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INVARIANT COHOMOLOGY OF THE POISSON LIE ALGEBRA
OF A SYMPLECTIC MANIFOLD
M. De WILDE, P. B. A. LECOMTE, D. MELOTTE

Abgtract. Let (M,F) be a symplectic manifold and let G
be a subalgebra of its Lie algebra of symplectic vector fields.
It is shown that if (M,F) has a G-invariant connection, the
subcomplex of the Chevalley complex of differential cochains
of the Poisson algebra of (M,F) generated by the G-invariant
cochains and the 1-differentiable cochains has the seme cohomo-
logy as the total complex. Moreover, the second and third coho-
mology spaces of the complex of invariant coochains are computed.

Key words: Symplectic manifolds. Chevalley cohomology.
Poisson algebra. Invariance.

Classification: 17B65, 17B56, 53C15

1. Introductiomn. Let M be a connected, Hausdorff, second
countable smooth manifold of dimemnsion 2n>2, Let F be & symp-
lectic form on M; A will denote ite contravariant version, i.e.
the contravariant 2-tensor obtained by lifting the indices of
F by the duality defined by F. The Poisson Lie algebra of M is
(N,P), N being the space of all smooth real functions on M and
P the Poisson bracket.

We denote by 3 the coboundary operator of the Chevalley
cohomology of the adjoint representation of (N,P). A cochain C
(i.e. an alternating multilinear map from K9 into N) is called
differentigl if it is a differential operator of some fixed or-

12°1€(1)C = 0.
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The space 'A'a:lff(') of all differential cochains is stable
by @ . Its cohomology HI( Ay ps(N), 3) is not kmown in general,
due to the lack of & reasonable model for the cohomology of for-
mal symplectic veotor fields. The spaces HI (q = 1,2,3) play an
impertant role in various problems of symplectic geometry, name-
1y in the study of formal deformations of (N,P), and they have
been computed in [1, 5, 8],

Suppose now that € is a Lie algebra of symplectic vector
fields on M, A cochain C is @ ~invarient if LyC = 0 for all
Ie@.

Denote by A"di“(n) the space of all G -invariant diffe-
rential cochains. It is still stable by © and the knowledge of
BNy, 04(¥),3) (q43) 1s essential in the study of G-invari-
ant formal deformations of (N,P).

It is known that the study of H(NA450,(N),3) reduces to
that of H(/\.‘un'm(n).a) [3] and the same holds true for the
invariant cohomology. An 1nportqgt subspace of A ditr,nc(m is
the space of 1-differentiable cochains (i.e, of order 1 in each
argument) isomorphic to the space A (M) of smooth forms on M by

(b*g A(w) ‘*A1—dit£,nem)’ where

Mﬂﬂ) (uo,...,uq_1) = w(xuo,..o ,%q-1),

xn being the Hamiltonian vector field of u. The space
A‘l-d:l_ff,no(m is stable by 3 and w* intertwins d (the exteri-
or differential) with 3 .

We will assume that M admits a & ~invariant linear connec-
tion, From results of [ 6, 7], it seems to be a reasonable conjec-
ture that the difference between the cohomology and the invari-
ant cohomology only comes from 1-differentiable cochains.
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We PTrove in this paper that Asd:l.ff,no(l) AA‘I-d:Lff (¥)

,ne
and A gi¢¢ no(N) have the same cohomology and we compute

BUAC, 02, ne(M) for q = 2,3 (the case q = 1 is trivial),

2. The main result

fields over M.

slusion

N

1 W ee,00 AN _g1re,n0 M5 3) = (Agigg oM, 0)

We will set
IG () = AGdiff,ne(n) A A1-di££,ne(n)°

The proof goes in two steps. First, N is supposed to be a
contractible open subset of R 2n with its canonical symplectic
structure, Next the result has to be extended to an arbitrary M.

The proof of this second step is entirely similar to [2], p.
211,B and will be omitted here.

For the first step, a proof based on a study of the symbols
in lexicographical order and on an induction with respect to this
order would be possible. Since this type of proof seems to hide
an argument based on spectral sequences, we have preferred the
latter approach., We thus introduce appropriate apectral- sequences
on. (Ngier,no(M),d) and (I%(N),3) and show that their terms E,
are isomorphic and that the sequences converge. Surprisingly, the

latter point does not seem to follow from classical convergence

arguments.

