Commentationes Mathematicae Universitatis Caroline

Juhani Nieminen
 On normality relation and its generalization on lattices

Commentationes Mathematicae Universitatis Carolinae, Vol. 17 (1976), No. 4, 615--631

Persistent URL: http://dml.cz/dmlcz/105723

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1976

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

$$
17,4 \text { (1976) }
$$

ON NORMALITY RELATION AND ITS GENERALIZATION ON IATTICES

Juhani NIEMINEN, Helsinki

Abstract

Normality relation and its generalization are on a lattice L binary, unsymmetric and reflexive relations with restricted substitution properties. The lattices of these relations are considered in the case where L is a finite lattice, and a decomposition theorem is proved.

Key words: Finite lattices, normality relations, generalizations, the lattice of relations, decomposition.

AMS: Primary 06235 Ref. Ž.: 2.724.31

1. Preliminaries and introduction. A binary relation N on a lattice L is called a normality relation on L, if it satisfies the following conditions of Dean and Kruse (see Beran [1]):
(DKO) aNa for each $a \in L_{\text {. }}$
(DKI) $\mathbf{a N b} \Rightarrow a_{i} \leq b$.
(DK2) (aNb and $c N d) \Longrightarrow a \wedge c N b \wedge d$.
(DK3) (aNb and aNc) $\Rightarrow a N b \vee C$.
(DK4) (aNb and $c N d) \Longrightarrow a \vee c N a \vee c \vee(b \wedge d)$.
$(D K 5) \quad\{a \leq b$ and (aNa \quad or $c N a \vee c)\} \Rightarrow a \vee(b \wedge c)=b \wedge(a \vee c)$. We shall call a binary relation on I satisfying the conditions (DKO) - (DK3) a generalized normality relation.

As one can easily see, normality and generalized normality relations on a lattice are unsymmetric generalizations
of lattice congruences and lattice tolerances (see e.g. Zelinka and Chajda [2]). The purpose of this paper is to determine a few properties of the lattice $N(L)$ of all normality relations and of the lattice GN(L) of all generalized normality relations on a finite lattice L. It will be shown. that in a class of finite distributive lattices, a lattice of this class is directly decomposable if and only if there are two non-trivial generalized normality relations GK and $G M$ on L such that $G K \vee G M=I$ and $G K \wedge G M=0$ in the lattice GN(L).

The condition (DK5) is a restricted modularity condition, and hence it is valid in each modular lattice.

As a general reference in lattice theory we have used the monograph [4] of G. Szasz. The few terms of graph theory of this paper can be found in the book [3] of F. Harary.
2. Joins and meets of relations. At first we give a characterization of normality relations in terms of sublattices of a finite modular lattice.

Let L be a finite lattice. We denote by $\mathcal{A}=\left\{A_{t} \mid t \in T\right\}$ a family of convex sublattices of L, where T is a set of indices, and by O_{t} and I_{t} the least and greatest elements of A_{t}, respectively. Further, we assume that for each $x \in L$ there is a sublattice $A_{t} \in \mathcal{A}$ such that $x=0_{t}$.

Theorem 1. Let L be a Pinite modular lattice. Each family A of convex sublattices of L determine a normality relation on I and conversely, each N determines such a family if and only if for any two indices $s, u \in T$ there exist
indices $p, r \in T$ such that
(i) $O_{s} \wedge O_{u}=o_{p}$ and $I_{s} \wedge I_{u} \leqslant I_{p}$,
(ii) $O_{s} \vee O_{u}=O_{r}$ and $O_{s} \vee O_{u} \vee\left(I_{s} \wedge I_{u}\right) \leqslant I_{r}$.

Proof. 1° : Let \mathcal{A} be a family with properties given in the theorem. We define a binary antisymmetric relation on L given by \mathcal{A} as follows:
$0_{s} \mathrm{Bx} \Longleftrightarrow x \in \mathbb{A}_{s} \in \mathcal{A}$.
We show that R is a normality relation on L.
aRa for each $a \in L$, as for each $a \in L$ there was a sublattice $A_{t} \in \mathcal{A}$ such that $O_{t}=a$, and so (DKO) holds. (DKI) follows directly from the definition of R.
(DK2): Let aRb and cRd. According to the definition $a=O_{s}$ and $c=O_{u}$ for some indices $u, s \in T$. Further, $Q \wedge c=$ $=o_{s} \wedge o_{u}=o_{p}$ and $\sigma_{p} \leqslant \emptyset \wedge d \leq I_{s} \wedge I_{u} \leqslant I_{p}$ for some $p \in T$, and thus the definition of R implies $O_{p} R(B)$
(DK3): Let aRb and aRc, i.e. $a, b, c \in A_{t}$ for some $t \in T$. As A_{t} is a sublattice of L, $b \vee c \in A_{t}$, and so $a R b \vee c$. The proof of (DK4) is similar to that of (DK2), and (DK5) holds, as L is modular.
2° : Let N be a given normality relation on $L_{\text {。 we shall }}$ show that N generates a family \mathcal{F}^{\prime} of convex sublattices of I having the same properties as \mathcal{A} in the theorem. Let $F_{x}=\{y \mid x N y, y \in L\}$ for each $x \in L$, and we denote $\mathcal{F}=$ $=\left\{F_{x} \mid x \in L\right\}$ 。

As $x N x$ holds for each $x \in L$, there is, according to (DKI), for each $x \in L$ a set $F_{x} \in \mathcal{F}$ such that x is the least element of F_{x} As F_{x} is finite, there exists an element $=$ $=V\left\{y \mid y \in F_{x}\right\}$, and according to (DK3), xNw. For each
$\nabla \in[x, v] \subseteq L$ it holds vNv. By applying (DK2) to $x N w$ and $v N \nabla$, we obtain xilv. Hence $F_{x}=[x, w]$, which is a convex sublattice of L .

