocomp—
leteness of categories need not imply Zl—cocompleteness. For example, let
22=53 and let Z1 be the subset system consisting of all Zz—sets, plus subsets
of the form ENF then clearly Z1 and Z2 are equivalent. However, a category
is Zz—complete if it bhas binary coproducts, whereas Zl—cocompleteness entails
the existence of pushouts. For example, the dual of the category of compact
topological spaces has coproducts but not pushouts [A, p. 38].
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