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SIMPLICITY OF ALGEBRAS REGUIRES TO INVESTIGATE ALMOST
ALL OPERATIONS

M. DEMLOVA, J. DEMEL, V. KOUBEK

Abgtract: It 1s shown: If we want to prove that an al-
gebra is simple or subdirectly irreducible then we must in-
vestigate almost all results of all operations. Analogously,
if we want to prove that an automaton is simple or subdirect-
ly irreducible then we must investigate almost its whole
next state function. The consequences concerning the compu-
tation theory are given.

Key words: Simple algebra, subdirectly irreducible al~-
gebra, automaton, algorithm, time complexity.

Classification: O3Dl5, 08430, 08499

This paper continues the papers [3,4] in which an algo-
rithm for finding minimal congruences of an algebra has been
gilven and some consequences of it have been stated. Particu-
larly, upper bounds for time complexity of a decision whether
a given algebra is simple or subdirectly irreducible have
been proved. Here, we give lower bounds of time complexity of
these problems.

By an algebra we mean a couple @ = (A,F), where A is an
underlying finite set and F = {fili eI} is a finite family of
operations, i.e. mappings fi Ami——a-k where my is a natural
number called arity of the operation fy and will be denoted
by ar(fi).

The algebra is assumed to be given by lists of elements,
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operations and results of these operations.

Denote by | Al the cardinality of A. In L4) there is prov-
ed that the upper bounds of time complexity of a decision whe-
ther a given algebra is simple or subdirectly irreducible are
U(;E# jglar(£)+ly Moreover, there is an algorithm deciding
whether an abelian group is simple (or subdirectly irreducib-
le) requiring cr(’vfrii) (or O0(lAl), resp.) time. This leads
to the question how effective algorithms, in general, exist
for these problems. Here is proved that lower bounds are "1li-

near", precisely O'(SEF [a1er(e)y,

As a consequence of these results we obtain that these
problems belong to the following class of problems:

If we consider a model of computation which allows to access
every element of the input data set in time at most "logarith-
mic' to the size of the input data set then these problems are
in NP but not in P. The same property has e.g. the problem
whether a sequence of O and 1 contains at most one 1.

Recall some basic notions concerning algebras. Denote by
A,V , resp. the least (identical), greatest, resp. congru-
ences.

An algebra is simple if it has no proper congruences (i.e.
the only congruences are A and V ).

An glgebra is subdirectly irreducible if every separating
system of congruences (i.e. for every pair (a,b) of distinct
elements there is a congruence not containing (a,b)) contains
A . For finite algebras it is equivalent to that there is on-
ly one minimal non-identical congruence.

For more details concerning algebras see e.g. [5].
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To prove lower bounds of time complexity of determini~-
stic algorithms we shsgll use the following classical method:

Suppose a class & of algebras (not necessarily of the
same type) and a subclass ¥ = & are given. Let us consi-
der the decision problem whether a given algebra 4 € & be-
longs to ¥ . A

Let t be a positive integer. For each integer nzt and
each finite sequence of positive integers TiseeeyTy We shall
construct an algebra (L(n,'rl,...,rk) ¢ ¢ and a set of algeb-
ras D(n,ryyeee,r) = {aJlJeI} € ¢ such that:

1) They have the same underlying set having cardinality
n and k operationswith arities TyyeessTye

2) Each 0".1 differs from Q(n,r;,...,r,) in exactly one
result of exactly one operation and distinct algebras ai, G,Je
e D(n,ry,...,ry) differ from A(n,ry,...,r)) in results of
distinct operations or in results of the same m—ary operation
but on two distinct m-tuples.

Then every deterministic algorithm deciding whether a gi-
ven algebra, having n elements and arities of operations
TyseessTy i8 in F , has to examine at least card I (n,rl,...
ceeyy) results of operations, hence card D (n,r),...,ry) is
a lower bound of time complexity. .

We shall now show that for a decision whether en'algnbr.
is simple (subdirectly irreducible) it is neceasary to use in
the computation results of all operations on nearly all ar(f)-

tuples of the underlying set.

Theorem 1. Let & be a class of algebras A= (A,F) ¢ &
with .= _ar(f) 22 and 1AlZ 3.
$eF
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Then every deterministic algorithm deciding whether a
given algebra from r is simple requires time at least
0 E 1810,

Proof: We shall use the method described sbove. First,
let us construct algebras ((n,r;,...,r,) = (A,F), which are
"almost simple" for |Al= 3,

We can suppose that ry> O fori=1,...,k, since nullary
operations have no influence to congruences. Put A =4{0,1,...
««+,n-1%. Choose a,be{l,...,k} and (r -1)-tuple o« and
(rb-—l)-tuple (3 of elements of A such that either a=b or
< %+ f3.

Put: £,(0,e)

fb(o,ﬁ ) = O,

£.(1,0) =1,

toli,ec) =1-1 for 2<14n-1, (%)
fb(l,ﬂ) = n-2,

£,82,3) = n-1,

otherwise, results of all operations are put to be

equal to 1. (% x)

Notice that (x ) ensures that whenever distinect i,J e
€ £\ {03} are congruent, so are all elements of A\{0Oj. There-
fore a(n,rl,....,rk) has exactly one non-trivial congruence
given by i~ J iff either 1 = J or 1+04].