- 339 -



The assumption that M admits & & -invariant connection can
be slightly relaxed, as shown in § 3, but the improvement is not

of obvious interest.

3. The cape of the symplectic manifold Rzn. In this seo~

tion, M denotes some fixed contractible open subset of R 2n' [
quipped with its canonicel symplectic form F.

‘ By substituting the i-th component of §;} € RZn to the i-th
partial derivative of uy in a cochain c(uo,... .uq_1),» we define e
linear map & which transforms the nc cocheins into alternating
polynomials on R 2n* , of order =2 1 in each argument and smooth~
ly depending on x€ M.,

Let Q be the space of all such polynomisls and J be the
space of all alternating polynomials on R 2n* , of order >1 in
each argument., Define b: P® A(M) — Q:P @ w—>(P . (u,*B ),

where « 1is the antisymmetrization projector amnd

(P'Q)( go,.-., gq_1) = P( goglcl' Ee_A‘)Q( g‘& g0 eey Eq_1)-

The map b is a linear bijection and b

o & identifies
j‘dift,ncm) to P® A(M). An easy computation shows that, by

this identification, 9 transforms into
9(Pw) =dPB @ +P@d"w,
where d° is given by
(@B (§goeees §) =
g}(-ni,/\cgi,gjnr(...,gi(;)gd,...s‘...) :r(....(gti),...a‘...)-
= Ploesyfyaeesden)d

(recall that A is the contravariant 2-tensor obtained by lift-
ing the indices in F) and
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if w is a gq-form.

The coboundary a° can be interpreted a&s follows.

A homogeneous polynomial P(go.... .fq_1) of degree r; in
§4 identifies to & g-linear fom on Sfrox cee X ffrq_1 , where
‘3’1 is the symmetric i-th power of R22* . Thus P may be re-
garded as the space of all cochains on &= 1;1;1'4 3'1, continuous
with respect to the product topology.

By lowering indices by means of F, the Lie algebra of for-
mal symplectic vector fields without constant term on R 2n i-
dentifies to & , its subalgebra sp(n, R) corresponding to .

It is a matter of computation to check that, by this iso-
morphism, a’ corresponds to the differential of the Chevalley
cohomology of the trivial representation of & on R.

4., The spectral sequences. In the sequel, S denotes one of
the gpaces P A(N) or 1€ (N) = b~1o a 1€ ().

The space S is graded by S -q';oo 84, 89 peing the space of °
all g-cochains belonging to S. It admits the decreasing filtre~
tion PP (p e 2 ), where PP =« ® PPr2 ang FP*9 15 the mpace of
elements of S of total order at most 2q-p. The total order of
P @ @ 1is the sum of the totel order of P and of the number of
arguments of @ . Thus PP29 = 0 if p> q. Moreover, d PPc FP and
arrPc Pp+1. Thus (S,8) is a graded filtered differential space
(in the sense of [ 41). The corresponding spectral sequence will
be denoted (E,(S),d;).

5. The terms E It 18 clear that, for S = P@®@ A (M),

0

(E,(5),4,) & (s,a"® 1).

The cage S = ’f"(m requires some attention, If C is a co-
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chain, the homogeneous part of aC of highest order is the symbol
G’G of C, If C is invariant, so is o’c because, for every
X ¢ ¥, sx.xc =L xts'c. where X¥ denotes the natural 1lifting

of X to ¥ M. Conversely, since M admits an invariant connecti-
on, every smooth homogeneous polynomial on T* M, invarisat by €,
is the symbol of an inveriant cochain [7, § 111, It follows that
EP19(s) = PP+ Pt PHa o regponds by b to the space of sys-
bols of the (p+q)-cochains of order 2q+p of I ¥ (N). Tmus

E,(T€ ) & v {peQ:Lx*P =0, YX& G31.AN)

where « 1s defined by
L4
(P@w)e(P @ @) = (-1)X (PAR") @ w A @'

k (resp. k’) being the number of arguments of < (resp. ).
Moreover, d  identifies again to A’ ® 1.

A more precise description of Eo(llfc (K)) will be useful. If
pe?

