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COMMENTATIONS MATHEMATICAE UNIVeRSITATIS CAROUNAE 
20.3 (1979) 

SIMULTANEOUS INTEGRABILITY OF TWO J-RELATED ALMOST 
TANGENT STRUCTURES 

V. KUBAT 

Abe tract; Let M be a differentiable manifold provided 
with two almost tangent structures f, g* such that 1. Ker f« 
* Im f, Ker g « Im g

f
 2

#
 fg « gf « 0, 3. f and g induce a 

complex structure J on Ker f • We shall associate with the 
couple f, g in a natural manner a O-structure on M and give 
necessary and sufficient conditions for its integrability. 
An example of the above mentioned structure will be given. 

Key words: I-ie group, O-structure
f
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0. All differentiable structures considered in this pa­

per are supposed to be of class C°°. 

Let M be a differentiable manifold of dimension 2n en­

dowed with the couple f, g of almost tangent structures, i.e. 

tensor fields of type (1,1) such that IT » 0
f
 g « 0. let ua 

suppose 

(i) Ker f = Im f, Ker g « Im g, (ii) fg * gf * 0. 

It is easy to see that (i) and (ii) imply Ker f « Ker g. We 

shall denote Ker f • D. Then D is a differentia tile distribu­

tion on M, dim D « n. 

For arbitrary ucM
f
 let ua define an isomorphism Ĵ : 

*>*—> \ by means of the commutative diagram 

*бi -



(i) ^,/т>„<: i J U 

where T
u
 * T^(U) is the tangent apace at u

t
 f

u
 and g^ are 

the isomorphisms induced by f
u
 and g ^ respectively. 

Let us suppose that 

(iii) (J
u
) » - id for every ueH. i.e. that J

u
 is a complex 

structure on D
u
. It is the well known fact that n * dim D must 

be even. We shall write n « 2p. 

1. We shall call adapted basis at ueM every basis 

X-,
t
...

f
X

2 f
X

l t
...

t
Y

2
 of T

u
 with respect to which f has the 

matrix expression I and g has the matrix expression H, 

*•(-: ! : > • * ( - : £ ) • ^-X %)• 
where 0 and I is the zero and unit matrix of type nx n and 

similarly for 0 and I . 

In such a way there is 

* Xa " V " a * °. 

(2) « Xi * -Vp' «*i+p - V «Ya " °. 
Jri'-VJI^SIi' 
a * X, ...,2p, i = l,...,p 

in terms of the adapted basis X^t...tX2 , ! . , , . . . t Y g . 

It can be easily proved that the set <B of all matrices 

AcGL(2ntR) such that 

r* -»/ fs/ »V 

(3) A I * I A, A H * H A 
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ia a lie subgroup of QL(2n,R). An easy computation ehowa 

that 

(4) (6 . i f s f i i ^ J ^ J j ) ia regular f<* ia of typa p*p( 

Lemma 1. The set B^ of all adapted bases of -£,-.(*)» 

tt€Mf ia a <£-etructure. 

Proof: In a neighbourhood of an arbitrarily chosen 

point of If we can choose a local basis X-^,...,!^ °* t n e di~ 

stribution D with raapeet to which the matrix expression of 

J ia H^. Then it is possible to find vector fields X-^,... 

• ••,-*2P linearly independent over D such that fX « X f a « 

» l,...,2p. Apparently X^,...fX2pfXlf...fX2 ia a loeal aec-

tion of B.£ • Other details of the proof are left to the re­

ader. Q.I.B. 

When speaking about simultaneous integrability of f and 

g, we shall always mean the integrability of this <£ -struc­

ture. 

2. We shall 8tart thia paragraph with the following da* 

finition. 

Given two tensor fielda h, k of type (1,1) satisfying 

hk « khf wa can define a tensor field *hfkl of typa (1,2) by 

the formula 

(5) 4,hfk^ (XfX) »thXfkX3 • hk[xfX] - h[XfkX3 - k[hXfxJf 

where X, X are vector fields, C , 3 ia the lie braeket. 

