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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

23,2 (1982) 

SIMPLICITY OF ALGEBRAS REQUIRES TO INVESTIGATE ALMOST 
ALL OPERATIONS 

M. DEMLOVÁ, L DEMEL, V. KOUBEK 

Abs t r ac t : I t i s shown: I f we want to prove tha t an a l ­
gebra i s simple or s u b d i r e c t l y i r r e d u c i b l e then we must i n ­
v e s t i g a t e almost a l l r e s u l t s of a l l o p e r a t i o n s . Analogously, 
i f we want to prove tha t an automaton i s simple or subd i r ec t ­
l y i r r e d u c i b l e then we must i n v e s t i g a t e almost i t s whole 
next s t a t e func t ion . The consequences concerning the compu­
t a t i o n theory are given. 

Key words: Simple a lgeb ra , s u b d i r e c t l y i r r e d u c i b l e a l ­
gebra, automaton, a lgor i thm, time complexity. 

C l a s s i f i c a t i o n : 03D15, 08A30, 08A99 

This paper continues the papers i 3 , 4 j i n which an a l g o ­

r i thm for f ind ing minimal congruences of an a lgebra has been 

given and some consequences of i t have been s t a t e d . P a r t i c u ­

l a r l y , upper bounds for time complexity of a dec i s ion whether 

a given algebra i s simple or s u b d i r e c t l y i r r e d u c i b l e have 

been proved. Here, we give lower bounds of time complexity of 

these problems. 

By an algebra we mean a couple (h =- (A,F), where A i s an 

underlying f i n i t e s e t and F - itAlell i s a f i n i t e family of 
m i ope ra t ions , i . e . mappings fj A — .• A where m̂  i s a na tu r a l 

number cal led a r i t y of the opera t ion f̂  and w i l l be denoted 

by a r ( f A ) . 

The algebra i s assumed to be given by l i s t s of e lements , 
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operations and results of these operations. 

Denote by 1A1 the cardinality of A. In 143 there is prov­

ed that the upper bounds of time complexity of a decision whe­

ther a given algebra is simple or subdirectly irreducible are 

V{ jr. | A| ar(f )^1) ̂  M o r e o v e r > there is an algorithm deciding 

whether an abelian group is simple (or subdirectly irreducib­

le I requiring Cf{ \J I A1) (or C/ClAl), resp.) time. This leada 

to the question how effective algorithms, in general, exist 

for these problems. Here is proved that lower bounds are "li­

near", precisely CT( , f F I A l
a r ( f ) ) . 

As a consequence of these results we obtain that these 

problems belong to the following class of problems: 

If we consider a model of computation which allows to access 

every element of the input data set in time at most "logarith­

mic* to the size of the input data set then these problems are 

in NP but not in P. The same property has e.g. the problem 

whether a sequence of 0 and 1 contains at most one 1* 

Recall some basic notions concerning algebras. Denote by 

A , V , reap, the least (identical), greatest, resp. congru­

ences* 

An algebra is simple if it has no proper congruences (i.e. 

the only congruences are A and V )• 

An algebra is subdirectly irreducible if every separating 

system of congruences (i.e. for every pair (a,b) of distinct 

elements there is a congruence not containing (a,b)) contains 

A • For finite algebras it is equivalent to that there is on­

ly one minimal non-identical congruence. 

For more details concerning algebras see e.g. £53. 
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To prove lower bounds of time complexity of determini­

stic algorithms we shall use the following classical method: 

Suppose a class & of algebras (not necessarily of the 

same type) and a subclass tf s #r are given. Let us consi­

der the decision problem whether a given algebra d e & be­

longs to i/ . 

Let t be a positive integer. For each integer n 2 t and 

each finite sequence of positive integers r^,...,r. we shall 

construct an algebra CKn-x^,..»,r^) 4- *£ and a set of algeb­

ras £D (n,^,... ,rk) =- { d A J e U £ «f such that: 

1) They have the same underlying set having cardinality 

n and k operations with arities r-^...,^. 

2) Each &* differs from dCnfr^f... ,rk) in exactly one 

result of exactly one operation and distinct algebras CL^t d^c 

e SMn,^,...,^) differ from &(n,r.p... ,rk) in results of 

distinct operations or in results of the same m-ary operation 

but on two distinct m-tuples. 

Then every deterministic algorithm deciding whether a gi­

ven algebra, having n elements and arities of operations 

r^,...,^ is in if , has to examine at least card £B(n,r^,... 