LX*P - SQ(DI)P,

where DX is the Jacobian matrix of X and ® the natural repre-
sentation of gl(n,R) on & . If X is symplectic, it follows
that

Lx',o b =bo 6(X)

where

©(X)(P & @) = p(DX) Paw +P® L.

Hence
B, (3¢ M) = ker 8 « AW
where
ker © = {C e P@A(M): O(X)C = 0, ¥X 6 B%.

For the sske of simpliocity, we will denote ker 6 » A (M) by
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1%m.

Remark. The only point where the existence of a &-inva-
riant connection is used is the assertion that every homogene-
ous polynomial on T* M invariant by G is the symbol of an in-

variant cochain,

6., Isomorphism of the terms B,

Lemma 6.1. The inclusion 1:I 8 (N) —> P @ A (M) induces an

—— " — — e -

ieomorphisn 1, :E((I% (W) — E, (P& A(M).

It is well-known that
E, (S) = H(EO(S),do).

We have already seen that P = j\,c(ﬁ’). the space of conti-
nuous cochains on ¥ . Moreover sp(n,R) = 9’2 is a subalgebra
ot ¥ .

Denote by R the space of skew-symmetric polynomials of or-
der z 3 in each argument. Then R = A (F/F,).

Consider the Hochschild-Serre filtration of P® A (M)
(A (F) & A(M)) related to the subalgebra 4, = sp(n,R).
The first term of the corresponding speciral sequence of the

differential space ( P® A(M,da @1) is
Eo ZA(SL) ® A(M) = Alsp(n,R), R ) @ AM)

with the differential do' = 8P® 4 , where 8@ is the differen-
tial of the Chevalley cohomology of the representation @ rest-
ricted to sp(n,R) and R . '
Similarly, for the corresponding filtration of IG(N), Eg:
= 1% (N) ena as = 39 ® 1 when identifying E} to & subspace of

A(sp(n,R),R) & A(M) by the isomorphism above.
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Since sp(n,R) is simple, 1%t is well-known that
BE ) A e 8% 0 AN

and more precisely,
ker 8 = AM@ RP® A(M) ® in %

where A"d denotes the space of all ad-invariant elements of
A(ep(n,R),R) ana R® the space of @ -invariant elements of R.
Moreover, there exists a linear map k: A(sp(n,R),R) —

— A(sp(n,R),R) which intertwins the representation

;t? 1h—>i(A) o % + apo 1(a)

of sp(n, R) and which is a right inverse of Q,, on im 3‘0 .
Indeed, ker ap is stable by .‘tp thus it has an 369 ~-stable

algebraic supplement E . Thus

Alsp(n,R),R) = (A* 3 RP) @ im HOE.

Observe that 90, s E— im 6@ has & unique inverse. If < ,[3 ,
o are the projectors on A g RC, in 6‘0 and E associated

to this decomposition k = ( ap | )'1 °© 3 has the required pro-

€
perties.

Observe that, by the isomorphism P = A(ep(n,R),R), @
becomes 3‘, « Thus k commutes with O(X) (X e &) and k @ 1 ste-
bilizes I (W),

Since N*4 @ R @ A (M)cI®(N), we have

ker 8, N 19(M) = (Ao RPOAM)® (I®(Mnin 3 )

and

o . 6 e
I(NDnim 39 afok(I (NN im 3?)C GPI (™.

Thus
H(B3,an) & H(E,,d;)
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and the lemma follows.

7. Convergence of the spectral sequences E,(S). It does not
seen that the convergence of the spectral sequences Ei(S), S =
= P& A(M) or I®(N) follows from standard arguments.

We need the following

Lemme 7.1. Let (X = @ X9,5°) be_a_graded differential spa-
oe, Suppose that o'= J + 0y, where Jy (i = 0,1) is homogene-
ous of degree i and that im Jynim Jdicim d o0 Jy. If (E;!’d;l) is

ihe spectral _sequence defimed by_the filtration F¥ = @, X9,
then ES S ED.
Recall that
BP = 2P/(zP*] + DP_))
where

20 = PP n PP ana 0P . PP A 7P,

It is clear that Zga Z£ + Z?H. These spaces are equal. In-
deed, if x628, x = x, + x 4 mod PP*?, with x ¢ XP end x4 @
e XP*1, tnen d’oxp = 0 and d}xp + d’oxp_H = 0, thug there ex-
ists zeXP? such that d':'xp = - d:)xpﬂ = J, d'yz. Note that
T + d'1zexp+1n ker o = z{"“ and x, - Iz = x + oz -

- dzePPnkerd = 2% . Since FP*2c zP*, the equality follows.

