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FREE ALGEBRAS, INPUT PROCESSES AND FREE MONADS

V. TRRKOVA, J. ADAMEK, V. KOUBEK, J. REITERMAN, Praha

A%atract: Given a functor F: X—> X , a category of
FP-algebras 1s defined and the existence of free F-algebras
i1s discussed. This yields, under general conditions a charac-
terization of input processes in the sense of Arbib, Manes or
of free monads in the sense of Barr. The characterization is
very simple: if F preserves monics then it is an input pro-
cess iff for every object A there exists an object B with
B=Av FB .

Key wordg: Free algebra, functor algebra, input process
free monad. ’ ’ !

AMS: 18B20 Ref, Z.: 2.726, 8.713

A characterization of input processes or free monads has
been a problem for a considerable time, For the category of
sets a more general problem was solved by [Kﬁrkové-Pohlovél,
Koubek ] § the present proof (of a special caée) is simpler'
than theirs. The condition B = Av FB originates from [Ma-
nes ).

The paper also answers positively the question, whether,
whenever f;.'ée algebras exist, they can be obtained by e stan-
dard construction (see [Adéxnek,' 1, where the construction for
sets from [Pohlovdl ,[Pohlovd, Addmek, Koubek] is generali-
zed). ’
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I. Free F-algebras and free monads

I,1 Given a functor F: X —> X , define a category
X (F) of F-algebras, i.e. pairs (X,d) , where X 1is a ¥ -
object and d: FX —» X is a X -morphism) the morphisms from
the F-algebra (X,d) to the F-algebra (X ,d") are those
% -morphisms p: X—> X  , for which the diagram

FX —7——d——> X
St
., d .
FX ——> X
commutes.
There is a natural forgetful functor U = Ug: XPF)—> X ,
agsigning to each F-algebra (X,d) the object X .
No current notation of these categories has been adopt-
ed: [Barr] denotes them (F:¥ ) ; [MacLane] denotes them
(Pl 0) , where O is the initial object of ¥ ; [Arbib, Manes]
denote them Dyn (F) ; for X = Set , they are denoted by
A(F, 1) in [Addmek, Koubek, Pohlovd] , [Kirkovéd-Pohlovd, Kou-
bek ], [ Trnkovd, Goraldik].

I,2 Let A be an object of X . By a free F-algebra

over A we mean an algebra (A*, gA) and a X -morphism

d: A—s 1\\* such that for every PF.algebra (X,d) and eve-

ry X -morphism £: A—> X there exists a unique morphism

f': : (A*, c_pA)—-—-> (X,d) with £ = f: R gt .
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In other words, a free algebra over A 1is a universal arrow

from A to the forgetful functor U: X (F)— X .

Propogition: The following is equivalent,

(1) P admits free algebras, i.e. (A#, ?A’) exists for
every A

(ii) U is a right adjoint

(iii) U is monadic.
The proof of the above proposition is easy: (i) and (ii) are
just re-formulation, (iii)—> (ii) follows easily from PTT
(compare with the proof in [MacLanel for varieties of algeb-
rag).

Punctors, which admit free algebras, are called input pro=-
cegses by [Arbib, Manes] . For such functors they build a model
of automata theory in the category X .

I,3 An F-algebra A is initiagl, if for every F-algebra

A" there exists just one morphism from A to A,

Lemmg [Barr]: If (Q,d) 4is an initial F-algebra, d
is an isomorphism,

Broof: There exists unique dq: (Q,d)—> (FQ,Fd) ; then
clearly ded; is an endomorphiesm of (Q,d) , thus d» d =1

N —7

d

Q

0
Fdl l d :ldl

|

FRQ -F4__ 5 mQ
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since d;0d = F(dody) =1, d=(a7F .

Assume that X has finite sums and, given A , denote

by G the functor GQ = FQv A .

Lemma [ Manes) The F-algebra (A%, ) i free over &
with 8: A—> A% iff the G-algebra (A*,y) is initial,
where q;:FA'*v A—s A%, Yy =@ on PA* and v =8
on A,

Proof 1s easy.

