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COMMENTATIONES MATHEMATICAE UNlVERSITATIS CAROLINAE 

26,3 (1885) 

TWO NON-HOMEOMORPHIC COUNTABLE SPACES HAVING 
HOMEOMORPHIC SQUARES 

M. M. MARJANOVIC and A. R. VUCEMILOVlcf 

Abstract. A pair of non-homeomorphic countable metrizable 
spaoes having homeomorphic squares i s exhibited. This answers 
a question of V. flrnkovA from U3. 

Key words; Countable metrizable spaoes, homeomorphism, 
squares of spaoes* 

Classifications 54B10 

1» Introduction. A olass 3C of topological spaoes le said 

to have the unique square root property if for any two objects 

A and B in % , AxA^BxB implies A ^ B . 

Several naturally organized classes of topologioal spaoes 

do not have this property (see £43 )• In U3 f V. frnkova asked 

the following questions Is the unique square root property valid 

in the class of a l l countable metrizable spaces? 

In this paper, we exhibit a pair of non-homeomorphic count­

able metrizable spaoes having homeomorphio squares* 

2» A classification of points of a spaoe. Ĥow we consider 

a classification of points of a countable metric space, follow­

ing the case of classification of points of a compact metrio 

0-dimensional spaoe (see [23). 

When we say "a spaoe**, It will mean Invariably "a oountab-
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l e metric space". 

For a space Xf l e t X be the set of a l l i so lated points of 

X and X.| the set of those points of X which have a neighborhood 

without i so lated points . Let X/ % « X \ ( X uX-j). Since X , * Q 

£ XQ (A denotes the closure of the se t A) f the se t X(0) i s s p l i t 

again into two parts X.-..--X/ A Xj and x ( 0 ) ( i } " , x ( 0 ) n *1* *n w o r d s , 

the set X(0) i s s p l i t into the set Xg of those points which are 

not accumulation points of X.j and the set X ( 0 ) d ) of those 

points which are accumulation points of X.j« 

How we have the following inductive definit ion: Suppose 

that the se t s X o f X 1 f . . . f X n and X ( o ) . X ( o ) ( 1 ) , . . . »* ( 0 ) (1 ) # # # ( n _i) 

have been already defined. Put 

Xn+1 * X ( o ) ( 1 ) . . . ( n - 1 ) x X n » X ( o ) ( 1 ) . . . ( n ) * X ( o ) ( 1 ) . . . (n-1)^Tn* 

In th i s way, we have defined a sequence of se t s X f X 1 f . . . 

••• fX , • • • which are dis jo int and for each n f the s e t Z u l u 

u . . . u X n i s open and x ( 0 ) ( i ) (n-1) o l o s e d # 

Let 

Xu> * A * X ( o ) ( 1 ) . . . ( n ^ n e N K 

The following statement i s immediately derived from the g i ­

ven definit ion. 

Statement 1. 

(a) Xn « Xnu ( U -C Xk: k « n+2 f . . . , 14; 1) 

W If Xn m 0, then Xk m 0 for k - n + 2 f . . . f w . 

Call a point x c l n-point i f x e X n for some n » o f19#.« 

. . . , 0 • The number n i s cal led the accumulation order of x 

and we write ord (x) « n. 

To the space Xf for which *nmm2*$* x
n - 1 * ^ a n d Xn** ^ 

(and according to 1 (b) f X^ « 0 for k>n) the sequence 
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s(X) m ( o f 1 f . . . f n - 2 f 0 f n ) , 

and to the space X for which 3-n„^4B0» X n + 0 and Xfc » 0 for k > n f 

the sequence 

s(X) m ( o f 1 f . . . f n - 1 f n ) 

i s attached respectively. The sequence s(X) i s ca l led the 

accumulation sequence of the space X (we avoid here the case 

X.a + 0 ) . 

3« Q-full spaces. Denote by Q the space of rational num­

bers. Every countable metric space without i so lated points, i s » 

homeomorphic to-Q (Sierpinski 's theorem, C13f p. 290). 

Call a space X Q-full i f for each n > o f Xn=fc0 implies Xn 

has no i so la ted point (or Xn.s» Q). 

How we construct a sequence of Q-full spaces. 

Let Q_~j » 0 be the empty se t f Q a one point space and Q-,*. 

