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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
26,3 (1885)

TWO NON-HOMEOMORPHIC COUNTABLE SPACES HAVING
HOMEOMORPHIC SQUARES
M. M. MARJANOVIC and A. R. VUCEMILOVIE

AbEt&ot: A pair of non-homeomorphic countable metrizable
spaces homeomorphic squares is exhibited, This answers
& question of V., Trnkovd from [4).

Key words: Countable metrizable spaces, homeomorphism
squares of spaces. ’ ’

Classification: 54B10

1. Introduction. A olass K of topological spaces is said
to have the unique square root property if for any two objects
Aand Bin X , AxAasBxB implies Ans B,

Several naturally organized clal.aes of topological spaces
do not have this property (see [41). In [4], V, Trnkovd asked
the following question: Is the unique square root property valid
in the class of all countable metrizable spaces?

In this paper, we exhibit a pair of non-homeomorphic count
able metrizeble spaces having homeomorphic squares.

2, tication of points of ¢. “Now we consider
a clagsification of points of a countable metric space, follow-
ing the case of classification of poinis of a compact metrio
O-dimensionsl space (see [2]).

When we say "a space", it will mean invariably “a countad.
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le metric space",

For & space X, let X, be the set of all isolated points of
X end X, the set of those points of X which have a neighborhood
without isolated points. Let x(o) =X\ (xou X,). Since X(O) c
c X, (X denotes the closure of the set A), the set X(,) is split
again into two parts Xy=X( )\ X, end X(0) (17 %(0)" X;. In words,

the set x(o) is split into the set X, of those points which are
not accumulation points of X, and the set X(O)(.‘) of those
points which are accumulation points of X.l.

Now we have the following inductive definition: Suppose
that the sets X ,X;,...,X; and X(o) ,x(o)(1),... .I(o)“)“. (n-1)
have been already defined. Put

Xne1 = X(0) (1)ene (=1 Fn? F(o) (Neva(m) = () (Mern (a-1)n T
In this way, we have defined a sequence of sets X 1 Xqpeee
cee .Xn,... which are disjoint and for each n, the set Xou X,
VeeoeUX, 18 open and X(,y(q),, (p-1) Closed.
Let
Ly = NAZ)(1)... (my* BEM-

The following statement is immediately derived from the gi-
ven definition.

Statement 1.

(8) T, =X 0(UiX: k = 42,000y w})

(v) _];_I_Xn =g, _‘_l;_h_g_!_x_xk =@ for k = n+2,000y W &

Call a point x€X n-point if x€X for some n = 015000
eees & o« The number n is called the acoumulation order of x
and we write ord (x) = n.

To the space X, for which X %@, X 4 = § anl X * ¢
(and according to 1 (b), X = # for k>n) the sequence

- 580 -



8(X) = (0,1,¢.4,n-2,0,n),
and to the space X for which xn_1*¢, Xn=§=¢ end X, = @ for k>n,
the sequence

8(X) = (0,1,440,0~1,n)
is attached respectively. The sequence s(X) is called the
accumulation saquence of the space X (we avoid here the case
X, * 0.

3. Q-full spaces. Denote by Q the space of rational num-
bers. Every countable metric space without isolated points is .
homeomorphic to-Q (Sierpinski s theorem, [11, p. 290).

Call a space X Q-full if for each n>o, Xn*(ﬂ implies Xn
has no isolated point (or X =4 Q).

Now we oconstruct & sequence of Q-full spaces.

Let Qq = # be the empty set, Qo e one point space and Q4=
= Q, where Q is the set of rationals realized geometricelly as
the set of all end points of removed intervals of the Cantor
discontinuum C (when C‘is constructed in the usual way of remo-
ving the middle third intervals).

Suppose the sequence QO.Q1 ,...,Qn has already been defined
(andall the spaces Q;, i = 0,...,n are the subspaces of [o0,1]).