Corollary. If (a¥, gwA) is a free F-algebra over A ,
then A¥ - a v m¥* .

This corollary was also proved by [Barr].

I,4 By a _free monad, generated by F: X —> X 1is
meant a monad T = (T, 7 , w) over X for which there ex-
ists a transformation & : P—> T , universal in the follo-
wing sense: for every monad T’ = (T°, "l" «’) over X and
every transformation 6’: P —» L there exists a unique mo-
nad morphism 2 :T—> T’ with 6’= 2o 6 .

¢ is said to have gmall M -factorizationg (where M
is a class of monomorphism) if every morphism factorizes
through some WM -morphism and X is M -well-powered, i.e.
every ob\:ject' has, up to isomorphism, only a set of M -subob-

jects.

Theorem [Barr] ILet X be complete and cocomplete and
have small M -factorizations. Then a functor F: X — X

generates a free monad iff it admits free algebras.
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I,5 PFor amonad T = (T,frz,(u.) ’ SCT denotes, as
usual, the full subcategory of X (T) over monadic T-al-
gebras which are those (Q,d) for which d o na =1, and
dou® =doma.

Definition: The functor F isa_quasimonad if there

exists a monad T over X and an isomorphism o : X (F)—

——»UCT which commutes with the forgetful functors:

The following theorem is implicitly also stated in
[Barr] . We present a proof, since it is easy and does not

need any assumptions on ¥ .

Theorem. F 1s a quasimonad iff it admits free algeb-
ras.

Proof. Necessity. Define g:a : FIQ —> TQ by
¥ (1Q, (40') = (TQ.gzq) o Then for every monadic T-algeb-
ra (Q,d) we have w3 (Q,d) = (Q, 4 og?aa F-rza' ) : indeed,
d: (TQ, (&Q)-——-> (Q,d) is in %XT and eo d: (TQ, 93)—-—9
—> ¥ (Q,d) is in ¥ (F) . Denote 1 (Q,d) = (Q,d ) .
Thus, ToPd =do & .

T
W] T pe e T
TQ-——»Q FQ —> Q

Since‘dovl = 1q » we have ?:doqao F»rl . Now,
(TA, C;A) with ‘QA ¢ A—> TA 1is a free PF-algebra over
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.

A . Indeed, every F-algebra (Q,d) has the form 4 =
=dog%. Fq% with (Q,0) in XT ; given p: A — q,
we have p; =deTp &

Sufficiency, Define the free-algebra monad T : TA = A* ’
frz_A =gt ’ (uA = (1A‘*.);A : a5 4% | Define 6
:P—> T, 6% - 9*c Fe® , Then for every F-algebra (Q,d)
we have a* =Q*¥*— q , a* = ‘10)3 « It is easy to see that
(Q,d%) 1is-in %T and that this defines a functor X (F)—»

—s %T | Its inverse functor is (Q,e) —> (Q,e o %o Pa?).

II., Main theorem

II,1 Assume that X has finite sums and colimits of
chains (i.e. of diagrams, the scheme of which is an ordinal).
Por an arbitrary object A define objects Wi and morphisms
81,3¢ Wj——) W, for arbitrary ordinals j £ 1 such that
ai,i =1 and si,j ° s:]’k = Bi,k by the free algebra cons-

truction
Free_algebra construction (for a given functor F: X —> X ):

Wo = A
a) 1 non-limit
8 t A—> Av FA 1s canonical
1,0
8341,1 = 1AV P8y 59
b) 1 1limit
W, and 83,5 Wd-—-h W; is the colimit of ({w:l} jed 3

P8, 5% jaked)
51+1,1= Ii-——b Wi+1 is the unigque morphism with
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8341,1° 81,0° A—> Av FW, canonical, 8441,1° 8,541 =
= 1.4" Fsi,j

The free algebra construction is said to stop (more in det-
is an isomorphism.

ail, to stop after o steps) if Sxel, o

Then put A* = W,, and, for canonical m: M, — wec+1 s put
- A

g?A = (sm,l'c) lom . Then (a¥, o) and & = 8,0 18 8

free algebra over A (see [Addmek,]) .

a

II,2 Definition. A functor F: X —> ¥ is non-exces-

sive on an object A 1if there exists an object B with B =

= Av FB . A functor, non-excessive on all objects, is simply

called non-excessive.