• Qf where Q i s the set of rat ionale real ized geometrically as 

the set of a l l end points of removed intervals of the Cantor 

discontinuum C (when C i s constructed in the usual way of remo-

ving the middle third in terva l s ) . 

Suppose the sequence Q0»Q<i»*««»Qn has already been defined 

(andall the spaces Q i , i • o , . . . , n are the subspaces of [ o , l l ) . 

Define Qn4.1 to be the space Q plus a copy of the disjoint 

topological sum Q 2
 + Qn...i being interpolated in each of the 

removed intervals . Now by induction, the sequence of spaces 

Q 0 »Q-j » • • • » Q n » » » « 

i s defined and i t i s easy to see that a l l these spaces are Q-full 

as well as the sums Qn_i + Qn, ( n c N ) . 

As for the accumulation sequences, we have 

a(Q0) - ( o ) , sCQ-j) « ( 0 , 1 ) , s(Q0 + Q-,) » (o f1) 

and for n > 1 f 
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s(Qn) «• ( o f . . . f n - 2 f 0 f n ) f s (Qn - 1 + Qn) * ( o f . . . fn-1 ,n ) . 

In particular, s(Q2 + Q3) « ( o f 1 , 2 f 2 ) f s(Q5) « 

- ( o f 1 f 2 f 3 , 0 f 5 ) f what shows that Qg + Q36^Q5» 

We quote [53 for the following two easily proved statements. 

Statement 2. 

(a) A compact space cannot be Q-full. 

(b) If every Inf ini te sequence in XQ has an accumulation 

poi^t tfren, X0 ie^o^mpact. 

Call two Q-full spaoes X and Y equivalent i f their accumu­

lat ion sequences are f i n i t e and equal, and i f card (X ) -= 

m oard (Y0)# 

According to the statement 2*6 in 151$ which can be consi­

dered as a variation on the already mentioned Sierpinski 's theo­

rem, two equivalent spaces are homeomorphic (Sierpinski 's theo­

rem being the ease s(X) * s(Y) * ( 0 , 1 ) ) . 

We give here a sketch of a (new) proof. 

In order to simplify the proofs which follow, notice that 

according to the statement 1 f a space X such that s(X) * 

» ( o f * . . fn-1 fn) has both parts X ^ and X closed in X. Then, i t 

eas i ly follows that X can be decomposed into two closed and open 

parts x ' anji x " guoh that s (x ' ) * ( o f . . . f 0 f n ) , s (X") » 

* ( o f . . . f 0 f n * 1 ) (see also 2.3 in L5J)• 

Notice also that a closed and open subset of a Q-full space 

is Q~tuu mm* 
A pointed Q-full space i s a pair (X fx0) where X i s Q-full 

space and x e X a point of highest accumulation order. 

Statement 3 . Let (XfxQ) and (Y fy0) be two pointed Q-full 

spaces mien that X sad Y are equivalent and s(X) » s(Y) * 

* ( o f . . . ,% fa). I£ X * I u x " i s a decomposition into two closed 
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and open subsets such that x c X , then there ex i s t s a decompo­

s i t i o n of Y into two closed and open subsets . Y » Y #u Y' # such 

that yQe Y' and X# i s equivalent to Y# and x " to Y " . 

Proof. The statement i* eas i ly seen to be true in the ca­

ses s(X) • o, s(X) » (0,1)* Suppose n-^2. We have two cases 

a) s(X#) « ( o , . . . , 0 , n ) , s(X# #) » ( o , . . . , 0 , m ) 

b) s(X#) » ( o , . . . , 0 , n ) , s(X# #) » ( o , . . . ,m-1,m). 

a) If m » o and card X # # < JK0 , we take Y##c YQ such that 

card Y# # « card x " and Y# « Y \ Y # \ 

If m • o and card x " » & 9 then by 2 , there ex i s t s a c l o -

.sed and open subset Y# #c Ŷ  such that card Y# # • y.^ and Y# « 
o o 

» Y \ Y " has the required properties. 

If 1««m<n,then since Y Q u Y 1 u . . . u^mmm2uYm i e 0P*n» take a 

small enough closed and open neighborhood Y# # of a point y e Y 

such that Y##CY1 i f m « 1 and Y# #c YQu Y1 u*. . . uY m - 2 uYm i f m>1. 