...jT^) results of operations, hence card 2) (&,r^,...tv^) is 

a lower bound of time complexity. 

We shall now show that for a decision whether an algebra 

is simple (subdirectly irreducible) it is necessary to use in 

the computation results of all operations on nearly all ar(f)-

tuples of the underlying set. 

Theorem 1. Let & be a class of algebras & » (A,F) £ & 

with 5pF ar(f) 2 2 and IA.2.3. 
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Then every determin i s t ic algorithm decid ing whether a 

given algebra from & i s simple requ ires time at l eas t 

F L S L I A i a r ( f ) ) . 

Proof: We sha l l use the method described above. F i r s t , 

l e t us construct algebras d ( n , r l f . . . ,rfc) = (A,i?), which are 

"almost simple" for l A l > 3 . 

We can suppose that r^> 0 for i - l , . . . , k , s ince nu l lary 

operations have no in f luence to congruences. Put A = - ( 0 , 1 , . . . 

. . . , n - l j . Choose a , b e - f l , . . . , k ? and (r - l ) - t u p l e 06 and 

Crb~l)-tup le ft of elements of A such that e i ther a ^ b or 

0 0 = ^ / 3 . 

Put: f a ( 0 , o c ) = f b ( 0 , / 3 ) = 0 , 

f a Cl,oc) = 1, 

fa(i,oc) =- i-1 for 2-4i^n-l, C*) 

fbCl,/3) » n-2, 

fbC2,/3) - n-1, 

otherwise, results of all operations are put to be 

equal to 1 . (**) 

Notice that ( * ) ensures that whenever d i s t i n c t i , j e 

e A\-CO^ are congruent, so are a l l elements of A\ -CO5. There­

fore C K n , ^ , . . . fTyj has exact ly one non - t r iv ia l congruence 

given by i ^ j i f f e i ther i = j or i + O + j . 

Moreover, for every f^ and r ^ t u p l e y , such that y 

containa at l eas t one non-zero element and f^Cy) i s defined 

by ( * * ) , one can obtain a simple algebra by the s ing le chan­

ge pu t t ing t$}t) = 0 . 

Let 9) ( n , r ^ , . . . tv-^) be the set of a l l such "local ly chan­

ged" algebras. The number of a l l such changes, i . e . 
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Jfe, rj_ 
•«r* 2)(n,r , . . . , r ) i s at l eas t .5". n - k - n - 3 which 

Is ( T ( . S 4 n * ) . 

Theorem 2m Let Str be a c lass of algebras 61 = (A,F) e -^ 

with I A U 4 . 

Then every determinist ic algorithm decid ing whether a 

given algebra from ifr i s subd i rec t ly irreducib le requires t i ­

me at l e a s t W . S L I A l a r ( f ) ) . 

Proof: We shal l construct algebras Q*(n,r^,».* ,r^) = 

= (A,F) for U I Z 4 . 

F i r s t , consider the case 21 r ^ 2 . 

Put A = { 0 , 1 , . . . , n - l * . Choose a,b e { 1 , . . . ,k7i and (rfl—1)-

tuple oo and ( r b - l ) - t u p l e ft of elements of A such that e i t ­

her a-4=b or oc 4s A • 

Put: f a Ci,oc) = i for i = l , n - l , 

f ( i ,oc) , = i+1 for i + 1 , i ^ - n - 1 , 
(% ) 

f b ( n - l , / U = 2 , f b ( n - 2 , / 3 ) ** 3 , 

f b < l , / 3 ) = f b (O f /J) = 0 , 

otherwise, results of all operations are put to be 

the first projection. C##) 

So, GKn,r^,... ,rk) is defined. 

Notice that ( # ) ensures that: 

1) Whenever d i s t i n c t i , , j e A \ {0,1$ are congruent, so 

a l l elements of A x { 0 , l } . 

2} Whenever i e A \ - { o , U , J 6 i O , H are congruent, so are 

a l l elements of A. 

Therefore ( K n , ^ , . . . ,rk) has exactly two minimal non-

ident i ca l congruences: 
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1) Irssi i f f e i ther i , j e A \ { 0 , l J or i = , 

2) i ^ j i ff either i , j e { 0 , l ^ or i = k. 

Thus G K n , ^ , . . . ,rk) i s not subdirectly i rreducible. 