Let wNy and zNv. According to (DK2), $x \wedge z N y \wedge \nabla$, and on
 and so (i) holds. (ii) follows similarly from (DK4), and (DK5) holds, L is modular. This completes the proof.

The following corollary follows immediately from the proaf above.

Corollary. Let L be a finite lattice. Each family \mathcal{A} of convex sublattices of I determines a generalized normality relation $G N$ on L and conversely, $G N$ determines such a family if and only if for any two indices $s, u \in T$ there exists an index $p \in T$ such that (i) of Theorem 1 holds.

In the following we look for meets and joins of two generalized normality relations (nomality relations). The assertion of the following lema is obviously valid.

Lemma 1. Let I be a finite lattice and GN and GR two generalized normality relations on L. The relation K, where $a K b \Longleftrightarrow\{a G N b$ and $a G R b\}$ is a generalized normality relation on I and $K=G N \wedge G R$.

Analogous lema holds also for normality relations.
If GM is a generalized normality relation on a finite lattice I we denote the corresponding family of intervals of L by Ω (GM), an interval of Ω (GM) with the least element $x \in L$ by $A_{G i x x}$ and the greatest element of $\mathbb{A}_{G M x}$ by $1_{G M x}$. The following theorem gives the most simple join of two generalized normality relations.

Theorem 2. Let GM and GN be two generalized nomality relations on a finite Aistributive lattice L. The family \mathcal{A} (GH), where $\mathbb{A}_{G M x}=\left[x, I_{G M x} \vee I_{G N x}\right]$, determines a generalized normality relation on L and $G H=G M V G N$ if and only if $I=I_{1} \times I_{2} \times \ldots \times I_{m}$, where L_{i} is a chain, $i=1, \ldots, I_{1}$, or
(ii) L can be divided into two convex sublattices L^{*} and $L^{* *}$ such that $L^{*} \cap L^{* *}$ contains only one element, which is 0 of L^{*} and 1 of L^{*}, $L^{* *}$ is a chain and L^{*} satisfies the condition (i) above.

Proof. 1° : Let I satisfy (i) of the theorem; it is sufficient to show the validity of (DK2) - the conditions (DKO), (DKI) and (DK3) hold obviously.

Let $a G H b$ and cGHd; we shall show that $d \wedge b \leq\left(I_{G M a} \vee I_{G N a}\right) \wedge$ $\wedge\left(I_{G M c} \vee I_{G N C}\right) \leqslant I_{G M a n c} \vee I_{G N a \wedge c}$. At first, by applying the distributivity, $\left(I_{G M a} \vee I_{G N a}\right) \wedge\left(I_{G M c} \vee I_{G N c}\right)=\left(I_{G M a} \wedge I_{G H e}\right) \vee$ $\vee\left(I_{G N a} \wedge I_{G N c}\right) \vee\left(I_{G M a} \wedge I_{G N c}\right) \vee\left(I_{G N a} \wedge I_{G M e}\right)$, where $I_{G M a} \wedge$ $\wedge I_{G M c} \leqslant I_{\text {GManc }}$ and $I_{G N a} \wedge I_{G N C} \leqslant I_{\text {GNa } \wedge c}$, as GM and GN are generalized normality relations on L. In the following we consider the term $I_{G M a} \wedge 1_{\text {GFe }}$ and show that it is equal to or less than $I_{G N a n c} \vee I_{\text {GManc }}$; the proof is similar for $1_{\mathrm{GMc}}{ }^{\wedge} 1_{\mathrm{GNa}}$.

$$
\text { As } L=I_{1} \times \ldots \times I_{m}, a=\left(a_{1}, a_{2}, \ldots, a_{m}\right), c=\left(c_{1}, \ldots, c_{m}\right),
$$

$I_{G M a}=\left(x_{1}, \ldots, x_{n}\right)$ and $I_{G N c}=\left(y_{1}, \ldots, y_{m}\right)$, where a_{i}, c_{i}, x_{i}, $y_{i} \in I_{i}, A s a G M I_{G M a}$ and $c G N I_{G N e}$, we obtain $\left(a_{1}, \ldots, a_{i}, \ldots\right.$ $\left.\ldots, a_{i n}\right) G M\left(a_{1}, \ldots, a_{i-1}, x_{i}, a_{i+1}, \ldots, a_{n}\right)$ and $\left(c_{1}, \ldots, c_{i}, \ldots\right.$ $\left.\ldots, c_{m}\right) G N\left(c_{1}, \ldots, c_{i-1}, y_{i}, c_{i+1}, \ldots, c_{i}\right)$. Furthermore, as L_{i} is a chain, $a_{i} \leqslant c_{i}$ or $c_{i} \leqslant a_{i}$, and we assume that
$a_{i} \leqslant c_{i}, i_{0} e_{i} a_{i} \wedge c_{i}=a_{i}$, and $x_{i} \wedge y_{i} \leqslant x_{i}$ holds always. But chen (a_{1}, \ldots, a_{m})GM($a_{1}, \ldots, a_{i-1}, x_{i}, a_{i+1}, \ldots, a_{m}$) implies $\left(a_{1}, \ldots, a_{i-1}, a_{i} \wedge c_{i}, a_{i+1}, \ldots, a_{m}\right) G M\left(a_{1}, \ldots, a_{i-1}, x_{i-1}, x_{i} \wedge y_{i}\right.$, a_{i+1}, \ldots, a_{n}). According to the properties (DKO) and (DK2) of GM, we can now form the meet of both sides with (e_{1}, \ldots $\left.\ldots, c_{j-1}, y_{j}, c_{i+1}, \ldots, c_{m}\right)$, and we obtain $\left(a_{1} \wedge c_{1}, \ldots, a_{\text {m }} \wedge\right.$ $\left.\wedge c_{m i n}\right) \operatorname{An}\left(a_{1} \wedge c_{1}, \ldots, a_{i-1} \wedge c_{i-1}, x_{i} \wedge y_{i}, a_{i+1} \wedge c_{i+1}, \ldots, a_{m} \wedge c_{m}\right)$ as $c_{1} \leq \Psi_{i}$. So, in general, for each $i,\left(\alpha_{1} \wedge c_{1}, \ldots, a_{\text {直 }}\right.$ 人 $\left.\wedge c_{1}\right\} \operatorname{cit}\left(a_{1} \wedge c_{1}, \ldots, a_{i-1} \wedge c_{i-1}, x_{i} \wedge y_{i}, a_{i+1} \wedge c_{i+1}, \ldots, a_{n} \wedge c_{m}\right)$, where Gi is CM or GN, $i=1, \ldots$. . Linet z be the join of all elements $\left(a_{1} \wedge c_{1}, \ldots, a_{i-1} \wedge c_{i-1}, x_{i} \wedge y_{i}, a_{i+1} \wedge c_{i+1}, \ldots\right.$ $\ldots, \boldsymbol{A}_{\mathrm{n}} \wedge c_{\mathrm{m}}$) which are in the relation $G N$ with $\left(\mathrm{a}_{1} \wedge \mathrm{c}_{1}, \ldots\right.$ $\ldots, a_{i} \wedge c_{\text {m }}$ for some value of i, and let the corresponding join be w in the case of GM; these joins exist aecording to (DK3). As GM and GN are generalized normality relations and a A cGM and a $\operatorname{cGNz}, W \leq I_{\text {GManc }}$ and $z \leq I_{G N a n c}$, and trivial$1 y, W \vee z=\left(x_{1} \wedge y_{1}, \ldots, x_{\mathrm{R}} \wedge \mathcal{I}_{\mathrm{m}}\right)=I_{\mathrm{GMa}} \wedge I_{\mathrm{GNc}}$, where $w \vee z \leq$ $\leq I_{\text {GManc }}{ } 1_{\text {GNance }}$. As mentioned above, we can similarly see that $I_{\text {GMe }} \wedge I_{\text {GNa }} \leqslant I_{\text {Gatanc }} \vee I_{\text {GNanc }}$.