Examples., An endofunctor F of the category of sets 1is
non-excessive iff for every cardinal « there exists a car-
dinal 3 Z e with card FX £ card X for any set X with
card X = 8 . (Originally this was the way how [ Kirkové4-Poh-
lovd, Koubek] and [Pohlovd] defined non-excessivity.) E.g.,
every small set-functor (i.e. a factorfunctor of a sum of a
set of hom-functors) is non-excessive. The converse is not
true: consider FX =4{f: o —~ X | is a singular cardinal,
£ is one-to-one$ w0} , Fp , for p: X —> Y assigns to ¢
either pef if pofe FY ov O if po f & FY ., Clearly,
F 1is non-excessive but big [Koubek] .

Also, for the category X of vector spaces over a field
P 1is non-excessive iff for etvery cardinal o¢ there exists a
cardinal (3 Z o« with d°.FX < dim X whenever dim X = 3
(or, equivalently, with card FX £ card X whenever card X =

=ﬁ)o
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II,3 From now on we shall assume thet a category X
with a class M of monics is given such that

A) all ¥ -objects and all M -morphisms form a subca-
tegory, say &£ , of X which has finite sums and colimits of
chaing, both preserved by the embedding of &£ into X .

B) X is M -well powered.
In fact, we shall not need the assumption that M 1is closed

under composition so that the above conditions could be weake.

ned by the corresponding way.
In current ABS5 categories, the conditions are fulfilled

for M = all monics. A lot of examples will be exhibited in

the last section.

II,4 Theorem. Let X , M satisfy a), B). If a func-
tor F: X —> X preserves M (i.e. F(M) c¢ M ) then for

each object A the following are egquivalent.
(i) A free F-algebra over A exists,

(ii) the free algebra construction is defined end stops
for A,

(iii) P 1is non-excessive on A .,

Proof: Since (ii) ==»(i) by [Adémek,] and, by Corolla-
ry I,3, also (1) ==)(iii), it suffices to show that (iii) ==

Denote by P~ the restriction of F to & . Then we
have a commutative diagram

x —E s x

Jo)

 —— g
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Now, let ({Wji j {si,;j} ;j<i) be the chain from the free
algebra construction over A with respect to F : &£ —>& .
48 L <> H preserves finite sums and colimits of chains,
we get easily from the commutativity of the above diagram
that the chain coincides with that one over A with respect
to F . Also, the non-excessgivity of F’ is eguivalent to
the non-excessivity of F . Thus, to prove the theorem, we
have to show that the free algzsbra construction over A with
respect to F: & — & stops provided that P’ is non-
excessive, Let B be given with B = A v F'B ., Vie shall con-
struct M -morphisms tJ.: wj—-> B by the transfinite induc-
tion. Let toz Wo——> B be the canonical embedding A —>
~—> Av FB . Let ty: Wy—>B for j< k be defined such
that t;0 8 =t, for every J< i< k . Incase k is li-
i 1,3 dJ
mit, W, is a colimit of (-{Wj}:’ ,-isi’j] ;j<i) and so we have
a unique M -morphism $,: W —>B such that t, e 8,1 = 5y
for i< k . If k 1is isolated, put Ty = lAvF te o It is
to be easily checked that % e S k-1 = t_q 8o that
t o8 = t, holds for every i< k . A3 X 1is M -well po-
k “k,i i
wered, there are i, j , say J< i , such that 84 3 is an
1]

isomorphism. Then 33+1 3 is also an isomorphism, *so the
1]

free algebra construction stops,.

