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HOMOMORPHISM THEOREM FOR EQUATIONALLY PARTIAL
ALGEBRAS
Horst REICHEL

Abstract: The paper demonstrates the main difference be~
tween total and equationally partial algebras. Whereas the ho-
acmorphic image of a homomorphism f:A —>B between total eb-
rascan be rebuild from A and £sAxB by Z(A) ¢> A/ker £ with-
out any knowledge of the algebraic structure of B, in the ease
of equationally partial algebras the homomorphic e is in
gonoral only representable as a directed colimit of an infini-

¢ chain of iterated quotient algebras.

Key-words: BEquational partiality, hemomerphie image of
parti gebras, partial quotient algebras.

Classification: O0B8A55

1. Introduction. In the paper (1) we have introduced the

notion of an equationally partial heterogeneous algebra and
could see that this notion yields a proper salculus to desori-
be for instance the behaviour of small categories. The paper
[2] describes the construction of free and relatively free
partial algebras and of colimits by the notion of a partial
algebra defined by generators and relations. Both these papers
could give the impression that there are no essential diffe-
rences in the theories of total and of partial algebras.

The aim of this paper is to make visible an sssential
difference between the theories of total and of hierarchical
equationally partial algebras. This difference is dased on the
well known theorem of homomorphisms. We state and prove a theo-
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rem of homomorphisms for hierarchical equationally partial al-
gebras which encloses the theorem of homomorphisms of total
algebras as a special case and which reflects the canonical fac-
torization of functors between small categories deacr.‘!:bed in
151.

This paper represents parts of the author s thesis [6].

One of the basic concepts of the axiomatic categorical (univer-
sal) algebra of G. Richter (see [7]) is the following defini-
tion:
"The Theorem of Homomorphisms holds in a category 1., if
HOM 1: Every congruence R:g::; L in L has a coequalizer
r:L — L/R;
HOM 2: Every I -morphism f£:L —» L" has a kernel pair
pf:Rt——> I, qfxnf—-» L;
HOM 3: The homomorphism g:L/Rf——> L" in the canonical factori-

zation

Pe t L
Ry _T.q_—_; L —
2

N

L/R,

(1)

is & monomorphism for every L -morphism f£:L—>1L","

If we check the validity of the Theorem of Homomorphisms in
the category QAR of small categories, then we see that HOM 1
and HOM 2 are evidently satisfied but HOM 3 is not true. This
can be seen by the following counter-example.

Let 9:0—+0’ e the fumetor given by the following diagram:
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e ec
V4 g(&)

(2) °3 -~ ho— @(h)
4 ()
51 65 9
The coequalizer @9:0——>Q of the kernel pair of ¢ :C—> C" is

given by D.3:
g ple)

h t——————ﬂ’;—>- e(h) (o(f)'gv(g)*p(h)

\ g)(f)

The canonical functor fﬂy Qe —> C" with @ = @ Yp is given
by Yo (p(e)) = ¢(e), g (@ (1)) = 9(2), ¥y (@(h)) = @(h),
end 95 (@ (). @(g)) = P(h), hence 5iQy—> C" is not a mo-
nomorphism, But, condition HOM 3 is true for the canonical fac-
tor L :QS,———> c", In [5] it was proved that condition HOM 3

(3)

is true for every canonical factor fx'? 1Q—> C" starting with
an arbitrary functor @ tC —> C" between small categories,

This example shows that the behaviour of small categories and
functors between small categories cannot be studied in the axi-
omatic categorical universal algebra of G. Richter, although

this approach works very well for total heterogeneous algebras.

In the case of amall categories the factorization ef a
functor 9 tC —> (" can be iterated and the resulting factor
after the second step is then a monomorphism, and so there is
no further non-trivial factorization of this monomorphism, In
the sequel we show that for hierarchical equationally partial
algebras this iteration does not terminate after finitely many
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steps, Howsver, we can prove that the smet-theoretical colimit
of the chain of iterated quotients is isomorphic to the homo~
morphic image. The case of total algebras 1s characterized by
the fact that the chain of iterated quotients terminates after
the first step.