As each term of the join $\left(I_{G M a} \wedge I_{G M c}\right) \vee\left(1_{G N a} \wedge I_{G N C}\right) \vee$ $\vee\left(I_{G M a} \wedge I_{\text {GNc }}\right) \vee\left(I_{G M c} \wedge I_{G N a}\right)$ is less or equal to $1_{\text {GManc }}{ }^{V} I_{\text {GNanc }}$, the join satisfies this relation as well. Hence $\left(I_{G M a} \vee I_{G N a}\right) \wedge\left(I_{G M c} \wedge I_{G N c}\right) \leqslant I_{G M a A c} \vee I_{G N a \wedge c}$.

The proof for the lattice L satisfying (ii) is a repetition of the proof above, and hence we will omit it. For completing the proof of necessity we must show that $G H=$ $=G M \vee G N$. Let $G K \geq G M, G K$, and so for each $x \in I$, $x G K 1_{G M x}$ and $x G K I_{G N x} \cdot$ According to $(D K 3), x G K\left(I_{G M x} \vee I_{G N x}\right)$, whence $G K \geq G H$,
and thus $G H=G M \vee G N$.
2° : Let $G H$ be the join of relations GM and GN on L, and $A_{G H x}=\left[x, 1_{G M x} \vee 1_{G I X}\right]$. Let us remove from the Hasse diagram of L all the points and the lines incident to those points, which are meet-reducible in L. Remove further the chain C_{O} containing the zero element of L, if such a chain exists. If the diagram graph thus obtained is empty, I was the chain C_{0}, and the theorem holds. If not, let us consider the graph D obtained. If it is a tree, where the degree of point 1 only can be 3 or greater, then there is nothing to prove: the chains of this tree are the factors $I_{1}, \ldots, I_{\text {m }}$ in (i), as the elements of a finite distributive lattice can be uniquely represented as meets of meet-irreducibles.

Assume that D is a tree and there is a point $a \neq 1$ with the degree at least 3. Then there are in D two points x and y which are meet-irreducible in L. Let us consider the sublattice of elements $\{x \wedge y, x, y, a, z\}$ of L, where $z \in D$, and $a<q<z$ holds for no $q \in L(e . g . a-z)$; such an element z exists in L as D is a tree and $a \neq 1$ (see Fig. $I(a)$). We define

(a)

(b)

(c)

Figure 1
a generalized normality relation GM as follows: RGMs \Longleftrightarrow $\Longleftrightarrow r=s$ or $\exists q \in I$ such that $r=\Xi \wedge q$ and $s \leq z \wedge q ; o b-$ Fiously GM is a generalized normality relation on L. We define another relation FN analogously: $t G N u \Longleftrightarrow t=u$ or
$\exists p \in L$ such that $t=p \wedge x$ and $u \leqslant z \wedge p$. One can easily see that $\left[x \wedge y, I_{G M x \wedge y} \vee I_{G N x \wedge y}\right]=[x \wedge y, a]$, but it holds for each $G K \geq G M, G N$ that $x G K z$ and $J G K z$, whence $x \wedge y G K Z$, as well. But $2 \notin[x \wedge y, a]$, which is a contradiction. So in the tree D only the point 1 can have degree 3 or greater.

Assume that D is unconnected graph. Let x be the point of D such that $x \neq 1$, but all the points $h_{1} \ldots h_{n_{x}}$ which are joined by a Iine to x in D are less than x in L. As the chain C_{0} has been removed, there are in I also elements that are less than x. On the other hand, as $x \neq 1$, there is al8o a meet-reducible element a in L satisfying $x-a$, and let the shortest meet-representation of a in terms of meetirreducibles contain an element $2 \in L$. As the chain C_{0} has been removed, there is in L an element y such that $y V x=a$, or there are two non-comparable elements $u, y \leq x$ such that $x=$ $=u \vee y$ (see Figures $I(b)$ and $I(c)$).

