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ON CONTINUOUS IMAGES OF ALMOST TYCHONOFF CUBES
A. V. ARHANGEL'SKIL, J. CINCURA

Abstract: A class P of Tychonoff spaces is called represen-
tative (for a clase @) provided that any Tychonoff space (any
space of Q ) is isomorphic with a closed su ce of a product
of spaces belonging to . For a givemn class of Tychonoff
spaces the property of being representative is closely connected
with the properties of continuous images of almost Tychonoff cubes
with respect to the continuous maps into the spaces of . In this
paper we study the properties of continuous images of almost Ty-
chonoff cubes and apply the obtained results to the investigations
connected with representativemness of classes of Tychonoff spaces.

Key words: Almost Tychonoff cube, dyadic space, almost com—
pact space, moat dyadic space, representative class, weight,
tightness, pseudocharacter, caliber, Souslin number, radial space,
pseudomdial space, character
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Throughout this paper all topological spaces are supposed to
be Tychonoff. |Al denotes the cardinality of A and if A is a sub-
set of a space X, then A denotes the closure of A in X. Recall
that the tightness t(X) of a space X is the smallest infinite car-
dinal < such that if x € X, AC X and x € A, then there exists
a set BCA with |BI$ @ and x € B. The pseudocharacter y(X) of
a space X is the smallest infinite cardinal < such that for any
X € X there exists a collection W of open subsets of X with
Wi € © and N{U: Ue U} = {x}. By w(X) we always denote the
weight of X. A subset of a space is said to be canonical closed
rrovided that it is the closure of an open subset of X. aAX de-
notes the Tech - Stome compactification of X. If ¢ is a cardinal,
then ¢ denotes the smallest cardinal greater than .

Recall that a space Y is said to be almost compact provided that
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the remainder pX - X contains precisely one point. Obviously,
any almost compact space is locally compact. Let ¢ be a cardinal,
I the closed wnit interval. The subspace I' = {a} of the Tychonoff
cube IT where a is an arbitrary point of Iq" is denoted by Se¢
and called an almost Tychonoff cube. It is well known that for

T > ‘VO pSe = 17 i, e. for « >h’0 the space S,‘- is almost
compact.

Definition 1. A space X is said to be almost dyadic provided
that X is a dyadic space and the remainder pX - X contains
exactly one point.

Clearly, any almost dyadic space is almost compact and for
any f[">;~.'0 S’E is almost dyadic, The space of all countable
ordinals is almost compact without being almost dyadic.

The following three statements are easy to prove.

Proposition 1. If a subspace Y of a space Z is an almost com~
pact space, then either Y is closed in 2 or Y = pY (and, con-—
sequently, |AY - Y| = 1).

Proposition 2. Let X be an almost compact (almost dyadic)
space and f: X—> Y a continuous map with £f(X) = Y, Then the space
Y ie either compact (dyadic) or almost compact (almost dyadic).

Proposition 3. Let X be an almost compact space, f: X— Y
a continuous map, f(X) = Y end Y be not compact. Then f is a
perfect map.

Theorem 1, Let X be an almost dyadic space. Then the follow-
ing hold:

(a) There is an uncoutable closed discrete subspace of X.

(b) X is not nomal.

(¢) X contains a canonical closed subspace which 18 noneme-
trizable and dyadic. ,

(d) X contains a subspace homeomorphic with Dh1 (the product
of ;,'1 discrete doubletons).

(e) +(X) > K,

(£) y(X) > &, (not all points of X are of type Gy ).

(g) K4 is the caliber of X and, particularly, the Souslin
number of the space X is countable (for the definition of caliber
see e, g. [11).

(h) X is not collectionwise Hausdorff and not even Ay = weak=
ly collectionwise Hausdorff.
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(i) The set of all dim Y where Y is a subspace of X is un-
bouded.
(J) X is not radial (for the definition of radial spaces see

e. g. [1]).

(k) X is not countably compact.

Proof. (a) Since [pX - Xl =1 X is not first-countable at
the point p € pX = X. At the same time aX is a dyadic space and
applying [ 7; p. 293, (i)] we obtain that there exists a discrete
subspace M of X with |M| = A such that p is the only accumu-
lation point of M in pX.

(b) Take an infinite closed discrete subspace M of X and
arbitrary disjoint infinite subsets A, B of M, Then A, B are
closed in X and their closures in A X are not disjoint ( l/sx -X| =

= 1).

(c) The space pX is dyadic and X is an open subspace of pX.
Therefore for each x € X there exists a neighbourhood \Ix with the
compact pX-closure Fx contained in X, Since Fx is a canonical
closed subset of the dyadic space pX Fx is a dyadic space. Let
for each x € X Fx be metrizable., Then X is a first-countable
dense subspace of pX so that (see [f ) aX is second-countable
contradicting (a). Comsequently, there exists x € X such that F,

is non-metrizable.
(d) Since any non-metrizable dyadic space contains a subspace

homeomoxrphic with D”’ (see (7] ) (d) follows from (c).
(e) and (f) Since the tightness and the pseudocharacter are

monotonic with respect to arbitrery subspaces and
2@%)> g, (0M)> 5, the statements (e) and (f) follow from

(a).
(g) Since AX is a dyadic space the caliber of sX and any its

open subspace is l{1. Especially, the Souslin number of X is
countable,

(h) Immediate from (g) and (a).