Thia definition was given by NLjenhuia and {hfXl ia called 

the Nijenhuis torsion of h, k. 
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The Vijenhuis torsion temaor is widely need in the the­

ory of O-structuree. We shall recall here two well .known re­

sults on the integrability of an almost coaplex structure 

and the integrability of an almost tangent structure. 

Theorem A. An almost complex structure J on a diffe-

rertiable manifold M is integrahle if and only if iJfJ$ * 0. 

For the proof see [1], Chapter IX, p. 124. 

theorem B. An almost tangent structure f on a diffe­

rentiate manifold M is integrahle if and only if {t9t\ « 0 

and Ker f is involutive. (We don't suppose here Ker f * Im f.) 

For the proof see [21. 

It is not difficult to see that the conditions {t9tl « 0f 

\t9g\ « 0, ig,g] » 0 are necessary for f and g to be simulta­

neously integrahle. 

Lemma 2. If it9ti • 0, it9g} « 0f then ig9gl * 0. 

Proof: It is easy to see that {t9t} • 0 implies that the 

distribution Im f is involutive• We have Ker f » Im f f so 

that due to Theorem B there locally exist coordinates (x,y), 

x « (xlf...fX2p)f y » (y^.-.^p) auch that 

<6> t^*^9t£--09**l9...92p. 

We shall call such local coordinates f-adapted. 

Evidently g&- f... f ^ - is a local basis of 2> and inte­

gral manifolds of D are of the form (xpfy)f x 0 e R
 p. 

Let us now write 

« *fe • r I * V * *— *f*»(.&; • ^ " - a\ • / S ^ - " 
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*-.*! jC 

m «—fe -£- m Qf and ao the matrix function / » y!? f a, 
9y <**c 

b « l,...,2p, does not depend on y. 

We shall introduce local coordinate* (x*fy*) by the for­

mulae 

*a " 9 b(x)yb» 

where £>« y"1. 

Then 

She equalities (7) together with Ker g « Im g are equivalent 

with *g,g} « 0. Q.E.D. 

We are going to make further consideratione and construc­

tions under the assumption that 

(iv) itftl « 0, \tfg} « 0. 

m 

Let us consider the faetor bundle /D. We shall define 
— T 

for every u e M an endomorphism Ju of ( /D) u by means of the 

following diagram 

(в) 

(compare with the diagram (I)). 

An explicit formula for J
u
 can be given in the form: 

(9) J
U
Z « ? if and only if f

u
V « g

u
Z

> 
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where V, Zel^, v, Z are the elements of ( rB)n determined 

by V and Z. 

It can be easily seen that («*u) * * idt ucM, so 

we have got a complex structure on the factor-bundle /D. 

We shall say that a vector field X on H is an infinite-

sisal automorphism of D (abbreviated IA) if the local 1-pa-

raneter group of local transformations g>t generated by X 

leaves D invariant. In terms of the Lie derivative it means 

that ~-x?& D whenever the vector field YsD, 

Lemma 3* A vector field X is an IA of D if and only if 

the expression of X in f-adapted local coordinates (x,y) is 

X « a a ( x ) ^ - • B a(x,y)^- . 

Proof: Let us write X « A a ( x , y ) ~ • B a(x,y)^- • For 

any vector field X • C a(x,y)^- it has to be L'X,X3eD. 

An easy computation shows that this is equivalent with 

»A* 
-||- » 0, a,b » l,...,2p. Q.B.D. 

Remark. As a matter of fact, in Lemma 3 there is suffi­

cient to use only D-adapted local coordinates, i.e. such ones 

that S-T- f..., -Jgy ia a local basis of D. But our aim is to 

study the simultaneous integrability of f and g, which inclu­

des the integrability of f.^That's why we shall in the follow­

ing text always use f-adapted local coordinates. 

j|. If X is an IA of D, then any vector field X^ 

satisfying JX » 5-̂  is also an IA of D. 