Define Q.4 to be the space Q plus a copy of the disjoint
topological sum Qn—2 + Qn-1 being interpolated in each of the
removed intervals, Now by induction, the sequence of spaces

Qg sQqseeesQpseee
is defined and it is easy to see that all these spaces are Q-full
as well as the sums Q, 4 + Qp, (neXN).

As for the accumulation sequences, we have

8(Q,) = (o), 8(Q)) = (#,1), 8(q, + Q) = (o0,1)
and for n>1,
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8(Q,) = (0ye0syn=2,8,n), 8(Q, 4 + Q) = (0yees,n=1,n).

In particular, 8(Q; + Q3) = (0,1,2,2), 8(Qg) =
= (0,1,2,3,,5), what shows that Q, + q34;05.

We quote [5] for the following two easily proved statements.

Siatement 2.

(a) A compact space cannot be Q-full.

(b) 1f every infinite segquence in X, has an accumulation
point thep X is compact.

Call two Q-full spaces X and Y gquivalent if thelir accumu-

lation sequences are finite and equal, and if card (xo) =
= oard (Y,).

According to the statement 2.6 in [5], which ocan be consi-
dered as a variation on the already mentioned Sierpinski ‘s theo-
rem, iwo equivalent spaces are homeomorphic (Sierpinski ‘s theo-
rem being the case 8(X) = s(Y) = (#,1)).

We give here a sketch of & (new) proof.

In order to simplify the proofs which follow, notice that
according to the statement 1, & space X guch that 8(X) =
= (0,4.4yn«1,n) has both parts X, 1 end X closed in X, Then, it
eapily follows that X can be decomposed into two oclosed and open
papts X gnd X7 guch that 8(X”) = (0,e..,8,n), 8(X"") =
= (0yess,@,n=1) (see also 2,3 in [5]).

Notice almo that a glosed and open subset of & Q-full space
is Q~fuld ageip.

A pointed Q-full spece is & pair (X.xo) where X is Q-full
spaceé and xoe,x a point of highest accumulation order.

Statement 3. Let (X,x,) smd (Y,y,) be two pointed Q-full
gpeces sych that X and Y are equivalent end s(X) = s(Y¥) =

4
« (0,000 8,m). IL£X = X°UX"" 18 & decomposition into two olosed
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and open subsets such that xoex', then there exists a decompo-

sition of Y into two closed and open subsets, ¥ = Yvy’’ guch

,

that y € Y and X7 is equivalent to Y end x°° 2o Y,
Proof., The statement is easily seen to be true in the ca~

ses s(X) = o, 8(X) = (#,1). Suppose nZ2, We have two cases

8) B(X) = (0,000,8,m), 8(X°") = (0ye..,8,m)

b) 8(X") = (04004,8,m), 8(X"") = (0,00, ,m=1,m),

8) Ifm=o0andocard X' "< X, we take Y 'C Y such that
card Y  =card X" "and ¥ = ¥Y\Y''.

Ifm=o0 and card X** = % , then by 2, there exists a clo-
.sed and open subset Y ‘c Y such that card Y = $, and Y =
= Y\Y ' has the required properties.

If 16 m<n,then since YouY.lu... qu_qum is open, teke a
small enough closed and open neighborhood Y “ofa point erm
such that Y''c ¥, 1f m = 1 and Y''C YUY, U.ee UY, , VY, 1f m>1,
Let Y™ = ¥\Y'",

Ifm = n, let Y’ be a amall enough closed and open neighbor-
hood of y, sach that Y\ Y@, Take Y'" = ¥\Y",

b) If m = o, we do the same as under a) (and it ia the same
case). If 8(X°") = (o,1), take & closed and open neighborhood U
of a point in Y, such that UEY1 and let VCYO, closed in Y, be
equivalent to X A X . Take Y'© = UuV, Y= ¥NY'L

Now we have left the case 1<m&n - 2, Take U and V to be
closed and open neighborhoods of a point y ¢ ¥, and yvchm_J res-
pectively such that UEYOUY1U.--UYm and VEYOU Y V... u!m_1.
Teke Y*' = UuY and Y* = Y\Y"’, This concludes the proof.