On the other hand, for every f̂  and r . - tup le y such 

that f.jC'tf*) i s defined by (**) we can obtain" a subdirectly 

irreducible algebra by a single change of tAT^ --n *n* fo l ­

lowing way: if f- j /T) '6 {0,l5 then put t^iy) - 2 , otherwise 

put f ^ t y ) = 0. Indeed, one of two minimal non-trivial con­

gruences of C M n , ^ , . . . , r k ) is not a congruence in the chan­

ged algebra and no other non-trivial congruence has occurred 

due to ( * ) . 
Jfez v* 

The number of a l l such changes is at least ,21. n 
jfe» r ^ = 

- n - 2 which i s CH . 2 . . n i ) . 
•V as 1 

Now, consider the case ^ E ^ r^ = 1 . We can assume that 

k = 1 and r^ = 1. Define fl/(n,r-_) = (A,F) by A = {0,...,n-l^ 

and f-^0) = 0, fx(i) = i-1 for i-^0. Then (X(n,r1) is subdi­

rectly irreducible since it has only one minimal non-identi­

cal congruence given by i^j iff either {i,j$*{0,li or 

i = J. 

For every ieA one can obtain a subdirectly reducible 

algebra by a single change 

fx(i) = i if i*0, or f-^i) = i+1 if i = 0. 

The resulting algebra has at least two minimal non-identical 

congruences, thus it is not subdirectly irreducible. 

The number of all such changes is n. 

Corollary 1. Considering algebras of the same fixed ty-

(i.e. with the same arities of operations) one obtains in 

above theorems the lower bounds (TO A. m a x ( a r ( f ) * ) . 
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Corollary 2* Consider the class & of all algebras (A,f) 

with X - ar(f)-£ 1A|. Then every deterministic algorithm decid­

ing whether a given algebra from ^ is simple (subdirectly ir­

reducible) has time complexity at least (T(nn), where n =- I A W 

Note. [The exponential time limit is due to the fact that 

the complexity is considered with respect to n only and due to 

the definition of the class & . 

Now, let us deal with automata. Recall that 771 = 

= (X,Q,Y, of, (u,) is a Mealy, Moore reap, automaton if X,Y,Q are 

set^ and of:XxQ--> Q, ^ X x Q — > Y , p>:Q—>Yresp. are map­

pings. Further '771 = ( X ^ a O is a Medvedev automaton if X, Q 

are sets and oTiXxQ,—•> Q is a mapping. A congruence on a Mea­

ly, Moore, Medvedev automaton is an equivalence on XfQ,Y which 

is "preserved" by mappings ô , ru^ . (If we consider automata 

as heterogeneous algebras then these mappings correspond with 

operations.) Hence we can define subdirectly irreducible auto­

mata and simple automata as above* 

Corollary 3. Every deterministic algorithm deciding 

whether a Mealy, Moore, Medvedev reap, automaton is subdirect­

ly irreducible (or simple) requires time at least 

Cr(min-{iXi.lQt,lQQU ). 

Proof: By results in C23 we have that: if there is a 

deterministic algorithm deciding whether a Mealy (or Moore) 

automaton is subdirectly irreducible (simple) requiring 0"(t) 

time then there is a deterministic algorithm deciding whether 

a Medvedev automaton is subdirectly irreducible (simple) with 

the same time bound. This allows us to deal only Medvedev 
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automata. 

Clearly, every Medvedev automaton 771 a (XtQfoT) corres­

ponds with an algebra 61(771) = (Q,-Ccf(x,-) | xeX\) and 771 

is subdirectly irreducible (simple) iff di 771 ) is so and 

of(xlt-) =-p o^Xx^,-) whenever x- + x2 ( # * * ) 

Hence to get Corollary 3 it suffices to modify the definitions 

of &(n,l,...,l) and Q> (n,l,... ,1) in the proofs of Theorems 

1,2 so that also (***) will hold. 

Theorem 1. It suffices to change values of f(q) for so­

me couples f, q, defined by (* *) so that f(q) + 0. Congruen­

ces on the new &(n,l,...,l) and algebras of 2) (n,l,... ,l) do 

not change. Such different operations we have (n~l)a and there­

fore card a(n,l,...,l)t>(n-iyi 

Theorem 2. It suffices to change values of f(q) for so­

me couples f, q, defined by (**-) so that f(q)e iCtl\ iff q e 

6 «{0-l$. Such different operations we have 4.(n~2)n~ and the­

refore card 2)(n,l,...,l) Z 4.(n~2)n~2. 