Proof: Ie t X be a vector field, Xe D. We shall show: that 
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IY Te Df i . e . that f (1^ T) « 0. Let T* be a vector f ield audi 

that gT* « T. We have gX « f&19 4f , f 1 « Of itfg} « 0. There­

fore 

f(Lj, T) » f[X l fT3 « fl.X^gl'J- IfX l fgT#3- g[fXlfT
#J--

- i f f g } (X lfT
#) « [gX,gT] - g[gXfT'J» 

• *g.g* <x,r') • gtx,gr'J« grxfgr'J6D. 

Q.S.D» 

m 

We shall say that a section X of /D has a property (14) 

if there exists an infinitesimal automorphism X of D such that 
— m 

X * X. Given two sections X 9% of /D with a property (IA), 

it is possible to define the Lie bracket of X 91f as follows: 

£ X , ^ J « [x7T3f where X, T are Ik of D such that X « X, ^ « 

« T. It can be easily verified that the definition does not de­

pend on the choice of X and T. 

Now we shall construct an analogue of the Nijenhuis tor-

sion of the tensor J on the factor-bundle /D. Let u0e-» be aa 
m 

arbitrary point and let V9 W be two elements of ( / D ) u • Z»»t 

us choose vectors V0> W Qe TU(M) such that VQ * V f W0 * ^ • 

There exist two vector fields V, W defined on a neighbourhood 

of uQ and satisfying 

(a) V(u0) » V0, W(u0) « WQ 

(b) V, W are IA of D. 
We shall define 

4 J,J? ( V9W) « tJVfJWV - Cvff Ju - 3 CJV.W^ -
(10) "° "° ~° ° 
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We have to show that the definition (10) is correct, 

i.e. that the right side of the formula depends only on the 

values of V and W. 

Let ue use f-adapted local coordinated (xfy) in a neigh­

bourhood of uQ and write 

?(xfy) « T
a(x) J - • va(xfy) g|- f 

f(xfy) « w
a(x) g- + wa(xfy) ̂ - f 

g sH" * T J ( X ) §f- » a8 uBuml tt»b * i f •t2p. 

(In the following text we shall no more emphasise that simi­

lar formulas represent a system of formulas, a.b.c.d.e run* 

ning from 1 to 2p.) 

For the farther computation we may use the representation 

• - •'<-> &• , W - ̂ (x) -g- , 

J» - -•<x)r*(x) g- , W.t-Wyjíx)-!.. 1 a* 

I t la easy to compute that 

r j i t g i . /J"A» D ^ W C ^ d _ a ^ b 9 T C _ d . 

JB.M1 - <.«T: -g£ J . •• ̂ , J r } - .V>£|r!>£ 

ad eimilarly 
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K?,j,i- - (- -*fi£ • ^T^rt - +rl - wV^r*) - | j • 
Therefore 

fJ.Jl <ir,«r> « [ v a ( u 0 ) T ^ u 0 ) w c ( u 0 ) - F i
c - -
DJU0 

- A B 0 ) W * ( B 0 ) ^ T J B 0 ) ] X 
a| u0 d| «0 

which depends only on f , ^ . 

The independence on the choice of VQ, W0 is also apparent froB 

the above computation. 

Mow we are ready to formulate the main theorem of this 

paper* 

Theorem, f and g are simultaneously integrable if and 

only if 

Sf,fJ » 0, {ffgl * 0, iJfJ? * 0* 

Proof: Let (xfy) be f-adapted local coordinates* Let us 

write gg|- * T a ^ d y * *e a r e look^nS for f-adapted local 

coordinates (x'fy') defined in the same domain satisfying 

9 .„b 3 - (°9 JP 

g-Д-- 0. 