Moreover, for every fi and ri-tuple ¥ » such that
contains at least one non-zero element and fy( ) is defined
by (x*), one can obtain a simple algebra by the single chan-
ge putting fi(’z") = 0.

Let Q(n,rl....,rk) be the set of all such "locally chan-

ged" glgebras. The number of all such changes, i.e.
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kA Ti
eard D(n,r ,...,r ) is at least ;24 n = k=-n-3which

. ry
is 0°(.>, n 7).
14:1

Theorem 2. Let & be a class of algebras (b= (A,F) e &
with |AlZ 4,

Then every deterministic algorithm deciding whether a
given slgebra from % is subdirectly irreducible requires ti-
me at least V(;EF | Mar(f))’

Proof: We shall construct algebras a(n,rl,...,rk) =
= (A,F) for lAlZ 4.

First, consider the case = r;Z 2,

Put A ={0,1,...,n-1}. Choose a,be {l,...,k} and (r -1)-
tuple < and (rb-l)-tuple 3 of elements of A such that eit-
her a%b or o« + 3 .

Put: f‘(i,cc)
fa(i,oc) = i+]1 for i#+1, i%n-1,

]

i for i = 1,n-1,

(x)
£,(n-1,B) =2, £,(n=2,3) =3,
£,81,3) = £,(0,3) =0,
otherwise, results of all operations are put to be
the first projection. Cx %)

So, A (n,ry,...,r}) is defined.

Notice that (x ) ensures that:

1) Whenever distinct i,je A\ {0,1} are congruent, ae
all elements of AN10,1},

2} Whenever i€ A\ {0,1}, je 10,1} are congruent, so are
all elements of A.

Therefore Q(n,rl,...,rk) has exactly two minimal non-

identical congruences:
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1) i~ J irf either i,jeAN{0,1} or i = ,

2) imsJ iff either 1,je{0,13 or i = k.

Thus O,(n,rl,...,rk) is not subdirectly irreducible.

On the other hand, for every £y and ri-tuple ~ such
that fi('y) is defined by (% x) we can obtain a subdirectly
irreducible algebra by a single change of f'i('r) in the fol-
lowing way: if £,(y ) e 0,13 then put £;(y) =2, otherwise
put fi('av) = 0. Indeed, one of two minimal non-trivial con-
gruences of Q(n,rl,...,rk) is not a congruence in the chan-
ged algebra and no other non-trivial congruence has occurred
due to (x).

& T
The number of all such changes is at least £§1 n i.

2 Ty
= n - 2which is 0(,=, n 7).

Now, consider the case 4-2_-.4 ry = 1. We can assume that
k =1 and r) = 1. Define A(n,r;) = (A,F) by A = {0,...,n-1}
and fl(Ol =0, fl(i) =1i-1 for i#+0. Then OL(n,rl) is subdi-
rectly irreducible since it has only one minimal non-identi-
cal congruence given by i~ J iff either {i,j} = 10,1} or
i=J.

For every i€ & one can obtain a subdirectly reducible
algebra by a single change

£,(1) =1 1f 140, or £,(1) = i+l if 1 = 0.
The resulting algebra has at least two minimal non-identical
congruences, thus it is not subdirectly irreducible.

The number of all such changes is n.

Corollary l. Considering algebras of the same fixed ty-

(i.e. with the same arities of operations) one obtains in

above theorems the lower bounds U(]A\max(ar(f))).
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Corollary 2. Consider the class % of all algebras (A,F)
with f%?F ar(f£) < |Al. Then every deterministic algorithm decid-
ing whether a given algebra from & is simple (subdirectly ir-
reducible) has time complexity at least 0'(n"), where n = 1Al.

Note. @he exponential time limit is due to the fact that
the complexity is considered with respect to n only and due to

the definition of the class & .

Now, let us deal with automata. Recall that M =

= (X,Q,Y,d", @) is a Mealy, Moore resp. automaton if X,Y,Q are
sets and O XxQ—> Q, @:XxQ—>Y¥, «:Q—>Y resp. are map-
pings. Further M = (X,Q,0") is a Medvedev automaton if X, Q
agre sets and 0:XxQ—>Q is a mapping. A congruence on a Mea-
ly, Moore, Medvedev automaton is an equivalence on X,Q,Y which
is "preserved" by mappings d; “w . (If we consider automata
as heterogeneous algebras then these mappings correspond with
operations.) Hence we can define subdirectly irreducible auto-

mata and simple automata as above.

Corollary 3. Every deterministic algorithm deciding
whether a Mealy, Moore, Medvedev resp. automaton is subdirect-
ly irreducible (or simple) requires time at least
O(min {1%1.1Q1,10%13),

Proof: By results in (2] we have that: if there is a
deterministic algorithm deciding whether a Mealy (or Moore)
autometon is subdirectly irreducible (simple) requiring O0°(t)
time then there is a deterministic algorithm deciding whether
a Medvedev automaton is subdirectly irreducible (simple) with

the same time bound. This allows us to deal only Medvedev
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automata.