2, The chain of iterated quotients. We assume that O =
= (S,008t = —> 8*x 8, (def 616 € =)) is any hierarchical

equationally partial heterogeneous operator domain (hep-domain)
and that (! is any set of elementary implications (in the sen-
se of [1] and [2]),

Definition 2.1. Let A be any (€ ,(1)-algebra and e=
= ( So-lls 5) an S-indexed family of binary relations @ S Agx
xA., s€ S, A homomorphism r:A—> Q between (6 ,(L)-algebras
is called a natural homomorphism to @ and Q is called a
quotient of A to @ it
(1) Por all s€S, (x,y) € ®, holds r (x) = r (y);
(2) PFor every homomorphism f:A—> B between (O ,CL)-algebras
with t'(x) = f.(y) for all seS, (x,y) € 04 there is ex-
actly one homomorphism £* :Q—> B with £ = ro 2¥ ,

Different to the same notion of total algebras here the
notion of a natural homomorphism and of a quotient is only u-
nique up to isomorphisms, Since it is not possible to define
on the sets of classes of congruent elements a (& ,(l)~algebra
by operating with representatives, the notion of a quotient
cannot be introduced in a more restrictive way. The impossibi-
1ity of defining a quotient-category by operating with repre-

sentatives of congruence-classes is demonstrated by the small



category C from the introduction and by the kernel-congruence
of the functor @30 —> C* (see Diagram 2), But, the functor
SD? :C—->Q? as given by Diagram 3 is natural to the kernel-
congruence of @ :C—>C", and therefore Qg, is a quotient of
C to the kernel-congruence of ¢ :C—>C",

For eveyy homomorphism f£3A—> B between (O »CUL)~8lgebras
we denote by ker f = ((ker f).\ne 8) the kernol-congmenc.o of
fiA—>B, i.e. N

(ker £), = {(x,3)eA x Ay | :t-.(x) - f.(y)}, 86 S,

It is easy to see that ker f is a carrier of a (® ,CL)-subal-
gebra of Ax A and that pftkor f—> A, qfsk.r £f—> A with
(Pg)g((xs¥)) = x5 (qp) ((x,¥)) = y for all se S, (x,5) &

€ (ker f). are homomorphisms, In the terminology of categori-
ocal algebra (pf.qi) is called the kernel-peir of f£:A—> B,

Proposition 2,2, Let A be any (©,Cl)-algebra and o=
= (So'las 8) en S-indexed family of binary relations Pas A'x
> A.. 86 S, Then there is a homomorphism q:A —> Q between

(8 ,01)-algebras natural to @ = (;o.l-es).

Proof: The existence of gqtA—> Q is demonstrated by use
of the sonstruction P(CX,G) of [2], i.e. by the construction
of a (@ ,(L)-algsbra freely generated by an appropriate set
of equations (G/v), v:iX—> 3, We define

X, = {(a,8)lac A 868}, v,iX,—> 8 by v,(a,8) = s and

(Ge/v)) = i(x,8) = (y,8)l8c8, (x,7) 6,8 .

Let qpiA—> P(%,G;) be glven by (qp).(-) -[G-.-),QFJ €
€ I(OL.GP), for all s€ S, macA.
Condition (1) of Definition 2.1 is evidently satisfied by

qq):A-—a r(a.ac,). If £:A—> B is sny homomorphism between
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(6 ,0L)-algebras with £ (x) = £.(y) for all seS, (x,7) e @,
then fe B'LH is a molution of (GQI'A) in B such that exactly

one homomorphism £* :P(CL ,GSD)——> B with £* ([(a,a),(}(o] ) =
= £ (a) for all seS, acA, exists, i.e. g ° . t,

Definition 2.3. A finite or countable sequence
((f590y,25,9)1e I), with I = {0,1,...,n} or I ={0,1,...},
of homomorphisms between (O ,(f )-algebras is called a chain of
iterated quotients of fo:A——> Bif
(1) ty = qo 21+1 for all i6 I;
(2) Every q4 3Q;—> Qi+1’ 1€ I, is not an isomorphism:
(3) qisQi——a» Qi+1 is natural to ker fi for every ie I.
If I =40,1,...,n} then n is called the length of the chain of
iterated quotients of fo tA—> B,

The theorem of homomorphisms of total algebruAimplin
that every chain of iterated quotients of & homomorphism tox
sA—> B between tota:1 algebras is of length one. In [5] it is
shown that any chain of iterated quotients of a functor bet-

ween small categories is at most of length two.