\ p p' 
(11) 

Local coordinates (x,y) and (x'
f
y') have to be related by the 

formulas 

Km V x ) 

©F. 
ya"-©xf *»>• *»<*>• 
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It is 

^ a ^-j" ~«b ^^Jb 

3 .
 9 I

b 3 

where $ is a certain function* It is easy to see that (U) is 

satisfied if and only if 

K, 3*_* VK <* 
(12)

 т
»U)--J.---гв

b 

In other words, we are looking for the solution of the system 

of partial differential equations (12)* This system arises in 

the study of integrability of an almost complex structure. 

FTom theorem A it follows that the system (12) has a solution 

if and only if 

„,» b*r_ b 3 r f a*, d a r b b . ( 1 3 ) 7a-"5-if - rc----fj • --5_£ r b - --r-.; rd - o . 

Let us now compute the value i5,Ji on (-jg- »sjj-). - * 

i s 

^*b f**c a ^ Ч Ғ c * V э*đ 
y, _ - ö<^ _ -

- ^ У ь ^ + ^ / ь ð % - ° -

. J - J Q T Z S : - . <y» ____!- r» 22S> m 
" ^ • • d * ^ t#d-cc

J V 7 a OXK T C -dxK' ax* 

9 r b d - _ r + •*{ 

Because of the linear independence of the elements ••J|; ,... 
3*1 

.... •—-*-- , the conditions (13) are satisfied and the theorem 
^ P 

is proved, as the local coordinates (-c',y#) defined by formu­
las 

x;»F a(x) f 
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* dF 

*m * " S ^ *b • 

where the functions P1(x)f...fF2p(x) solve (12)f are f-adap-

ted and satisfy (11). 

Q.E.D. 

4. We shall present here an example of the above descri­

bed structure. 

Let M be a differential manifold of dimension 2p provi­

ded with an almost complex structure ^ • We shall denote T(M) 

the tangent bundle and ft the usual projection T(M)—^ M. If 

ueT(M) y then there exists a canonical isomorphism i:T̂ (u)(M)-~>-

— > T
u(

T3r(tt )(•*))•
 Vow l e t u s de**ne *wo endomorphisms *ut S^* 

:TU(T(M))—> T^(T(II)) by the formulas 

fu * * • ** • «u " * « ?*(u) # % * 

Apparently f2 » 0f g| * 0, Ker fu « Ker gu » Im fu « Im g ^ 

Let us denote Ker fu « \ and TU(T(M)) » ^ u . 

Let us consider the diagram (8). The isomorphism J in 

this case satisfies: 

(14) JZ « V«-=~>gZ • fV 

where Z, V e «Tut Zf V are the corresponding classes from 

u/Du. The right side of (14) means i(^(a* Z)) « i ( ^ V) f 

i.e. 5 (-̂  Z) » ff|V, Therefore 

JZ « V<F3=&% l*1* Z) » -r* v. 

When we define 3ru: ̂ u /1^—* ^ ( u ) * ) t# the formula 3f X « -r^X, 

X e ^ u (the definition is correct), we have the following com­

mutative diagram 
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Č/Ъ)^ 1 >( ̂ /D)., 

(15) зr JTieom. 

T *(»;<*>-—*--»*(«>« 

If (x
lt
...,x

2D
) are local coordinates in a domain UcM 

and (x,y) are canonically induced local coordinates in 3r~n]c 

cT(M). then there is 

«-»!« ^ i u ' 9 y . | u ' 

g J L . ^ b (x) -2- . « ---- • o. 

a f b * l f . . . f 2 p f u 6tf"Tl f u » (x f y) f where ^ J ( x ) are defined 

by ~L Jg-. » tf!?(x) •—- . How i t is very easy towrify 
^ ^ a ^ u ° * 9 x b | * u 

that it,fi * O f(f,gJ « 0. 

I t can be also easily verified that 

(16) ( {J f J l (? fZ)) « tytj-} (5fVfarZ)f VfZ e ( r / D ) u . 

This formula shows us that ff g are simultaneously integrable 

i f and only i f the almost complex structure "P on M is in te­

grable. 
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