Moreover, D} = D . Indeed, if xeDP, , choose the largest
q&p-1 such that x = d”y with ye FINPI*', Then q = p-1. Oiizer-
wise, ye 23 = 23 + Z?‘H and x = dye I P, contradicting the
choice of q.

Suppose now that 28! = 2577 @ V. since z]*'n DP = z2'A
AP 2P + 02 - (0F + 28" @ V. Moreover P n zP*! . 2P,
thus 22 + zP*! = zE @ V. Then
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£ = (28 +2P*") /(281402 ) = (2B @ V)/1(0P+z2 )@ vl x ED .
Hence the lemma.

Let us now prove the convergence of the spectral sequences
E;(8) of § 3.

Take first S =« P@ A(M). It is graded by

- q q_ r,k
s =®x%, X u.(:?-q,(@@ AM) ",

where (P ® A (M))T'% denotes the space of all k-cochains, homo-
geneous of order r, The filtration of § 3 is PP a 9% x9, The
r

z

differential 4° + 4" verifies the agsumption of Lemma 7.1, hence
E§»9(s) = 22 %(s).
The space EZ(S) is easily computed:
E,(8) 2 H(P,d") @ AW,

4 ([P ® @) = [P}y, ® a"w
and
E,(8) = H(#,d")

because M is contractible, hence H(A(M),d) =< R.

In particular, each Eg’q is finite dimensional.

It is known [4) that, for i>q+1, there is a canonical sur-
Jective map '

Gli)’q=E1i'q-—> Eg’q.

We must show that it is surjective. In fact, if dj#o for some
j>2, for i> sup(q+1,J), we get

dim Ei’q = dim E2*9>dim Eg"b dim EP?9> dim Eo%’q.

It follows that the spectral sequence collapses at the second temm
and that Gg'q is bijective.
We consider now the case of I® (N). We have the commutative

diagram
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P10 ) — B UPe A (D))

’équ 1 1 ez:q

B U1® (M) —> ERUPeAM)

where the horizontal arrows are induced by the inclusion map
IS(H) »>& & A(W. For 41>q + 1, 65'% 18 onto, while the up-
per horizontal arrow and Gg’q are isomorphisms. Since
lli"q(Ie(ll)) is finite-dimensional, it follows that all the ar-

rows are isomorphisms, hence the result.

8, The second and third invariant cohomology spaces. We con-

clude by describing the space Hi(-A'Gd.iff,no(m’ 3), tor 1 = 2,3,

Given a connection T" on M, there exist a 2-cocycle S]}, with sym-
bol .A.3 and a 3-cochain Tr, with symbol

(§or F1r F2) —>ACE 40 §1) ALS s F2) AlE20 £o)s

which allow an easy description of (A d:l.ﬂ,nc(m ,0 ) (i=2,3)
[1]. Moreover, if T' is invariant, 3T3, and TT‘ are invariant,

¢ -rs‘?, + o+ 3D,

wherer e R , we AS(M) and Ds AGdifr,nc(N)‘ Moreover
(¢l » (r, [wl)
is bijective, [ ] denoting

HZ(AGdiﬁ,nc(N)’ 3) ¥R ® H( A®(W),a);

° g3
C =85 A Ly + 8 Th+ @wfw + 3E
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shere s e R , o'¢ AG(')o E ‘AGutf.nc(x)' X is_symplectic

Yegtor fields, end

P (A 00,000, ) B (AT 0,0 @ P( A0, 0) @ X,

not.