Theorem 2.4. There are chains of iterated quotients of
homomorphisms between equationally partial algebras of infi-
nite length,

Proof by comstruction of an infinite chain: Let us' con-
sider the following hep-domain
® = gorts N,Q
oprs n:—> N
s:N—" N
m: Q—> N
r:N 12f 8(x) = n—>Q

-6 -



md ©
and the O -algebras A%, B with
A; ={(0,x)Ix€{0,1,...3 = N§,
A% = g,
n,0 = (0,0), 8,0(0,x) = (0,x+1) for all x € N , and
®m,0, T)0 are operations with empty domains,
By = NxN , B =N, ny = (0,0), sg(x,3) = (0,0) for all

(x,y) € By, .

my(x) = (x+1,0) for all xe N = By, dom rp = By and
rn(x,y) = X for all (x,y)eBNo
It is easy to see that A° is an initial @-algebra, i.e. for e-
very ©-algebra B  there is exactly one homomorphism £:°—» B°.
The uniquely determined homomorphism £:A°—> B is then defined
by £4(0,x) = (0,0) for ell (0,x)e Ay, and £4:f—> By, so that
(ker £)g = Agxb;, (ker £)q = Angg.
Aceording to the proof of Proposition 2.2 we construct a homo-
morphism 1, A°—s Al by setting
AF = £€0,0),(1,0),e00y(1,3)5e00 L x e NF , &7 = {01, n 4 = (0,0,

0‘1(0.0) = (0,0), lAl(l,x) = (1,x+1) for all x e N,
N\

dom Ta" £¢0,0)%, r‘l(0,0) = 0, ‘Al(O) = (1,0),

(44)5(0,x) = (0,0) for all x &« N , and (q,)q:¥ —> 103,

This homomorphism is natural to ker f. The uniquely determined
factor £,:A1—> B 1s given by (£,)5(J,0) = (3,0) for 3=0,1,
(tl)‘(l,x) = (0,0) for all xz1, and (tl)Q(O) = 0,

In general, we define the triple ( fk'qk'fk +1) for k=1, see
Diagram 4

£
A > B
\ ﬂ
(4 ) qk k#l k*l

K
K




‘; = £(0,0)5(1,0)50000(ky0)y(ky1)p0ees(k,x)yeee | x 6 NI,
‘5 bl {0.1.....k-1}.

nAk = (0,0), sAk(O,O) = -‘k(l,O) " ae = aAk(k-l,O) = (0,0),
sAk(k,x) = (k,x+1) for all xe N,

tom r \ = 1(0,0),(1,0)5¢044,(k=1,0)3, rAk((J.O)) = J for

J = 0yeee,k=1,
‘Lk(d) = (J+1,0) for J = 0,1,c00,k=1,
the homomorphism fk :Ak—-—> B by
(fk)n(;],O) = (3,0) for J = 0,1,60.,k,
(£, ),(kyx) = (0,0) for x+0, xe N,
(£,)q(3) = § for J = 0,1,c00,k-1,
n.nd the homomorphism Q :Ak—-—-> Lk"'l by '
(9, )y(3,0) for J = 0,1,...,k,
.(qk)n(k,x) = (0,0) for x+0, x e N,
(gy)q(d) = J for § = 0,1,...,k-1.
Simple calculations show that (fk'qk’tlwi)' k= 0,1,2,000y 18
really a chain of iterated quotients of f = £:A°~—> B, and
evidently it is an infinite one.

3. The Theorem of Homomorphisms. In the case of total
algebras for every homomorphism f:A—> B the set-theoretical
image is always a carrier of a subalgebra of B, and according
to the Special Theorem of Homomorphisms this homomorphiec ima-
ge is isomorphic to the quotient A/ker f,

For partial algebras the very notion of the homomorphie
image is not so evident, since the set-theoretical image in



general is not the carrier of a subalgebra, For the notion

of a subalgebra of an equationally partial algebra see [1],

Let us oonsider the homomorphism £:A°—> B as defined in
the proof ot Theorem 2.4, and look for the homomorphic image.
At first we will define this notion for equationally partial
algebras.

Definition 3.1, Let © be a hep-domain and f:A—> B a
homomorphism between 6 -algebras.