(1) For any n € N there exists a subspace Y of D
dim Y 2 n.

(§) It follows from (d) since D™  is not radial (see (2] ).

(k) Immediate from (a).

Proposition 4. Let X be an almost dyadic space, f: X—>Y a

#  with
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continuous map and the space Y satisfy at least one of the follow-
ing conditions:

(1) Y is normal

(2) Y does not contain an uncountable closed discrete subspace

(3) t(y) = Ko

(4) v(Y) = 4, (all points of Y are of type G, )

(5) Y does not contain a subspace homeomorphic with D

(6) Y is collectionwise Hausdorff

(7) There exists n € N such that for any subspace Z of Y
dim 2 ¥ n.

(8) Y is radial

(9) Y is countably compact

Then ETX-) is a dyadic space and the map f is extendable to
a continuous map pAX —Y,

#,

Proof, According to Proposition 2 the space f(X) is almost
dyadic or dyadic. In the second case the proof is completed. Let
£(X) be almost dyadic. Since the properties (1) = (9) are closed~
-hereditary, by Theorem 1 f£(X) ¥ £(X) and then by Proposition 1
£(X) = p(£(X)) is a compact space. Thus, f can be extended to a
continuous map AX—Y.

In particular, from Proposition 4 it follows:

Corollary 1. If a continuous image Y of an almost dyadic
space is normal or does not contain an uncountable closed discrete
subspace, then Y is a dyadic space.

Theorem 2. Let € be the class of all spaces satiefying at
least one of the conditioms (1) = (9) of Proposition 4 and X =
= M{X,: &« €A} a product of spaces belonging to £ . Then no
almost dyadic space is homeomorphic with a closed subspace of the
space X,

Proof. Immediate from Proposition 4 and [ 9; 17.2.2.].

Evidently, any topological property which is closed~heredita-—
ry and possessed by no almost dyadic space can participate in the
formulations of Proposition 4 and Theorem 2. Hence, we have the
following general result:

Theorem 3. Let P be a class of all spaces which do not con=
tain a closed almost dyadic subspace and X = M{X,  : « € A} a pro-
duct of spaces belonging to . Then no almost dyadic space (par-
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ticularly, St’ for < >h’°) is homeomorphic with a closed subspace
of X.

By the proof of Proposition 4 it is evident that if f: X—Y
is a continuous map, X an almost dyadic space and Y has a heredita-
ry topological property which is not possessed by any almost dyadic
space, then f(X) is a dyadic space. This together with Theorem 1
yielad:

Theorem 4., Let X be an almost dyadic space, f: X—>Y a conti=
nuous map with £(X) = Y and one of the following conditions be
fulfilled:

(1°) Y is hereditary nommal.

(2°) Y is hereditary collectionwise Hausdorff.

(37) +(Y) = ¥,.

(47) w(X) 5 44

(5°) Any discrete subspace of Y is countable.

(6°) Y does not contain a subspace homeomorphic with D”‘ .

Then Y is a compact space with countable bese.

Proof. By Theorem 1 and the observations preceding Theorem 4
Y is a dyadic space and it is well known that a dyadic space
possessing one of the properties (1°) = (6°) is metrizable.

Let P and @ be classes of topological spaces. We shall say
that the class P is representative for the class @ provided that
any space belonging to the class & is homeomorphic with a closed
subspace of a product of spaces belonging to P (in the categorical
language - Q is a subclass of the epireflective hull of P in the
category of all Tychonoff spaces). A class P will be said to be
representative provided that it is representative for the class
of all Tychonoff spaces.

Theorem 2 implies now the folloving:

Corollary 2. The class £ of all spaces satisfying at least
one of the conditions (1) - (9) of Proposition 4 is not represen-
tative.

Remark. J. Vermeer showed in (13] that the class of all nor-
mal spaces is not representative.

Using the cardinals greater than ,S’o and ,9’1 we can genera-
lize the preceding results in such a way that we obtain rather
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strong necessary conditions for the property of being a represen-
tative class.

We outline these generalizations.

Proposition 5. Let T, A be cardinals with T>A 3 '0 and
f: SQ——H[ e continuous map. Then at least one of the following
assertions is true:

(a) The map f is perfect (and, particularly, f(s.z-) is closed
in Y), f(S¢) contains a closed discrete subspace of the cardinali-
ty < (evidently, closed also in Y), f(ST) contains a topological
copy of IPr and f(S¢ ) is almost dyadic (and, consequently,
non-nomal, non-collectionwise Hausdorff, etc.)

(b) £(S¢) is a dyadic space and the map f is extendable to
a continuous map pS.—> Y.