In the case of Figure $1(b)$ we define two generalized normality relations GM and GN as in the case above. There are not two non-comparable elements $b \geq x$ and $c \geq y$ such that $b \vee c=z$ and $b \wedge c=X \wedge y$, as in the other case $b \wedge a=x$, because $b \wedge c=x \wedge y, a \succ x, a \geq y$ and $c \geq y$. Hence $z \notin[x \wedge y$, $\left.I_{G M X \wedge Y} \vee I_{G N X \wedge y}\right]$, and we get the desired contradiction.

In the case of Figure $1(c)$, the relations GM and GN can be defined as follows: $r G M s \Longleftrightarrow r=s$ or $\exists p \in L$ such
that $u \wedge p=r$ and $a \wedge p \geq s$, and $t G N \nabla \Longleftrightarrow t=V$ or $\exists \mathbf{P} \in L$ such that $\mathrm{P} \wedge \mathrm{y}=\mathrm{t}$ and $\mathrm{P} \wedge \mathrm{A} \geq \mathrm{V}$. The assumption in the case of Figure $I(c)$ says that there are not two non-comparable elements $b \geq u$ and $c \geq y$ such that $b \vee c=a$ and $b \wedge c=u \wedge y$, as in the other case $b \vee x=a$ or $c \vee x=a$. Hence $a \notin[u \wedge y$, $\left.I_{G M u \wedge y} \vee I_{G N u \wedge J}\right]$. So D must be a connected tree, where only the point 1 can have the degree 3 or greater. This completes the proof.

The following lemma gives a join construction for generalized normality relations in the general case.

Lemma 2. Let GM and GN be two generalized normality relations on a finite lattice L. Then the family \mathcal{A} (GH) $=$ $=\left\{\left[a, I_{G M a} \vee I_{G N a} \vee U_{a}\right] \mid a \in L\right\}$, where $U_{a}=S a\left\{\left(I_{G M X x} \vee I_{G N x} V\right.\right.$ $\left.\vee U_{x}\right) \wedge\left(I_{G M y} \vee I_{G N y} \vee U_{y}\right) \mid$ Sa is the set of all pairs $x, y \in I$ for which $x \wedge y=a \xi$, generates a generalized normality relation $G H$ on L and $G H=G M \vee G N$.

Proof. As Uane contains at least the temm ($1_{G M a} \vee 1_{G N a} \vee$ $\left.\vee U_{a}\right) \wedge\left(I_{G M c} \vee I_{G N e} \vee U_{c}\right)$, then $b \wedge d \in\left[\right.$ an $c, I_{\text {GManc }} \vee I_{\text {GNAAC }} . V$ $\left.\vee U_{\text {anc }}\right]$ and (DK2) holds for aGHb and cGHd. The other conditions hold obviously.

Let $G P$ be a generalized normality relation on L such that $G P \geq G M, G N$. Then $x G P I_{G M x}$ and $x G P I_{G N x}$ for each $x \in L$, and so $X G P\left(I_{G M X} \vee I_{G N X}\right)$, as well. According to the property (DK2) and to the finiteness of L, also $x G P U_{x}$. Hence $x G P\left(I_{G M x} Y\right.$ $\vee I_{G N x} \vee U_{x}$) for each $x \in L$, and thus $G P \geq G H$. Consequently, $G H=G M \vee G N$, and the Iemma follows.

The following lemma gives a construction for the join of normality relations analogous to the results in Theorer 2.

Lemma 3．Let M and N be two normality relations on a finite distributive lattice L ．The Pamily $\mathcal{A}(H)=\left\{\left[a, I_{M a}\right.\right.$,
 $\left.\vee I_{N_{2}}\right) \wedge \ldots \wedge\left(I_{M x_{n}} \vee I_{N_{n}}\right) \mid S_{a}$ is the set of all sequences x_{1}, \ldots, x_{n} for which $\left.a=x_{1} \vee x_{2} \vee \ldots \vee x_{n^{\prime}}, n \geq 2\right\}$ ，generates a normality relation H on I and $H=N \vee M$ ，if $I=I_{1} \times I_{2} \times$ $\times \ldots \times I_{\text {m }}$ ，where I_{i} is a chain for each value of $i=1, \ldots$ ．．．．，国。

Proof．Let us consider first the condition（DK4）．Let aHb and cHd；we must show that avev（bへd）$\leq a \vee \in \vee f\left(I_{\mathrm{Ma}} \vee\right.$
 By applying the distributivity we see that（I $\mathrm{Ma}_{\mathrm{a}} \vee \mathrm{I}_{\mathrm{Na}} \vee \mathrm{W}_{\mathrm{a}}$ ）＾
 $\left.\left.\vee I_{\mathrm{Ne}}\right)\right\} \vee\left\{\mathrm{w}_{c} \wedge\left(I_{\mathrm{Ia}_{a}} \vee I_{\mathrm{Na}}\right)\right\} \vee\left\{\mathrm{W}_{\mathrm{a}} \wedge \mathrm{W}_{\mathrm{c}}\right\} \leq W_{\text {arc }}$ according to
 follows by combining these two observations．
（DKO），（DKI）and（DK3）hold obviously，and sowe shall consider the condition（DK2）only．Let aHb and cHd．The re－ Iation H satisfies（DK2），if bへ $\mathbb{Q} \leqslant\left(I_{\mathrm{Ma}} \vee I_{\mathrm{Na}} \vee \mathrm{Wa}_{\mathrm{a}}\right.$ ）\wedge（ $\boldsymbol{I}_{\mathrm{He}} \vee$
 der the $\operatorname{terin}\left\{\left(I_{\mathrm{Ma}} \vee I_{\mathrm{Na}}\right) \wedge\left(I_{\mathrm{Mc}} \vee I_{\mathrm{Ne}}\right)\right\} \vee\left\{W_{\mathrm{a}} \wedge\left(I_{\mathrm{Mc}} \vee I_{\mathrm{Ne}}\right)\right\} \vee$ $\vee\left\{W_{c} \wedge\left(I_{\mathrm{Ma}} \vee I_{\mathrm{Na}}\right)\right\} \vee\left\{W_{\mathrm{a}} \wedge \mathrm{W}_{\mathrm{c}}\right\}=\left(I_{\mathrm{Ma}} \vee I_{\mathrm{Na}} \vee \mathrm{W}_{\mathrm{a}}\right) \wedge\left(I_{\mathrm{Mc}} \vee I_{\mathrm{Nc}} \vee\right.$ \checkmark we $_{e}$ ．Similarly as in the proof of Theorem 1 ，we can show that
（1）

