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ON RECONSTRUCTING OF INFINITE FORESTS 

Jaroslav NESETRiL, Praha x* 

§ 1. Introduction. It is well known that every finite 

tree (i.e. an undirected connected graph without cycles) 

can be reconstructed from the collection of its maximal 

subgraphs, maximal subtrees or non-isomorphic maximal sub­

trees (see [2,3,4])• (By a subgraph we mean throughout 

this paper a proper subgraph.) N.St.A. Nash Williams pro­

posed the analogous problem for infinite trees 152• We gi­

ve here a partial answer to this question. 

A ray is a one way infinite path, a forest is a graph 

every component of which is a tree. We prove that every 

rayless forest can be reconstructed from the collection of 

all its non-isomorphic maximal subforestso We prove even 

that the knowledge of almost all graphs from this collec­

tion suffices. On the other hand, we show that the general 

statement "every forest can be reconstructed from the col­

lection of all its subgraphs" is not true. This statement 

being true for finite forests, we exhibit a counterexample 

of an infinite forest which may be regarded as the simp­

lest example of a non-reconstructible graph, see also tl]• 

x) This paper was written while the author was supported by 
CSLA. 
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§ 2. Infinite ravless trees. Let T * CVCT), ECT)) be 

a fixed rayless tree. Denote by J C T ) the set of all ver­

tices of T of an infinite degree. (The degree d(x, T ) 

of a vertex x is the cardinality of the set in^*} Z*fnfl€. 

e E C T ) ] .) It is easy to prove: 

Lemma 1: 3 ( T ) 4* 0 iff T is infinite. 

Let T0 be the minimal subtree of T which contains 

0 ( T ) . Define 1^ as the minimal subtree of T contai­

ning ^ C T ^ ^ ) . Since every tree T ^ is rayless we 

have T ^ 4- T^+4 for m, » 0,4,.., . Further, there is 

an m.- such that T^ » 0 , hence, by Lemma 1, there is 

T^ such that T ^ is a finite tree. 

Let A ( T) be the group of all automorphisms of the tree 

T . We have £CT^) = T ^ for every m, « 0,4,... and 

for every £ € A C T ) . Let cCT) be the center of the 

tree T ^ . (The center of a tree is the intersection of all 

diameters of T , recall that I C C T ) I .6 2 .) Thus 

£ C C C T ) ) a C C T ) for every f c A ( T ) . 

Hence the permutation group A C T ) has analogous proper­

ties to the automorphism group of a finite tree, particu­

larly it can be obtained by 4infinite) applying of a direct 

sum and wreath product to a system of symmetric groups. 

Let us remark that the following holds: 

Let T be an infinite rayless tree, * € -fi(T ) (denote 

by ^.CT) the set of all pendant vertices, i.e. the set 

of all vertices of degree 1). Then we have C (T) * C(T-*). 

Here the tree T - * is defined by Y ( T - x) m V(T)M*}, 

E ( T - * ) * £(T) N < C*„ x ^ D i , where U , x^J c £ ( T ) . 
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Denote by tTl the isomorphism type of the tree T . 

Put UOt(T) »<CT-^3 ;^,€^(T)J . 

In the case that C(T) is a single point, we call the 

tree central. In the case that C(T) are two points 

(which form an edge), we call the tree bicentral. 

Lemma 2: Let T, £ be infinite rayless bicentral 

trees; -tx, *' J = C (T ) , -f q,, ty'} ** C CS ) . Let T v be 

the tree defined by V(T ) m YCT)u ic { E(T ) * 

= CI,CT)^iZM,*'l})u{£x,cl> Cc,x'3J where c # V(T) . 

Define analogously $ . Then %%(T) «- 1L3C(S) iff 

7LXCT ) « U3CCS ) . 

Proof is obvious since C(T)** C(T-ct) a> € -ft(T) . 

In view of the above lemma we can restrict ourselves to cen­

tral trees. Thus, let T, S be infinite central rayless 

trees. 