Proof. If f_(-g—:) is compact, then, evidently, the assertion
(b) holds. Let f(S,z—) be not compact. Then applying Propositions
1 = 3 we obtain that f(S¢ ) is almost dyadic and f is perfect.
It is well known (see e. g. [7, p. 293, (i)] ) that the space
Sq contains a discrete closed subspace A of the cardinality <.
Then f(A) is a closed discrete subspace of f(5 ) and for all
y € £(4) £_,(y) is finite ( flA is perfect and A is discrete).
Consequently, |f(A)l= |A| = © and this implies that the weight
w(pZ) of the compact space pZ where Z = f(S,z-) is x}.?t less than
T . At the same time a2 is a continuous image of I . E. V. S&e-

pin (E.B. Lemus [15)) proved that under these conditions w(3Z)= ¢
implies that aZ contains a topological copy of the cube Ik‘ .
It is easy to see that then Z also contains a topological copy
of I'\4L .

From Proposition 5 it immediately follows:

Theorem 5. If a class % of spaces is representative, then
for any cardinal < > ”0 there exists a space X,L. € P with the
following properties: Xq is not nommal, Xq is not collectionwise
Hausdorff, X4 contains a closed discrete subspace of the
cardinality T and Xg contains a subspace homeomorphic with IT.

Corollary 3. If a class P is representative and closed~here-
ditary, then P contains all discrete spaces and all Tychonoff
Crad
cubes I°¢.
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Remark, If 9 is a left fitting class (i. e. if f: X—>Y is
perfect and Y € P, then X € P), then using the results of (8]
we obtain the following simple characterization of representative-
ness: 7’ is representative if and only if it contains all almost
Tychonoff cubes.

The class of all factor spaces of ordered spaces coincides
with the class of pseudoradial spaces studied in (2] (for the de-
finition see also [1]). The property of being pseudoradial 1is
closed~hereditary and t’he weight of any pseudoradial dyadic space
does not exceed ¢ = 20 (see [2]). Hence, I® is not pseudo=
radial and by Corollary 3 we have:

Theorem 6. The class of all pseudoradial spaces is not repre-
sentative.

Propogition 6. The space w, of all ordinals less than w,
(which is countably compact, normal, almost compact) and any
non-compact continuous image Y of w, contain a compact subspace
of the uncountable tightness (and, consequently, a compact sub-
space of the uncountable pseudocharacter).

Proof. Let f be a continuous map of the space w, onto & non-
-compact space Y. Then f is perfect and, obviously, |YI|= }7’2. Dew
fine a transfinite sequence a: wy + 1 — Y as follows: a, is
an arbitrary point of Y. For A < w, + 1 choose 8, ,16€ Y -

-{as: pgal such that if xe f ,(a, ;) eand ye £ ,(a, ),

then X > y. For a limit ordinal « , 0 <« = w, put A, = £(x )

where X = sup (U{f_1(aL )t A<&«} ). It is easy to check that
the subspace X = {x,t: T e wq + 1} of the space Y is isomorphic
with the space Wyt 1.

Theorem 7. The class P of all spaces X such that the
tightness of any compact subspace of X is countable is not repre-
sentative for the class of all normal countably coupact 3paces,

Corollary 4. The class of all spaces with the countable
tightness (with the countable pseudocharacter) is not representa-
tive for the class of all nonmal countably compact spaces.

Recently, a new cardinsl invariant of the type of tightness
has been introduced (sce e. g. [3]). We write t,(X) = &, provided
that every real function on X for which the restrictions to all
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countable subspaces of X are continuous is a continuous function
on X. V. V. Ugpenskii proved in [12] that if a cardinal 7 is
non-measurable, then t (I" )f,so. Since any space S, is locally
homeomorphic with I we obtain:

Proposition 8. If a cardinal © is non-messurable, then
tO(ST) ES ,S'O-

Theorem 8. The class G of all spaces X with to(x) 2 X is
reprssentative for the class of all spaces of non-measurable car-
dinality. Particularly, if there exists no measurable cardinal,
then the class Q is representative.

Proof. Let Y be a space of non-measurable cardinality. Then
the weight T of Y is also non-measurable and Y can be regarded
as a subspace of Obviously, Y = ni:t - {pt:peI®-y}
and then (see [4; ch. II.3¢) Y is a closed subspace of the space
M{1° - ip}: pe 17~ Y}. But to(S¢) = K,

Let T be an uncountable cardinal. Denote by ¥r the class
of all spaces X with the following property: Any continuous map
f: S¢- X is extendable to a continuous map ps,c——“ X. Then it
is easy to see that it holds:

Proposition 9. The class VT is the greatest (with respect
to inclusion) productive and closed-hereditary class of spaces
which does not contain the space Sc-.

As a corollary of Proposition 9 we obtain:

Theorem 10. Let A be a set and for any « €A T, bea
non-representative class of spaces. Then the class P=

= U{R: « €A} is not representative.
The following questions seem to be interesting:

(1) For which spaces is the class of all spaces with the
countable tightness (pseudocharacter) representative?

(2) Is the class of all spaces with the countable preudocha-
racter representative for the class of all spaces with the counta-
ble tightness?

(3) Is the class of all spaces with the countable tightness
representative for the class of all spaces with the countable
pseudocharacter?
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