$$
\left(I_{\mathrm{Ma}} \vee I_{\mathrm{Na}}\right) \wedge\left(I_{\mathrm{Mc}} \vee I_{\mathrm{Ne}}\right) \leqslant I_{\mathrm{MaNe}} \vee I_{\mathrm{Nanc}}{ }^{\circ}
$$

As $a \wedge c=\left(x_{1} \wedge c\right) \vee\left(x_{2} \wedge c\right) \vee \cdots \vee\left(x_{n} \wedge c\right)$ for each a equence we obtain the term $W_{a} \wedge\left(I_{M e} \vee I_{\text {IC }}\right)$, and as each member of the join was less or equal to $\mathbb{W}_{\text {anc }}$, then

$$
\begin{equation*}
w_{\mathrm{anc}} \geq W_{\mathrm{a}} \wedge\left(I_{\mathrm{Mc}} \vee I_{\mathrm{Nc}}\right) . \tag{2}
\end{equation*}
$$

Similarly we see that

$$
\begin{equation*}
w_{\mathrm{anc}} \geq W_{c} \wedge\left(I_{\mathrm{Ha}^{2}} \vee I_{\mathrm{Na}}\right) \tag{3}
\end{equation*}
$$

$$
\text { Consider finally the term } w_{a} \wedge W_{c} \cdot \text { Let } a=x_{1} \vee \ldots \vee x_{n} \text { and }
$$

$$
c=y_{1} \vee \ldots \vee y_{\text {min }} \text {, then } a \wedge c=\left(x_{1} \wedge y_{1}\right) \vee\left(x_{2} \wedge y_{1}\right) \vee \ldots
$$

$$
\vee\left(x_{1} \wedge y_{1}\right) \vee\left(x_{1} \wedge y_{2}\right) \vee\left(x_{2} \wedge y_{2}\right) \vee \ldots \vee\left(x_{1} \wedge y_{2}\right) \vee\left(x_{1} \wedge y_{3}\right) \vee
$$

$$
\vee \ldots \vee\left(x_{n} \wedge y_{m}\right) \cdot \text { According to the definition of } W_{Q \wedge e} \geq
$$

$$
\geq\left(I_{\operatorname{Mx}_{1} \wedge y_{1}} \vee I_{\mathrm{Nx}_{1} \wedge y_{1}}\right) \wedge\left(I_{\operatorname{Hx}_{2} \wedge y_{1}} \vee I_{\mathrm{Nx}_{2} \wedge y_{1}}\right) \wedge \ldots \wedge\left(I_{\mathrm{Mx}_{\mathrm{n}}} \wedge y_{m} \vee\right.
$$

$$
\left.\vee I_{\operatorname{Mrx}_{\mathrm{n}} \wedge y_{m}}\right) \text {. On the other hand, }
$$

$$
\left(I_{\mathrm{Mx}_{1} \wedge \mathrm{y}_{1}} \vee I_{\mathrm{Nx}_{1} \wedge y_{1}}\right) \geq\left(I_{\mathrm{Mx}_{1}} \vee I_{\mathrm{Nx}_{1}}\right) \wedge\left(I_{\mathrm{My}_{1}} \vee I_{\mathrm{Ny}_{1}}\right),
$$

$$
\left(1_{\mathrm{Mx}_{2} \wedge \mathrm{I}_{1}} \vee 1_{\mathrm{Nx}_{2} \wedge y_{1}}\right) \geq\left(I_{\mathrm{Mx}_{2}} \vee I_{\mathrm{Nx}_{2}}\right) \wedge\left(1_{\mathrm{My}_{1}} \vee I_{\mathrm{Ny}_{1}}\right),
$$

$$
!
$$

$$
\left(I_{M_{x_{a}}} \wedge y_{1} \vee I_{N x_{n}} \wedge y_{1}\right) \geq\left(I_{M_{n}} \vee I_{\mathrm{Nx}_{n}}\right) \wedge \cdot\left(I_{M_{y_{1}}} \vee I_{\mathrm{Ny}_{1}}\right),
$$

!