Corollary. If F preserves M then it is an input

process (or a quasimonad) iff it is non-excessive.

Corollary. Let & , in addition to A), B) be complete
and cocomplete end have a small M -factorization. Then a

functor, preserving M , generates a free monad iff it is

non-excessive.

- 347 -



III. Exemples

a) The category Vect of vector spaces (over a field) ful-

£ils A), B) with M = all monics. Since monics in Vect
split, each functor preserves them so that the main theorem

characterizes input processes among all endofunctors:

Propogition. A functor F: Vect —> Vect admits free
algebras iff it is non-excessive, i.e. 1ff for every space A

there exists a space B with dim B = max (dim A, dim FB) ,

b) The category Set of gets. Following the seme reasoning
as in the case of Vect , and endofunctor F  of the catego-
ry Set” of non-void sets admits free algebras iff it is non-
excessive, i.e. for every gset A there is a set B with:
card B = max (card A, card FB) .

Now, for F: Set —» Set either FX = @ for all X or
there is a restriction F’ : Set —»> Set of F . Clearly, P
is non-excessive iff F’ is, and the free F-algebra over
A+ @ coincides with the free F';-algebra over A , Thus, a
free P-algebra>over A+ p exists iff F 1is non-excessive
on A ., Following [Adédmek, Koubek, Pohlovd ], the same is true
for A = @' (the free F-algebra over @ is just the initial
F-algebra, i.e. a cosingleton in the terminology of the paper
referred to). Thus we get a characterization of all input pro-

cesgses in Set:

Proposition [Kdrkovd-Pohlovd, Koubek] . A functor PF:
: Set —> Set admits free algebras iff it is non-excessive,
i.e., iff for every set A there is a set B with card B >

= max (card A, card FB) ,

- 348 -



¢) Concrete categories with colimits preserving forgetful

functor. If ¥ is a concrete cocomplete category whose for-
getful functor preserves monics and colimits then the assump-
tions of the main theorem are clearly fulfilled for .M:= all
monics (in fact, we need only that X has finite sums and ceo-
limits of chains and that the forgetful functor preserves mo-
nics, finite sums and colimits of chains). Thus the mqin theo~
rem characterizes input processes among all monics preserving
-endofunctors of the category of topological (uniform, proximi-
ty) spaces, of graphs, of partial finitary algebras (of a gi-
ven type) and of varieties of unary algebras without definable
constants,

d) Varieties of finitary algebras fulfil A), B) for M = all
monics, varieties of unary algebras also for M = all summands

(i.e. canonical maps A —> A v B ),

e) For the category of graphs and the categories of partial
finitary algebrag we get three independent corollaries of the

main theorem by putting 1) M = all monics, 2) M = all ex-
tremal monics (= all equalizers in this case), 3) M = all sum-

mands.

f£) The category of extremally disconnected compact Hausdorff
spaceg satisfies the assumptions of the main theorem for M =

= all summands, i.e. homeomorphisms onto an open-and-closed
subsets (but it does not do so for WM = all monics = all ex-
tremal monics !). This is verified by the following lemma; no-
te that a colimit of a chain of subspaces in this category is

+the Gech-Stone compactification of its union.
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Lemma. Let Ay i< k , be subspaces of an extremally

disconnected compact Hausdorff space X and let Aj be an

open-and~-closed subspace of A for every iz and also
i

of X .If A\J Ay is dense in X then X =8 () A;) .

Proof: Clearly, ihzhpAi is an open subspace of X , In

an extremally disconnected compact Hausdorff space, each boun-
ded real continuous function, defined on an open subset, can

be continuously extended to its closure, see e.g. [ Gillman,
Jerisonl .

Corollary. Let F be an endofunctor of the category of
extremally disconnected compact Hausdorff spaces, let F pre-
gserve open-and-closed subspaces., Then, F has a free algebra

over a space X iff F is non-excessive on X ,

In particular, this is so if F preserves finite sums.
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