Statement 4. I1f X and Y are equivalent spaces, then they

are homeomorphic.
Proof., We can suppose that X and Y are subspaces of the in-

terval [0,1]. Since X and Y are countable, we have the enumera-
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tions of each of them X = {X{yeee X se0edy ¥ = £F10000sFg000080
Let 111 and y-31 be the first elements of highest order (i.e, of
order n) in the enumerations of X and Y respectively. Consider
the pointed spaces (X,x11), (Y,yj1).

Now let the term "to point a closed and open part A" of X
or Y mean to form the pair (A,a), where a€A is the point of
highest order in A which stends first in the given enumeration
end has not been already used in the process of pointing.

If 8(X) = 8(Y) = (0yee.,n=1,n), then both of these spaces
can be decomposed into two parts each, so that the acocumulation
sequences of the parts are (0,e..,#,n) and (0,...,@,n~1), and the
pointed parts having the sequence (0,...,#,n). Point the non-poin-
ted parts, if any. Then, each of these parts of X, or X itself,
it 8(X) = (0,...,8,n), can be decomposed into two closed and open
parts which are of diameter less than 2/3 of the diameter of X,
Applying 3, we also have equivalent parts of the parts of Y. Now
the decompositionsof X and Y have at most 4 elements and let us
point non-pointed parts. The parts of Y, having the sequence
(0yees,m=1,m) decompose into two parts having each the sequences
(0yeees@,m) Or (0yeee,f,m=1), point them and correspond to each
the equivalent parts of the corresponding parts of X. Point also
parts of X. Now, we have at most 8 parts in ;aoh of the spaces.
Finally decompose the parts of Y so that the diameters of the
parts are less then 2/3 of diemeter of Y. Point non-pointed
parts end do the same with the equivalent non-pointed parts of X,

In this way X and Y are decomposed into at most 16 pointed
parts. If x"k points a part of X, denote such a part by x! (xik)

and the corresponding part of Y with Y (ydk). The parts x! (xik)

end Y' (yjk) are all of diameter less than 2/3 and they are equi~
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valent pointed Q-full spaces.
Now starting with the pairs x! (xik)' Y (yj ). We deocompose

them into et most 16 parts X° (xi ), Yz(yj ) having the diamet-
ers less than (2/3)2.

Proceeding inductively, in the m-th step, we have the parts
x® (xy ), 1:‘“(;;j ) of diemeter less than (2/3)™.

Define the mapping £:X —>Y by r(x:L ) = yd . It x:L € Xt,

then by 1, the set XOU ...uxt is open, and for a large enough
m, there will exist a part X™ of X contained in X,Ueeo VX, and
disjoint from the set of those points of order t which precede
xis. So xis, if not already used in pointing, will be used in

the m~th step., The same is valid for the points of Y, so that ¢
is a mapping defined from the whole X onto Y. It is easily seen
that £ is 1-1 end on both sides continuous., Hence, X and Y are
homeomorphic,

Thus the term "equivalent Q-full spaces" means topological-
ly equivalent and it was only a working term.

The statement 4 shows that the only Q-full spaces are the
spaces

s Yot + O

adding to them at most countable discrete spaces and the topolo-

gical sums of such a space and the space Q.