A branch of a tree T at a point x is every maximal sub­

tree of T which contains x as a pendant vertex* A limb 

of T is every branch at C(T) . 

Lemma 3: Let ae :>p-(T) —> <p,CS) be a bijection 

such that CT-«] » E 5 - (*)] for almost all x € 

e 41 C T) . Then T -=- S . 

Proof: Let V- V(C(T),T) U = y(C(5),S) where 

V(x,T) B ^ J [ O ( , ^ ] C B ( T ) J . Let T x be the 

limb of T at C (T) containing X 6 V , analogously 

S^ . Let the relation R c V x 1L be defined by 

<*,**) c JL «-==» (T x,C(T))fitC5 vC(5)) 

(here we mean the root-isomorphism, i.e. an isomorphism 
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of Tj and S^ which maps C(T) onto C(S) ) . 

We prove that there exists an £ ; V" — • It • such 

that 1) £ is one-to-one , 

2) (T x, C ( T » &• < 5 f C x ) , C C S » . 

According to the Hall theorem it suffices to prove 

I RCA) I -fc IAI for every finite subset A of V (we 

put K (A ) a*ity;3x 6 A , Cx,<^> e K i ). In the way 

of contradiction let us suppose IR (A ) I -c IAI for a 

finite subset A c V -. we can assume that A is chosen 

in such a way that 3 || A implies IR.CBH -£ IB I . 

It is IRCA)I m IAI- 4 . 

We distinguish two cases: 

I. IAI => 4 ; 

We claim C S,^ ~ a,, CC«S >> 4 ^ C S ^ , C C S » for every 

/u* c K( A ) , a £ ^(S/u) . Let a* c {&CTX ) , x e A then 

there exists an isomorphism g> ; T - a. — • S - -€r 

and 9 C V C T y ) \ o.) c}i U-CVCg^). a, cJL(A)? (for ot­

herwise I BL CA) 1 25 IAI ), consequently 

(Tx-a,,C(S» 4 ^ C T X , C C 5 » for every * e A and 

0/ € ft*CTx ) . This proves the claim by the definition of 

K . 
Let cu e >p. C5^> , nj, € & CA), <y ; S - a, — • T - «r 

be an isomorphism. Then obviously Six eV(Tfc), x, 6 A and 

y C S ^ - a.) c Ui T x •, * 4- x 6 A? . By the assumption 

on A there i s a one-to-one mapping f i A \ {% i —• JLCA) 

such that <T*,C<T» *-(SrC0O , C ( S > ) . 

According to the claim proved above i t i s <p(n^) 4s Y~ **¥*'• 

Put jf -a? ijr o g> . Then ar i s a permutation on the set 
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X ( A ) , hence there exists an trv such that 

C^)*1'^).-? ^ , then Y " 4 X,'"' « t e A contradicts 

the claim as CTt,CCT)) - ^ C S ^ CCS)) --* C S ^ - a, CCS)) -

II. \A\ ^ A : 

a) Assume that there exist w e V and IL e. IL such 

that CT^, CCT)) 4- <5^, C ( S ) ) 

for every t e VL and CS^, C (S)) 4- C T^ , C ( T )) 

for every t e V , First, let a, c >fi,CT) /) ̂ ( T ^ ) then 

necessarily T - a, cs. S - ^ and -fir e ftCS^) . Hence 

there exists a bisection g> : V X -fir J —> U \ -C-tt } such 

that C T t , CCT)) A-. C S ^ c i ) , CCS)) . 

Secondly, i f a , c / f i ,CT)f l , f tCT. f c ) , i + v and 

<p t T - a, —> S — ̂ r i s an isomorphism then 

i r e ^ CSfc) cs -# AJL and 9? C T v ) * S^ \ i £r i 

g>(Tt\ icu%) « S^ . 