Theorem 3. There exists a non-deterministic algorithm 

deciding whether a given algebra is simple with time comple­

xity CT()A(t + m>) where: 

n is the number of elements of the underlying set, 

m is the maximal arity of operations and 

t is the worst time needed for obtaining the result of 

any given r-ary operation on the given r-tuple of elements of 

the underlying set. 

Note: The time bound in the above theorem is not the 

best possible. One can construct an algorithm with time com-
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plexity (fin *(t • m)), but the proof is more complicated 

and la te r we use only the fact that time complexity is poly­

nomial with respect to n. 

Proof: An algebra cX= (A,F) is simple iff for every 

pair of d is t inc t elements a,bcA the implication 

(1) whenever a, b are congruent, a l l elements of A are so 

holds. 

F i r s t , consider a fixed pair of elements a ,be A. We shal l 

describe a non-deterministic procedures verifying implication 

( l) with time complexity 0"(n. (t • m)). Then the use of this 

procedure for a l l pairs of d is t inct elements will do. 

To verify Implication ( l) i t suffices to construct a se ­

quence of pairs of dis t inct elements of A, -£a-j,b,^« { a ^ b ^ t 

. . .»4a8 ,b s l , such tha t : 

C2) 4a1b1l =* i a - b h 

(3) For every pair -fa^o.^, i ^ l there exis ts j< i such that 

there exist f e F , two ar(f)- tuples x i? • • • t x
a r ( f ) i ^ i f ' * 

•** , yar(f) a n d k ~ a r ( f > ) such that 

( i ) i x
k i y k 5 - *aj'b:j*» 

( i i ) Xi = y^ for a l l t = l , . . . , a r ( f ) except for t = k, 

Ciii) {a i ,b i3 = i f ( x i>*- - f x
a r ( f ) / » - , ( y i f - i y Q r ( f ) ) i . 

(4) The set {{ a^b.^ I i - l,...,s$ forms a set of edges of a 

tree on the set A. 

If such a sequence exists then, clearly, implication (l) 

holds. Moreover, in such a case s = n-1 due to (4). Therefo­

re the time needed for random choice of ai>bi,f,xz,yt,k is 

(T(n.m) and the time needed for checking correctness of this 

choice is (Hn.t). 
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It remains to show that if the algebra is simple then 

for every pair of distinct elements a,baA there exists a se­

quence fulfilling (2) - (4). Indeed, there exists a sequence 

fulfilling (2),(13) and such that the set {-iai,bi3 I i » 1,... 

...,«$ forms a set of edges of a graph without cycles (i.e. 

only the condition of connectedness of the graph is omitted). 

Consider a maximal (with respect to inclusion) such sequence 

S and take the least equivalence relation *s with a-t̂ b.̂  for 

i » lf...fs. Then <>s is the minimal congruence containing 

(afb). To show this, it suffices to verify the substitution 

property: if c~d then f(xlf... fXk-1,c,xk^lt... fXar(f)) ~ 

Avf(xlf... f
x
k^1>d,xk^1,...,xar^jf\) for all f eF, l^k^ar(f), 

x. e A. For pairs $c,d:r€§ it follows from (3) and from maxi-

mality of S. Let -Cc,d5eS and c~d. Then there exists a path, 

in the graph induced by S, connecting c and d, that consists 

of pairs belonging to S. For these pairs the substitution pro­

perty holds, so, using transitivity of ^ , we obtain that 

it holds for -ic,d$ftoo. 

Now, the simplicity of the algebra yields (4). 

Note. An analogous theorem also holds for existence of 

a non-deterministic algorithm deciding whether an algebra is 

subdirectly irreducible. In this case, first we guess a mini­

mal congruence rv and then for each couple 4a,b$ of points we 

generate a forest by (2) and (3) the weakly connected compo­

nents of which are unions of classes of v . 

Consider the following computational model: 

(a) there is a natural number Kf such that an arbitrary 

element of an input data set can be accessed in time 

- 334 -



tfiilog m ) } Cwhere m i s the s i z e of the input data s e t ) . 

This ho lds e .g . i f the time needed for read ing input da­

ta i s not included in time complexity, or i f t h t input data 

s e t i s not arranged on an input tape but in a t r e t and a read-

ing head moves along i t s edges. 

Then Corollary 2 and Theorem 3 imply that t h t probltms 

whether an algebra in & i s s imp le, or subd i r tc t ly irrtducib— 

l e belong to NP ( i n t h i s computational model) but not to P. 

Thus for t h i s computational model NP4-P. 
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