Let Y# - Y \ Y # \ 

If m « n, l e t Y# be a small enough closed and open neighbor­

hood of yQ such that Yn \ Y #* 0. Take Y## » Y \ Y \ 

b) If m « o, we do the same as under a) (and i t i s the same 

case) . If s(X##) rr, (o ,1 ) , take a closed and open neighborhood 0 

of a point in Y1 such that U&Y-. and l e t VcYQ , closed in Y, be 

equivalent to X##n X0* Take Y## » UuVf Y#- Y \ Y " . 

How we have l e f t the case K m £ n - 2. Take U and V to be 

closed and open neighborhoods of a point y-jC Y and 3*2 ^-^m-i res ­

pectively such that U S - Y 0 u Y 1 u . . . u Y and VSY u Y-, u . . . uY^-,* 

Take Y## • UuV and Y# » Y \ Y # \ This concludes the proof. 

Statement 4 . I f X and Y are equivalent spaces, then they 

are homeomorphic. 

Proof. We can suppose that X and Y are subspaces of the i n ­

terval Co,1l . Since X and Y are countable, we have the enumera-
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tions of each of them X » \x^,... ,-si-*.«$, Y • 4y-|,...-y.^>...}. 

Let x. and y4 be the first elements of highest order (i.e. of 

order n) in the enumerations of X and Y respectively. Consider 

the pointed spaces (X,x. ) f (Y,y. )• x1 J1 
How let the term "to point a closed and open part A" of X 

or Y mean to form the pair (A fa) f where a c A i s the point of 

highest order in A which stands f i r s t in the given enumeration 

and has not been already used i n the process of pointing. 

I f s(X) • s(Y) • ( o f . . . fn-1 f n ) f then both of these spaces 

can be decomposed into two parts each, so that the accumulation 

sequences of the parts are ( o f . . . f 0 f n ) and ( o f . . . f 0 f n - 1 ) f and the 

pointed parts having the sequence ( o f . . . f 0 f n ) . Point the non-poin­

ted parts, i f any. Then, each of these parts of X, or X i t s e l f , 

i f s(X) • ( o , . . . , 0 , n ) , can be decomposed into two closed and open 

parts which are of diameter l e s s than 2/3 of the diameter of X. 

Applying 3 f we also have equivalent parts of the parts of Y. Now 

the decompositions of X and Y have at most 4 elements and l e t us 

point non-pointed parts. The parts of Y, having the sequence 

( o f . . . fm-1 fm) decompose into two parts having each the sequences 

( o , . . . , 0 , m ) or ( o , . . . ,0,m-1) f point them and correspond to each 

the equivalent parts of the corresponding parts of X. Point also 

parts of X. Now, we have at most 8 parts in each of the spaces* 

Finally decompose the parts of Y so that the diameters of the 

parts are l e s s than 2/3 of diameter of Y. Point non-pointed 

parts and do the same with the equivalent non-pointed parts of X. 

In t h i s way X and Y are decomposed into at most 1.6 pointed 

parts. If x., points a part of Xf denote such a part by X (x* ) 

and the corresponding part of Y with Y (y., ) • The parts X (x4 ) 
Jk hi 

and Y (y., ) are all of diameter less than 2/3 and they are equi-dk 
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valent pointed Q-full spaces. 

Now start ing with the pairs X (x, ) f Y (y, ) . We decompose 
hs. 3k 

them into at most 16 parts X (x, ) f Y2(y4 ) having the diamet-
2
 xk 3k 

ers l e s s than (2/3) . 

Proceeding inductively, in the m-th s tep, we have the parts 

Xm(x. ) f Ym(y, ) of diameter l e s s than (2/3)m . 
xk 3k 

Define the mapping f:X—»Y by f ( x i ) • y^ • I f x^ €. X^, 

then hy 1 f the se t X Q U . . . i J X t i s open, and for a large enough 

mf there w i l l ex i s t a part Xm of X contained in X u>...w/X+ and 

dis jo int from the se t of those points of order t which precede 

x., . So x, , i f not already used in pointing, w i l l be used in 

the m-th step. The same i s val id for the points of Yf so that f 

i s a mapping defined from the whole X onto Y. I t i s eas i ly seen 

that f i s 1-1 and on both sides continuous. Hence, X and Y are 

homeomorphic. 