and by forming the meets of both sides and by ordering the

$$
\begin{aligned}
& x_{1}, x_{2}, \ldots, x_{n} \text { with the property } x_{1} \vee \ldots \vee x_{n}=a \text {, 四 } \\
& \geq\left(I_{\operatorname{Mx}_{1} \wedge c^{\vee}} I_{N x_{1} \wedge c}\right) \wedge \ldots \wedge\left(I_{\operatorname{Mx}_{n} \wedge e^{\vee}} I_{\mathrm{Nx}_{n} \wedge c}\right) \geq\left\{\left(I_{\mathrm{Mx}_{1}} \vee I_{\mathrm{NX}_{1}}\right) \wedge\right. \\
& \left.\wedge\left(I_{\mathrm{Me}^{\prime}} \vee I_{\mathrm{Ne}}\right)\right\} \wedge\left\{\left(I_{\mathrm{Mx}_{2}} \vee I_{\mathrm{Nx}_{2}}\right) \wedge\left(I_{\mathrm{Me}} \vee I_{\mathrm{Ne}}\right)\right\} \wedge \ldots \wedge\left\{\left(I_{\mathrm{Nx}_{n}} \vee\right.\right. \\
& \left.\left.\vee I_{M_{n}}\right) \wedge\left(I_{M e} \vee I_{N c}\right)\right\}=\left\{\left(I_{M_{1}} \vee I_{\mathrm{Nx}_{1}}\right) \wedge \ldots \wedge\left(I_{\mathrm{Mx}_{\mathrm{n}}} \vee I_{\mathrm{Nx}_{n}}\right)\right\} \wedge \\
& \wedge\left(I_{\mathrm{Me}} \vee I_{\mathrm{Ne}}\right) \text {. By forming the join of all terms } f\left(I_{\mathrm{Mx}_{1}} \vee I_{\mathrm{Nx} x_{1}}\right) \wedge \\
& \left.\wedge \ldots \wedge\left(I_{M_{X}} \vee I_{N_{x_{n}}}\right)\right\} \wedge\left(I_{M e} \vee I_{M C}\right) \text {, where } x_{I} \vee \ldots \vee x_{n}=a \text {, }
\end{aligned}
$$

terms in the right side, we see that Vanc $\geq\left(1_{M_{x_{1}} \wedge y_{1}} \vee\right.$

$\wedge\left(I_{\mathrm{Mx}_{2}} \vee I_{\mathrm{Nx}_{2}}\right) \wedge \ldots \wedge\left(I_{\mathrm{Mx}_{\mathrm{n}}} \vee I_{\mathrm{Nx}_{\mathrm{n}}}\right) \wedge\left(I_{\mathrm{MHy}_{1}} \vee I_{\mathrm{Ny}_{1}}\right) \wedge\left(I_{\mathrm{My}_{2}} \vee\right.$ $\left.\vee I_{\mathrm{Hy}_{2}}\right) \wedge \ldots \wedge\left(I_{\mathrm{My}_{\mathrm{m}}} \vee I_{\mathrm{Ny}_{\mathrm{m}}}\right)$ 。
By forming the join over ali pairs (x_{1}, \ldots, x_{n}) and (y_{1}, \ldots \ldots, y_{m}), where $x_{1} \vee \ldots \vee x_{n}=a$ and $y_{1} \vee \ldots \vee y_{m}=c$, we see that
(4) $\quad W_{\operatorname{anc}} \geq W_{a} \wedge W_{c}$

By combining now the results (1),(2),(3) and (4) obtained above, we see that $\left(I_{M a} \vee I_{N a} \vee W_{\mathrm{R}}\right) \wedge\left(I_{\mathrm{Mc}} \vee I_{\mathrm{Nc}} \vee W_{\mathrm{C}}\right) \leqslant\left(I_{\text {Mane }} \vee\right.$ $\vee I_{\text {Nane }} \vee$ anc $)$. Obviously a^c $\leq\left(I_{\mathrm{Ma}_{a}} \vee I_{\mathrm{Na}} \vee W_{a}\right) \wedge\left(I_{\mathrm{Mc}} \vee I_{\mathrm{Nc}} \vee\right.$ $\checkmark W_{c}$), and the assertion follows. So H satisfies also (DK2), and hence H is a normality relation on L.

Let K be a normality relation on L such that $K \geq N_{2} M$. According to ($D K 3$), $x K\left(1_{N x} \vee I_{M_{K}}\right)$ for each $x \in I$, and according to ($D K 4$) and ($D K 3$), $x K\left(x \vee W_{x}\right)$ for each $x \in L$. By apply-
 $x \in I$, and hence $K \geq H$. Thus $H=N V M$, and the lemma follows.

Now we can prove a theorem on the distributivity of the lattice $G N(L)$.

Theorem 3. The lattice $G N(L)$ of all generalized normality relations on a finite lattice is distributive if and only if L is distributive and $G H=G N \vee G M$ is determined by the family $\mathcal{A}(G H)=\left\{\left[x, 1_{G J x} \vee I_{G M x}\right] \mid x \in L\right\}$.

Proof. Let L be a finite distributive lattice satisfying the condition of the theorem, and GK, GN and GM three generalized normality relations on $L_{\text {. It }}$ is sufficient to show that $G K \wedge(G N \vee G M) \leqslant(G K \wedge G N) \vee(G K \wedge G M)$, from which the
distributivity of $G N(L)$ follows. Let a $\{G K \wedge(G N \sim G M)\} \Leftrightarrow$ $\Longleftrightarrow a G K b$ and $a(G N \vee G M) b$. Furthermore, $a(G N \vee G M) b \Rightarrow b \in$ $\in\left[a, I_{G N a} \vee I_{G M a}\right]$, and so $b=\vee \wedge\left(I_{G N a i} \vee I_{G M a}\right)=\left(b \wedge I_{G N a}\right) \vee$ $\vee\left(b \wedge I_{G M a}\right)$. Trivially, $a(G K \wedge G N)\left(b \vee I_{G N a}\right)$ and $a(G K \wedge G M)(b \vee$ $\vee I_{G M a}$), which imply according to (DK3) that a $\{(G K \wedge G M) \vee$ $\vee(G K \wedge G N)\}$ b. Thus $G K \wedge(G N \vee G M)=(G K \wedge G N) \vee(G K \wedge G M)$.

In the converse part we shall first show that L is necessarily distributive. If L is non-distributive, it contains as a sublattice at least one of the lattices L^{\prime} and $L^{\prime \prime}$ of Figure 2. Consider first the case of sublattice L^{\prime}.