Since 111! 2r 2 and IVI 2: 2 we have that 

C S ^ , C C T ) ) - ^ C T i - a , , C C T ) ) ^ C S ^ t ) « ^ C C S ) ) ^ C T / i r , C C T ) ) 

for convenient a, and jfcr- , a contradiction. 

b) By I, II a ) , we may suppose that there exis ts a 

monomorphism gp * S —> T and that there exists ny e 

C Y such that C T ^ C C T ) ) 4=̂  CS t , C C S ) ) for 

every i c U . 

Let < ^ € . f t C T ) n ^ C T x ) x * or , then T - a, -=£ S -

- ^ and A- c 4* CS^) where CS^-jer, CCS))-^ CT^ CCT)), 

But ( T w , CCT)) c± CS^, CCS ) ) • thus there exists 

Mr0 c ,f*CT) n ^ t - C T ^ ^ ) such that C T ^ ^ , - * 7 , CCT)) « 

^(S^Jlr,CCS)).Then T - i r ' -^ .S - j&>" and thus there 
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exists a % c U such that C S ^ C C S ) ) ^ C T ^ C C T ) ) . 

This is a contradiction. 

Hence by I and II we may suppose that there are map­

pings £ % Y — * U and <^ i U. — » V which satisfy 

1) £ ? $- are one to one, 

2) CT^,CCT))-^CS^),CCS)) and C S ^ , C C S ) ) ^ 

— C T ^ ^ ) j CCT)) for every * e Y and n^ e U . 

Then there is a bisection & * V —•> IL such that 

CTX,CCT)) - C S ^ ^ , CCS)) for every x e V . (This 

may be proved as follows: Put V m V \ 9.CU) , then ,x € 

€ V implies C T ^ C C T ) ) -=-• CT^, CCT)) for infinite­

ly many different /JJ. c V . Thus we may easily construct a 

bisection e.g. by Jh,\ m)38* <f* , 'Mir " i(ientity«) 

This proves the lemma. 

Theorem 1: Let T, S be rayless trees. Then UXCS)* 

» tLXCT) iff T ^ S . 

Proof follows by Lemma 3- the finite case by I Aim 

Remark: In [6] there is proved a theorem on reconstruc­

ting of an asymmetric tree T (i.e. a tree which posses­

ses no no-trivial automorphisms) from the collection of all 

its asymmetric subtrees. The similar theorem for infinite 

rayless trees seems to be harder for one can construct an 

asymmetric rayless tree T such that T - x is not an 

asymmetric tree for every * m .ffc C T ) . 

§ 3* fi^y-jess forests. 

Theorem 2: Let S , T be rayless forests. Then 

IIX(S) m UXCT) iff S ^ T . 

- 508 -



Proof: Clearly one direction is needed to prove only. 

Let 113C(S) = 1MC(T) . By f2] we can assume that 

all the tree components are infinite. Denote by Tt, u •< oc 

( 3, , ̂  < /J , respectively) all the tree components of 

T ( S respectively). Clearly oc « /S and we can 

assume (by Lemma 2) that all the trees Tt , L -<• oc 

(5, , t «c oc respectively) are central. 

Let c ̂ U-CY(T t) 5t<oc> c'#U-CYCSt) 5 L -c: oc? . 

Define the t ree T by 

Y(T)«YCT)u-£c?, E C f ) » t ( T ) u < C c , c C T t ) ] ; L < O O 1 . 

Dtfine analogously the tree S 

Then U 3 C C T ) ^ ^ J C C S ) imp l i e s &CJCCT) « 

* *2t X C 3") . Hence T — S' by Theorem 1 and thus 

T « 5 . 

§ 4 • An example: Let T be the tree every degree of 

which is oc «2t 2 * Denote by X U Y the disjoint 

union of the graphs X and Y • Then # # C . £ t U T^) » 

s %% C T^) for every oC 2r .3t0 • This is evident since 

tXJ e. %%(T<K) implies that X is a forest with at 

components which are all isomorphic to T ^ . 

In this connection we conjecture that every forest with an 

endpoint is reconstructible from the collection of all its 

maximal subgraphs. 
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