4. The space Q, + Q3 and Q5 have homeomorphic squares.
Consider two spaces X and Y having no point of the accumulation

order 4, (Such two spaces are Q, + Q; end Q5°) If ord (x) =

= my(xeX) and ord (y) = n, (ye ¥Y), we will denote the order of

(x,7)e XxY by mx n, The number mxn does not depend of the choi-
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ce of spaces X and Y as it will become evident from the proofs
which follow, The evident homeomorphism of the spac2s XxY and
¥ xX mends the point (x,y) onto (y,x) and so mXn « nxm,

Now we show that nxm dependently of n and m is given by the
following table

Xxjo 1 2 3 5
ojlo 1 2 3 5
111 1 1 1 1
2|2 1 2 5 5
313 1 5 3 5
515 1 5 5 5

(a) oxn = n: Suppose ord (x) = o, ord (y) = n. The set
£x%¥ =Y is mepped onto Y by & homeomorphism sending (x,y) onto y.
Thus, ord (x,y) = ord (y).

(b) 1xn = 1: The point x has & neighborhood without iso-
lated points and so the point (x,y) has also such a neighborhood.
(c) 2x3z5: In an arbitrary neighborhood of the point

(x,y), there exist two points (x',y"), (x”°,5°") esuch that

ord (x”) = o0, ord (y7) =3, ord (x”°) =2, ord (y°") = o. Thus,
ord (x“,y") =3, ord (x"",5°") = 2 and the point (x,y) is an ac-
cumulation point of (x><!)2 and (XxI)3. By the statement 1 (a),
it follows that ord (x,y)2S.

(d) 2x525: The proof is the same as under (c).

(e) 3x3 =3: By 1 (a), X, = I,UX,UX; end the set X U
ux,ux3 is open. Take closed and open neighborhoods U and V of
x and y respectively so that stoux1ux3, Vs!ou!1u23. Let
(x°,y") be in UxV. If one of the numbers ord (x), ord (y") is
less then 3, then ord (x",3") = 0,1 or 3. If ord (x') = or (y")=
= 3, then ord (x ',y )= 3, since (x",y7)e (i—x'T)o and (x',5y") €
e (XxY 1e Thus, no point in UxV has the order 2., Thus,

ord (x°,y") = 3.
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(£) 3% 5z5: The proof is the same as under (c).
(g) 5%52Z5: The proof as under (c).
(h) 2x2 = 2: The proof easier than (e).

Hence, the space X xY has no point of order 4. By 1 (b),
XxY has no point of order greater than 5 and we have 2x3 = 5,
2x5 =5, 3x5 =5, 525 =5,

It is immediately seen that the product of two Q-full spa-
ces X and Y is a Q-full space.

Take X = Q; + Q3, Y = Qg+ Then, a(X) = (0,1,2,3) and s(Y) =
= (0,1,2,3,8,5) and X end Y are not homeomorphic. The spaces
XxX end ¥YxY are Q-full and s(XxX) = s8(¥xY¥) = (0,1,2,3,8,5).
By the statement 4, the spaces Xx X and ¥x Y are homeomorphic.

In & full analogy with the case of compact spaces (see {31),
it can be shown that there exists an infinite sequence of pairsy
of non-homeomorphic separesble metric spaces having homeomorphic.

squares.

References
{11 KURATOWSKI K.: Topology (Russian), wvol. 1, Moscow (1966).

[2) MARJANOVIG M.M.: Exponentially complete spaces III, Publ.
Inst.Math. ,Beograd, t. 14(28)(1972), 97-109.

[N " : Numerical invarients of O-dimensionel spaces
and their Cartesian multiplication, Publ., Inst.Math,,
Beograd, t. 17(31)(1974), 113=120.

[4] TRNKOVA V.: Representations of commutative semigroups by pro-
ducts of topological spaces, Proc. Fifth Prague To-
pol. ‘Symp. 1981, Berlin (1982), 631-641.

{5) vUCEMILOVIC A.: On countable spaces, Mathematica Balcenica,
4.127(1974), 669-6T4.

- 587 =



Math, Institute PMF, Studentski trg 16, 11000 Beograd,
Yugoslavia

(Oblatum 23.1, 1985)

~ 588 =



		webmaster@dml.cz
	2012-04-28T11:37:50+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