L^{\prime}

$L^{\prime \prime}$
As L is Pinite, we can construct five normality relations such that the only nomtrivial interval in the family \mathcal{A} generating the relations is $[0, q],[0, a],[0, b],[0, c]$ or $[0, e]$; we denote the corresponding relations by $G[0, q], G[0, a]$, $G[0, b], G[0, c]$ and $G[0, e]$. Clearly these relations form a non-distributive sublattice of the lattice $G N(L)$ as $U_{0} \leq q$. Similarly we see that the lattice $G N(L)$ of a lattice L containing $L^{\prime \prime}$ as sublattice, contains a non-distributive sublattice. Hence L is distributive.

If the join $G H=G N \vee G M$ cannot be generated by the family \mathcal{A} (GH) $=\left\{\left[x, 1_{G M X} \vee I_{G N x}\right] \mid x \in I\right\}$, we obtain the cases of the proof of Theorem 2 given in Figure 1. In the cases of Figure $I(a)$ and $l(b)$, we define $G K$ as follows: sGKu \Longrightarrow $\Longleftrightarrow s=u$ or $\exists t \in L$ such that $t \wedge(x \wedge y)=s$ and $t \wedge z \geqslant u$.

As L is distributive, GK is a generalized normality relation on L; GN and GM are defined similarly as in the proof of Theorem 2. So $(x \wedge y)\{G K \wedge$ ($G N \vee G M$) $\} z$. According to the definition of $G K$, for each $d>x \wedge y, \mathbb{A}_{K G d}=[d, d]$, and hence $U_{x \cap y}=x \wedge y$ for $(G K \wedge G M) \vee(G K \wedge G N)$. On the other hand, the proof of Theorem 2 shows that there are not in L two non-comparable elements $b \geq x$ and $c \geq y$ such that $b \vee c=2$ and $b \wedge c=x \wedge y$, whence the relation $(x \wedge \bar{F})\{(G K \wedge G M) \vee$ $\vee(G K \wedge G N)\} z$ does not hold. The proof is similar in the case of Figure $1(c)$. This completes the proof.
3. On direct decompositions. At first we prove a theorem on direct decompositions by means of generalized normality relations.

Theorem 4. Let I be a finite lattice such that $L=$ $=L_{1}^{\prime} \times I_{2}^{\prime} \times \ldots \times I_{i n}^{\prime}$, where I_{i}^{\prime} is a chain. L has a direct decomposition if and only if there are two nontrivial generalized normality relations $G M, G K \in G X(L)$ such that

Proof. I^{0} : Let $L=I_{1} \times I_{2}$. We define two relations as follows : $a G M b a=\left(x_{1}, x_{2}\right), b=\left(x_{1}, y_{2}\right)$ and $x_{2} \leqslant y_{2}$; c GKd $\Longleftrightarrow c=\left(z_{1}, z_{2}\right), a=\left(w_{1}, z_{2}\right)$ and $z_{1} \leqslant w_{1}$. It is an exercise to show that GM and GK are generalized normality relations on L; we shall only show that GM and GK are complements in $G N(L)$. Let $t \leqslant u$ in L, where $u=\left(u_{1}, u_{2}\right)$ and $t=$ $=\left(t_{1}, t_{2}\right)$. Then $\left(u_{1}, u_{2}\right) G M\left(u_{1}, t_{2}\right)$ and $\left(u_{1}, u_{2}\right) G K\left(t_{1}, u_{2}\right)$. Furthermore, $\left(t_{1}, u_{2}\right) \vee\left(u_{1}, t_{2}\right)=\left(u_{1} \vee t_{1}, u_{2} \vee t_{2}\right)=\left(t_{1}, t_{2}\right)$, and so the relations above imply $a(G K \vee G M) t$. Hence $G M \vee G K=1$. If $h(G M \wedge G K) f$, then according to the definition of $G M$,
$h_{1}=f_{1}$ in $h=\left(h_{1}, h_{2}\right)$ and $f=\left(f_{1}, f_{2}\right)$. Similarly GK implies that $h_{2}=f_{2}$, whence $\left(h_{1}, h_{2}\right)=\left(f_{1}, f_{2}\right)=h=f$. Thus $G K \wedge G M=0$.
2° : Iet $G M \wedge G K=0$ and $G M v G K=1$ in $G N(L)$. We shall show that $L=\left[0,1_{G K O}\right] \times\left[0,1_{G M O}\right]$. Each join-irreducible element of L belongs to one of the sets $\left[0,1_{G K O}\right],\left[0,1_{\text {GMO }}\right]$. Indeed, assume that x is join-irreducible and $x \notin\left[0,1_{G K O}\right]$, $\left[0,1_{G M O}\right]$. Then $x \in\left[0,1_{G K O} \vee 1_{G M O}\right]$, as $G M \vee G K=1$. So $x \wedge\left(I_{G K O} \vee I_{G M O}\right)=\left(x \wedge I_{G K O}\right) \vee\left(x \wedge I_{G M O}\right)$, from which it follows that x is join-reducible, or $1_{G K O}=0$, or $I_{G M O}=0$, and $x \in\left[0,1_{G M O}\right]$, or $x \in\left[0,1_{G K O}\right]$, respectively; a contradiction in each case. Furthermore, $G M \wedge G K=0$, and so $\left[0,1_{\text {GMO }}\right] \cap\left[0,1_{G K O}\right]=\{0\}$. As I is Pinite and distributive, for each $z \in L, z$ is the join of suitable join-irreducibles, i.e. $z=\left(V_{i}\left(q_{G K}^{z}\right)_{i}\right) \vee\left(V_{j}\left(p_{G M}^{z}\right)_{j}\right)$, where $\left(q_{G K}^{z}\right)_{i}$ is a join-irreducible of $\left[0,1_{G K O}\right]$ and $\left(p_{G M}^{z}\right)_{j}$ a join-irreducible of $\left[0,1_{G M O}\right]$. Clearly $V_{i}\left(q_{G K}^{z}\right)_{i}=q_{G K}^{z} \in\left[0,1_{G K O}\right]$ and $V_{j}\left(p_{G M}^{z}\right)_{j}=p_{G M}^{z} \in\left[0,1_{G M O}\right]$. We map z onto $\left(q_{G K}^{z}, p_{G M}^{z}\right)$. According to the uniqueness of the joinrepresentation by means of join-irreducibles in a distributive lattice, the mapping is a lattice morphism. If z has the figures: $\left(q_{G K}^{z}, p_{G M}^{z}\right)$ and $\left(q_{G K}^{2 I}, p_{G M}^{z l}\right)$, then the uniqueness of the joinrepresentation implies that $p_{G M}^{z}=p_{G M}^{z 1}$ and $q_{G K}^{z}=q_{G K}^{2 I}$. SimilarIy we see that each element of $\left[0,1_{G K O}\right] \times\left[0,1_{G M O}\right]$ has an inage in L, and hence $L=\left[0,1_{G K O}\right] \times\left[0,1_{G M O}\right]$. This completes the proof.