Dropping the conditions of invariance in Prop. 7.1 exactly
gives back the description of HY(A diff..no(m' 0 )(4=2,3) menti-
oned above,

The proof requires some preparation. We keep the notations
of the end of the proof of Lemma 6.1. Let P be the bundle as-
sooclated to the bundle Ls(l) of symplectic linear frames of M
and the natural representation ® of its structure group
Sp(n,R) on M (observe that the differential of @ is p ). Sin-
oe the projectors « ,3,9 of P commute with ® and thus with
@ , they induce projectors, also denoted ¢, (3,7 on the fib-
res of P . For the same reason, the maps 8P and k induce line-
ar endomorphisms on P -, which we shall again denote by % ~ an(
k. It is clear that Qg (P) = A(P) and that k o '()P =,

If C is a cochain of lexicographical order (ro,...,rq_1)
with To-1 >Ty meeem Ty 4 = 1, its lexicographical symbol E’C
identifies to a (q-£ )-form on M with values in P and, by this
identification, L » Fc corresponds to the natural Lie derivati-
ve Ly with respect to X on the space A(TM, P) of P -valued

forms on M., In partigular, Lx‘ commutes with «<, 3, ¥, 8{0 and k.
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Indeed, in the trivialisation associated to a canonical chart,
the latter have’the (constant) local forms o, 3,7, a,o or k of
Lemma 6.1, while the local form of I‘f‘ is

LP = X xinxir - @(DP.

Let now C = 3E. It is known [1] that 79, Gy = G,g or O.

Suppose that i is invariant, One has

T = 8+ PFy+ Y6y
and 8y = a@ °© k o36g. It is thus possible to correct B by
a coboundary in order to cancel [S 3’3 without chenging C. On the
other hand, since ap is injective on im 7y end commutes with
Ly, ¥y is inverient and it is the symbol of an invarieat epe-
rator.

Let us now prove a). Let

*
¢ =18+ ufw+ 3D

be an invariant 2-cocycle. Unless D is of order 1, % En is in-
variant. Since there is no 1-cochain in A% @ R® , the abeve
argument shows, by an induction on the order, that D = D’ + (,J‘v“
where D’ is invariant. Thus O = 18] + w*(w+dn) + 2D and
©+ dn is invariant.

If now C is the coboundary of an invariant 1-cochain »r = 0
and

‘u,*m + 3D = D"

where @ ,D and D" are inverisnt. By the same kind of argument,
D" -~ D is of order 1. Hence the result.
For b), let
c .sg,\xx-b utew + OF

be invariant (anyway, ™ is invariant).
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If E is of order (p,q)>(1,1), aP 6y is of order (p,q,2)

(in deoreasing order), while S?, A Ly is of order £3:3,1). These
orders are never equal. If (p,q,2) dominates, up to a correction
of E by an invariant operator, or by a coboundary, we may assume
that & = «&p. The only 2-cochains in A%4@ RP are 1@ AK
for k odd = 3. Thus if (p,q,2)> (3,3,1) and (p,q)4=(k,k) (k oddz
Z 3), we may correct E by an invariant operator and decreese its
order. It (p,q) = (k,k)>(3,3), x&g = £AK (feN). The term of
OE of order (k,k-1,3) is then

K(k=1) LACE , §OEBACE §202A (10 £2)-

It follows that £ is iavariant end E is the symbol of an invari-
ant cochain, We have thus an induction process which allows to
decrease the order of C° by correcting it by 97T for some inva-
riant T as long as E is of order (p,q)=(3,3) with (p,q,2) >
>(3,3,1).

Suppose that (p,q) = (3,3). Then =8y = tA3 eand, for some
invariant '.l",

C* = BT = SA ALy + @’ + 8E7

where E” is of order < (3,3) and X' =X - Xge

Suppose next that C* - 31 is of order (3,3,1). Its symbol
is /\.3® Ixs3 since it is invariant, X° is invariant. Thus

4

C°- BT - S ALy, = wrw'+ BE’
is of order < (3,3,1).
So the induction leads to the existence of some invariant T
and X such that
4 3
C - 37 - Sr, 72N Lx

ig 1-differentiable. It is then of the type (fn for some in-
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veriant 7, . Hence the first part of b).
I£ C is the col;ounda.ry of an invariant 2-cochain and
c’=8>A Iy + W@’ + JE
with invarisnt X, @’ and E, we have
83 A Ly + w'o'= 37
where T is invariant. The same proof shows that X = xt and W=

= dn where, thiz time, f and 7], are invariant. Hemce the conclu-
sion.
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