Thus the term "equivalent Q-full spaces" means topological-

ly equivalent and i t was only a working term. 

The statement 4 shows that the only Q-full spaces are the 

spaces 

V Vl + «n 
adding to them at most countable discrete spaces and the topolo­

g ica l sums of such a space and the space Q-j. 

*• The space Q2 + Q3 and Qc have homeomorphic s cm area. 

Consider two spaces X and Y having no point of the accumulation 

order 4. (Such two spaces are Q2 + Q̂  and Qc.) If ord (x) « 

« m,(xeX) and ord (y) » nf ( y e Y ) f we w i l l denote the order of 

(x,y)c XxY by raxn. The number m*n does not depend of the ohol-
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ce of spaces X and I as i t w i l l become evident from the proofs 

which follow. The evident homeomorphism of the spaces XxY and 

YxX sends the point (x f y) onto (y f x) and so mxn - nxm. 

How we show that nxm dependently of n and m i s given by the 

following table 

X 0 1 2 3 5 

0 0 1 2 3 5 
1 1 I 1 1 1 
2 2 І 2 5 5 
3 3 ' I 5 3 5 
5 5 -I 5 5 5 

(a) o * n - m Suppose ord (x) • o, ord (y) « n. The set 

^.xixY i s mapped onto Y by a homeomorphism sending (x f y) onto y. 

Thus, ord (x,y) » ord (y ) . 

(b) 1 x n a 1 * The point x has a neighborhood without i s o ­

lated points and so the point (x f y) has also such a neighborhood. 

(c) 2 * 3 2" 5* In an arbitrary neighborhood of the point 

(x f y) f there ex i s t two points ( x ' f y ' ) f ( x ' f y ' ) such that 

ord ( x ' ) m o f ord ( y ' ) « 3> ord ( x " ) » 2 f ord ( y " ) « o. Thus, 

ord ( x ' f y ' ) » 3> ord ( x " f y " ) • 2 and the point (x f y) i s an ac­

cumulation point of (Xx-Y)g and (XxYK. By the statement 1 (a) f 

i t follows that ord (x,y)>5» 

(d) 2 x 5 > 5 : The proof i s the same as under ( c ) . 

(e) 3x3 -* 3: By 1 ( a ) , X̂  * XgUX^t/X,- and the se t XQU 

uX-jUX^ i s open. Take closed and open neighborhoods U and V of 

x and y respect ively so that USX 0 i/X 1uX^ f Y c ^ u ^ u L , Let 

( x ' f y ' ) be in UxV. If one of the numbers ord ( x ' ) f ord ( y ' ) i s 

l e s s than 3* then ord ( x ' f y ' ) » o f 1 or 3. If ord ( x ' ) • or (y ' )» 

• 3, then ord ( x ' f y ' ) 2 * 3 f since ( x ' f y ' ) 6 (X*Y) 0 and ( x ' f y ' ) e 

e (x K Y)-J• Thus, no point in UxV has the order 2. Thus, 

ord ( x ' , y ' ) » 3. 
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(f) 3 x 5 2*5: The proof i s the same as under (c)# 

(g) 5x5 -^5: The proof as under ( c ) . 

(h) 2 x 2 - 2 : The proof easier than ( e ) . 

Hence, the space XxY has no point of order 4#.By 1 (b) , 

XxY has no point of order greater than 5 and we have 2 x 3 * 5 , 

2 x 5 * 5, 3 x 5 - 5, 5 x 5 • 5. 

I t i s immediately seen that the product of two Q-full spa­

ces X and Y i s a Q-full space. 

Take X » Q2 + Q*, Y « Qc. Then, s(X) « (o ,1 ,2 ,3 ) and s(Y) « 

« ( o , 1 , 2 , 3 , 0 , 5 ) and X and Y are not homeomorphic. The spaces 

XxX and YxY are Q-full and s(XxX) » s(YxY) « ( o , 1 , 2 , 3 , 0 , 5 ) . 

By the statement 4> the spaces XxX and YxY are homeomorphic. 

In a f u l l analogy with the case of compact spaces (see 131), 

i t can be shown that there ex i s t s an in f in i t e sequence of pairs r 

of non-homeomorphic separable metric spaoes having homeomorphic 

squares. 
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