As in the case of the preceding theoren $G N(L)$ is distributive, one can prove the following generalization by an
analogous way.
Corollary. Let L be a finite lattice, $L=I_{1}^{\prime} \times \ldots$ $\ldots \times I_{m}^{0}$, where $L_{l}^{\prime}, \ldots ., I_{h}^{\prime}$ are chains. I has a direct decomposition with n factors if and only if there are n nontrivial generalized normality relations $\mathrm{GM}_{1}, \mathrm{GM}_{2}, \ldots, \mathrm{GM}_{\mathrm{n}}$ such that $G M_{k} \wedge G M_{j}=0$ for each pair $k, j, k \neq j$, and $G M_{1} \vee G M_{2} \vee$ $\vee \ldots \vee \operatorname{GM}_{n}=1$ in $G N(L)$.

The following theorem gives the corresponding result in the case of normality relations.

Theorem 5. Let L be a finite lattice such that $\mathrm{L}=$ $=I_{i}^{0} \times \ldots \times I_{m}^{\prime}$, where $I_{i}^{n}, \ldots, I_{m}^{n}$ are chains. L has a direct decomposition if and only if there are two nontrivial normality relation $K, M \in \mathbb{N}(L)$ such that $K \wedge M=0$ and $K \vee M=1$ in $\mathrm{N}(\mathrm{L})$ 。

Proof. I° : Let $L=I_{1} \times I_{2}$. We define K and M similarly as the generalized normality relations of Theoren 4: akb \Longleftrightarrow $\Longleftrightarrow a=\left(a_{1}, a_{2}\right), b=\left(a_{1}, b_{2}\right)$ and $a_{2} \leq b_{2} ; c M d \Longleftrightarrow c=$ $=\left(c_{1}, c_{2}\right), d=\left(d_{1}, d_{2}\right)$ and $c_{1} \leqslant d_{1}$. We shall show that (DK4) hold s for K; the proof is similar for M. Let aKb and fKh. Then a $\quad f^{\prime}=\left(a_{1} \vee f_{1}, a_{2} \vee f_{2}\right)$ and $h \wedge b=\left(a_{1} \wedge f_{1}, b_{2} \wedge h_{2}\right)$. Further, $a \vee f \vee(h \wedge b)=\left(a_{1} \vee f_{1} \vee\left(a_{1} \wedge f_{1}\right), a_{2} \vee f_{2} \vee\left(b_{2} \wedge\right.\right.$ $\left.\left.\wedge h_{2}\right)\right)=\left(a_{1} \vee f_{1}, a_{2} \vee f_{2} \vee\left(b_{2} \wedge h_{2}\right)\right)$. The first components of avf and avfV(h^b) are the same and $a_{2} \vee f_{2} \leqslant a_{2} \vee f_{2} \vee$ $\vee\left(b_{2} \wedge h_{2}\right)$, whence $(a \vee f) K(a \vee f \vee(h \wedge b))$. The other conditions hold obviously, and hence K and M are normality relations. The latter part of 1° is a repetition of 1° in the proof of Theorem 4, and hence we omit it. 2^{0} : We shall show that the conetruction of the proof
2° of Theoren 4 holds. We mast only show that each join-irreducible element x of L belongs to $\left[0,1_{\mathrm{KO}}\right]$ or to $\left[0,1_{\mathrm{MO}}\right]$; in fact, we show that $I_{K O} \vee I_{M O}=1$ in $L_{\text {. Let }}$ us consider the normality relation $K \vee M . A_{K \vee M O}=\left[0,1_{K O} \vee 1_{M_{O O}} \vee W_{O}\right]$, and as the only join-expression for 0 is $0=0 \vee 0$, $\psi_{0}=\left(I_{K O} \vee\right.$ $\left.\vee I_{M O}\right) \wedge\left(I_{K O} \vee I_{M O}\right)$, we see that $A_{\text {KVMO }}=\left[0, I_{K O} \vee I_{M O}\right]$. Furthermore, as $K \vee M=1$ in $N(L)$, then $A_{G v M O}=L$, and hence $I_{K O} \vee I_{M O}=1$ in L. The rest is a repetition of the proof 2^{0} in Theorem 4.

As we have not shown the distributivity of $N(L)$, the corolla ry of Theorem 4 need not hold in the case of nomality relations.

```
References
```

[1] L. BERAN: Note on a nomality relation in lattices, Acta Univ. Carolinae Math. Phys. 16(1975),59-62.
[2] I. CHAJDA and B. ZELINKA: Tolerance relations on lattices, Časopis pěst. mat. 99(1974), 394-399.
[3] F. HARARY: Graph theory, Addison-Wesley, Reading Mass. (1969).
[4] G. SZASZ: Théorie des treillis, Akad. Kiadó, Budapest (1971).
(Oblatum 25.5. 1976)

Dept. of Technical Sciences
Finnish Academy
Lauttasaarentie 1
$00200 \mathrm{Helsinki}^{20}$, Finland