2(A) = ((2(A) lsc8), (& ¢a) l16eX))
denotes the smallest O -subalgebra of B with f,(x)e £(A), for
all sc S, x6A. f(A) is said to be the homomorphic image of

£:A—» B,

Returning to the example f $A°—> B we get
24%)g = {(x,0)lx 6 N7 S NxN = By end £(A°)g = N = B,

The homomorphic image £(A°)S B is infinite with respect to
both sorts N and Q, although the s et-theoretical image is one
element only, mamely f4(Ag) = {(0,0)}, fo(Aq) = #.

Now we are going to look for significant relations between the
homomorphic image of a homomorphism f:A—> B and its maximal
chain of iterated quotients.

The example of the proof of Theorem 2.4 gives us the idea.
With inereasing k the iterated quotient A¥ becomes more and
more similar to the homomorphic image.

To prove this conjecture in general we study at first the
comstruction of a colimit of a directed diagram of (€ , & )-al~
gobras, where (4 1s any set of elementary implications.

Let (J,4) de a directed partially ordered set and



d (T, 2)—> ALGK(O,%) a directed diagram in the category of
(6 ,0)-algebras, i,e., for every jeJ &(Jj) is a (6 ,0)-al-
gebra, for every pair (1,J) with 143 & (1,3)s (L) — & (J)
is a homomorphism, and for every pair 11,125 J there is at
least one ke J with ilék and i,<k.

At first we build up the set-theoretical colimit from the given

diagrem by forming the S-indexed family (L} | s€S) with L;‘ -

= {(x,§)Jed, x€ ®(J)y} for every scS, by defining en S-in-

dexed family of equivalence relations (s.lae S) with

(x,3;)=,4(y,3,) 1f and only 1f there is a k¢ J with J, <k,

Jp4k and $(J),k)(x) = @(ngk)(y).

and by setting L, = L’:/s‘ for every s€S. By [x,jJeL’ we de-

note an arbitrary equivalence-class.

As next we extend this S-indexed family of sets to a (6, )-al-

gebra L = ((leseS),( 6y, 166X )). Let 6‘::1...33—-—» s be any

operator., The domain of G'L is defined by

([H.JIJ,....[xn,JnJ)c dom 67 1ff there 18 a ke J and there are
FyseeesYy Wth J1£Kyeoepdp£ky [X7,d7] = [y7.kT000,
[Xqodp] = [yysk], and (yy,e0007y)€ dom 6G50y50

In this case we get

OLUxy s dqT seees [x;0331) = (6 1) (Fyseeesy)okle

8ince & (J, é):—-> ALG(O !Ol) is a ﬁireotod diagrem one can ea-

sily prove that the domain of 61. and that the value

€1((x153900009[x;,3,)) 18 defined independently from the choi-

ce of representatives, and that L is really a ©-algebra.

Using the finiteness of the premise of any elementary implica~

tion (H—> ¢t = t'/v) ¢ (L and again the fact that & is a direc-

ted diagram ome can prove without any problems that every axiom

out of U 1s satisfied t
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Pinally, vwe remark that for every Je J the S-indexed family
of mappings &(J) = (&(J),+B(J),—> Lyl8c8), with

g(;j).(x) = [x,3] for every sc S, x € Q(;j)', is a homomorphism
g(3)2 $(3)—> L. The cone (g(J): P(J)—> L[je€J) is a colimit
of the diegram $i(J, < )—> ALG(O ,4). This statement fol-
lows from the fact that the forgetful functor from ALG(O ,Ck)
to the underlying set-category, whose objects are S-indexed
families of mets, preserves directed colimits (see [4],[31).

3.2, Theorem of Homomorphismss: Let © be any hep-domain
and (L any set of elementary implications. For every homomor-
phism £:A—> B between (O ,CL)-algebras the homomorphic image
#(A) is isomorphic to the colimit of the maximal chain
(Ii,qi,f1+1), i = 0,1,004y of iterated quotients of fo tA —>
—> £(A), where £ = t,0 h, and where h:f(A)—> B is the inc-
lusion of the homomorphic image.

Proof: Above all we introduce the following abbreviati-
on: Por all 1,j ¢ N with 1< j and 14 let
9,5 = 9° 947 ° o0 °94(5-1) l—>ad,

To make the situation more olear we give the following diagram
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In this diegram denotes Le ALG(O , (1) together with the fami-
1y (s‘ u’-»x.u 6 N ) of canonical injections the colimit of
the chain of iterated quotients of fO:A—> f(A). Since

(f.j wd 2(A)|J e N ) is also a cone for the chain of 1tera-
ted quotients, there exists exactly one homomorphism gL —>
—> 2(A) with g, - g = IJ for all je N.