Clearly, every Medvedev automaton M= (X,Q,0”) corres-
ponds with an algebra (M) = (Q, {d(x,-) | xeX}) and M
is subdirectly irreducible (simple) iff A(M ) is so and
" (x),=) * I (x5,~) whenever x,+x, (K xx)
Hence to get Corollary 3 it suffices to modify the definitions

of Q(n,l,...,1) and D(n,l,...,1) in the proofs of Theorems
1,2 so that also (x**) will hold.

Theorem 1. It suffices to change values of f{q) for so-
me couples f, q, defined by (xx) so that f(q)#+ 0. Congruen-
ces on the new (A(n,l,...,1) and algebras of 2 (n,l,...,1) do
not change. Such different operations we have (n-1)"and there-
fore card 9 (n,1,...,1)z(n-1}"%

Theorem 2. It suffices to change values of f(q) for so-
me couples f, q, defined by (xx) so that f(q)e {0,13 iff qe
e {0,1%. Such different operations we have 4.(:1--2)“’2 and the-
refore card @(n,l,...,l)z4.(n-2)n—2.

Theorem 3. There exists a non-deterministic algorithm
deciding whether a given algebra is simple with time comple—
xity O(n¥.(t + m)) where:

n is the number of elements of the underlying set,

m is the maximal arity of operations and

t is the worst time needed for obtaining the result of

any given r-ary operation on the given r-tuple of elements of

the underlying set.

Note: The time bound in the above theorem is not the

best possible. One can construct an algorithm with time com-
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plexity r(n?. (t + m)), but the proof is more complicated
and later we use only the fact that time complexity is poly-
nomial with respect to n.

Proof: An algebra (L= (A,F) is simple iff for every
pair of distinct elements a,be A the implication
(1) whenever a, b are congruent, all elements of A& are so
holds. '

First, consider a fixed pair of elements a,be A, We shall
describe a non-deterministic procedures verifying implication
(1) with time complexity O (n.(t + m)). Then the use of this
procedure for all pairs of distinct elements will do.

To verify implication (1) it suffices to construct a se-
quence of pairs of distinct elements of A, {a;,b;}, {8,,b5),
«eeyiag,bg} such that:
€2) {a;b)} = {a,bl.

(3) For every pair {a;,b;}, i>1 there exists j< i such that
there exist fe F, two ar(f)-tuples XpreeerXgn(p)s Jysees
eeesYgp(p) and k< ar(f) such that

(1) {x¥yd = tay, b5,

(41) x; =y, for all t = 1,...,ar(f) except for t = k,

(ii1) {ai,bii = {f(xl""’xar(fl’ f(yl,...,yer(f))}.

(4) The set {{a;,by3l1 =1,...,8} forms a set of edges of &
tree on the set A.

If such a sequence exists then, clearly, implication (1)
holds. Moreover, in such a case s = n-1 due to (4). Therefo-
re the time needed for random choice of ai,bi,f,xz,yt,k is
0(n.m) and the time needed for checking correctness of this

choice 18 ((n.t).
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It remains to show that if the algebra is simple then
for every pair of distinct elements a,be A there exists & se-
quence fulfilling (2) - (4). Indeed, there exists a sequence
fulfilling (2),(3) and such that the set {{a4,b43 11 =1,...
eesy8 } fOrms a set of edges of a graph without cycles (i.e.
only the condition of connectedness of the graph is omitted).
Consider a maximal (with respect to inclusion) such sequence
S and take the least equivalence relation ~ with ai"’bi for
i=1,...y3. Then ~ is the minimal congruence containing
(a,b). To show this, it suffices to verify the substitution
property: if c~d then f(xl"""k—l’c'xk+1""’xar(f)) ~
wf(xl,...,xk_l,d,xbl,.-.,xar(f)) for all fef, 1£kcar(f),
x; € A. For pairs fc,d3€ S it follows from (3) and from maxi-
mality of S. Let ic,d3eS and c~d. Then there exists a path,
in the graph induced by S, connecting ¢ and d, that consists
of pairs belonging to S. For these pairs the substitution pro-
perty holds, so, using transitivity of ~ , we obtain that
it holds for {c,d},too.

Now, the simplicity of the algebra yields (4).

Note. An analogous theorem also holds for existence of
a non-deterministic algorithm deciding whether an algebra is
subdirectly irreducible. In this case, first we guess a mini=-
mal congruence ~» and then for each couple {a,b} of points we
generate a forest by (2) and (3) the weakly connected compo-

nents of which are unions of classes of ~/ .

Consider the following computational model:
(a) there is a natural number X, such that an arbitrary
. element of an input data set can be accessed in time
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0((log X} (where m is the size of the input data set).

This holds e.g. if the time needed for reading input da-
ta is not included in time complexity, or if the input data
set is not arranged on an input tape but in a tree and a read-
ing head moves along its edges.

Then Corollary 2 ard Theorem 3 imply that the problems
whether an algebra in & is simple, or subdirectly irreducib-
le belong to NP (in this computational model) but not ta P.
Thus for this computational model NP<P,
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