We prove the Theorem by showing that this homomorphism g:L —>
—> 2£(A) is an isomorphism, Because of the hierarchy of the
hep-domain © it is sufficient te show that g:L— £(A) 18
bijective (see Theorem 2.4 of [1]).
We start with the injectivity of giL—»> £(A), Let be m€ S,
x,ye L, with 5.(:) - g.(y). Since L is a colimit of a direc-~
ted diagrem we can use tke preceding construction ef such a co-
1imi¢, Hence thera are 1« N , x°,y’c A: with (51).(:') =X
and (q).(y') = Yo Beosuse of £, = g, ° g it follows
(£4)4(x") = (g 8),(x") = g,((8),(x")) = g, (x) = g(y) =

= (2, ()
Since Yy is matural to ker !1. this equality implies
(q).(x') - (‘1)-(")' Due to this we see X = (“).(x') =
= (00 810X = (81,1)5000)),(x")) = (8,3),00q4), (")) =
= (qqe ;14_1).(3') - (q).(y') =y, 1.0, giL—> £(A) 1s an in-
Jestive hememorphism.
ﬁ preve the surjectivity of g:L—> £{A) we recall that for
overy s« 8 an element be l. is an element of f(A). iff there
is a w: {1,2,000901—> S, a term t¢ ‘!(Q.,v). and an assign-
ment ach, with b = $x(a) and a(J) ¢ f'(:l)“'(j)) for every
§€81,2,.c09n}, 1.0, overy component a(j) is sn element of
the get-theeretical image (f,(A )Isc S). Henoe there are
LON WALy een € Anny Wt (200 41(8)) = a(3)
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for every jc{1,2,...,n} such that f‘i(:l".uin) exists. The

refore, for the element @ = tli(il'""an) holds (£,) (%) =
= (22508 3( @y eeen®)) = l(1)y(B1eeee,Ty)) = th(a(D),enn
seest(n)) = tg(a) = b, b= (£,),(8) = (g0 g),(a) =

- g'((gi).(i)), i.e., g:L—> £(A) is Bsurjective.

An important consequence of this theorem ig the fact thaf i
is not possible to reconstruct in a finite manner the global
behaviour of the homomorphic image f(A) of a homomorphism
£:A—> B between equoids from the knowledge of the equeid A
and of the set-theoretical mappings (r. A —> B.l se€8).

However, the local computation with finitely many arguments
and operations in f(A) can be described in a finite manner by
the equoid A and the S-indexed family of mappings ( T A, —>
— B'lse S). But, this description mey be arbitrarily compli-
cated, depending from the index 1 ¢ IN of the iterated equoid
Ai to which the given finitary situation in f£(A) may be redu-

ced,

It is easy to see that any two maximal chains
(230950854001 ¢ 1v (F50Ty0T4,,) ¢ g Of Lterated quotients of
one and the same homomorphism, i.e. fo - To’ have the same
length, 1.6, I = J, and that they are isomorphic, i.e. there
are isomorphisms hi’ 1e I with hi cqy = Zrio h:l. for every ie I,
and therefore hjo £, = —fi for every i€ I.

Due to this we introduce the so-called homomorphis number,
hom(f) of a homomorphism f:A—> B as the length of a maximal
chain of iterated quotients of f tA-—-—; B, If this chain is in-
finite we set hom(f) = c0 , For a hep-domain © and a set (X
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of elementary implications, i.e. for a hep~theory (©, ),
we define hom(©, (L) to be the supremum of all hom(f) of ho-

momorphisms between (6 ,(L)-algebras.

Hep~theories with a finite homomorphic number are of so-
me interest, because of the finitary representability of the
homomorphic image f£(A) with respect to the equoid A and the
S-indexed family (f,:A,—> B’lse S) of mappings. We guess that
it is recursively undecidable whether hom(T) is finite or not
for any hep-theory T. It seems to be very interesting to leok
for conditions being necessary or sufficient for the finite-
ness of hom(T). Up to now we do not know any such eonditionm.
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