Commentationes Mathematicae Universitatis Carolinae

Petr Hájek

On interpretability in set theories. II.

Commentationes Mathematicae Universitatis Carolinae, Vol. 13 (1972), No. 3, 445--455
Persistent URL: http://dml.cz/dmlcz/105433

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1972

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Commentationes Mathematicae Universitatis Carolinae 13,3 (1972)

ON INTERPRETABILITY IN SET THEORIES II
Petr HAJEK, Praha

This paper is a continuation of [2] and [3] and uses. techniques developed in [1]. ZF denotes the Zermelo-Fraenkel set theory and GB the Gödel-Bernays set theory. We adopt conventions made in [3] § 1 (Preliminaries). GB is a conservative extension of ZF ; so we have $\operatorname{Con}(\mathrm{ZF}, \varphi) \Longleftrightarrow$ $\Longleftrightarrow \operatorname{Con}(G B, \varphi)$ for each ZF-formula φ. Denote by $J_{Z F}\left(\mathcal{J}_{G B}\right)$ the set of all ZF-formulas $\mathscr{\rho}$ such that $(Z F, \varphi)$ is interpretable in $Z F((G B, \varphi)$ is interpretable in $G B)$. We know the following: (1) $\mathscr{P} \in J_{Z F} \cup$ $\cup J_{G B} \Rightarrow \operatorname{Con}(Z F, \varphi),(2) J_{Z F}-J_{G B} \neq \varnothing$, (3) $J_{Z F} \in \Pi_{2}^{0}-$ $-\Sigma_{1}^{0}$ and $J_{G B} \in \Sigma_{1}^{0}$.
(We assume Con (ZF).) There remain the following questions:
(1) What is the exact position of $\mathcal{J}_{Z F}$ in the arithmetical hierarchy? In particular, is $\mathcal{J}_{Z F}$ a complete Π_{2}^{0} set?
(2) What is the relation between $\operatorname{Con}(Z F, \varphi), \boldsymbol{\mathcal { L }} \in$ $\in \mathcal{J}_{Z F}, \varphi \in \mathcal{J}_{G B}$? In particular, is $\mathcal{J}_{G B}-\mathcal{J}_{Z F}$ nonempty?

AMS, Primary: 02F35, 02K15

Ref. Z. 2.641.3, 2.653 .1

Unfortunately, I have not succeeded to answer these questions exhaustively; but I hope that the results of this paper give some new information on both questions. We prove the following:

Theorem 1. If $Z F$ is consistent then $\mathcal{J}_{Z F} \notin \Pi_{1}^{0}$.
The question if $\mathscr{I}_{Z F}$ is not a $\sum_{2}^{0}-s e t$, in particular, if it is a complete $\Pi_{2}^{0}-s e t$, remains open. According to question (2), if we had a (closed) formula $\Phi \in \mathcal{J}_{G B}-\mathcal{I}_{Z F}$, it would satisfy the following: $\operatorname{Con}(Z F, \varphi), \operatorname{con}(Z F, \neg \varphi)$ (i.e. ρ would be independent from ZF), $\mathscr{P} \neq \mathcal{J}_{Z F}$. I offer to the reader a formula with the following properties:

Theorem 2. If ZF is consistent then there is a closed ZF-formula \mathscr{S} such that (I) \mathscr{S} is independent from ZF, (2) neither ($Z \mathrm{ZF}, \varphi$) nor ($\mathrm{ZF}, \neg \varphi$) is interpretable in $Z F$ and (3) neither ($G B, \Phi$) nor $(G B, \neg \boldsymbol{\prime})$ is interpretable in GB.

In Discussion, we mention possible generalizations of these results (in the spirit of [3]) for theories containing arithmetic and having some additional properties; we further show that if $J_{G B}-J_{Z F}$ is non-empty then there is a very simple formula in this set. We conclude with some remarke.

[^0]be no misunderstanding with the arithmetical hierarchy of sets of natural numbers (here we use Σ_{n}^{0} and Π_{n}^{0}). If Γ is a class of formulas and T is a theory then we say that a T -formula $\mathscr{\rho}$ is a Γ-formula in T if there is a Γ-formula ψ such that $T \vdash \varphi \equiv \psi$. Note that for each T containing $P \quad \Sigma_{1}$-formulas in T coincide with (Feferman's) RE-formulas in T.

Lemma 1. If $*$ is an interpretation of $Z F$ in $Z F$ then there is a formula ρ with two free variables such that the following is ZP-provable (x, y, \ldots are variables for natural numbers and x^{*}, y^{*}, \ldots are variables for natural numbers in the sense of the interpretation):

$$
\begin{equation*}
(\forall x)\left(3!x^{*}\right) \rho\left(x, x^{*}\right) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\rho\left(\overline{0}, \bar{\sigma}^{*}\right) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\left(\rho\left(x, x^{*}\right) \& \rho\left(x+\overline{1}, y^{*}\right)\right) \rightarrow y^{*}=x^{*}+{ }^{*} \text { T }^{*} . \tag{3}
\end{equation*}
$$

Proof. Let Seq (a) mean that a is a finite sequence, let $\ell \&(a)$ be the length of the sequence and let $(a)_{i}$ be the i-th member of a. We put

$$
\begin{aligned}
& \rho\left(x, x^{*}\right) \equiv(\exists a)\left(\operatorname{seq}(a) \& \& h(a)=x+\overline{1} \&(a)_{\overline{0}}=\right. \\
& \left.=\bar{\gamma}^{*} \&(\forall y<\ln (a)-\bar{T})\left((a)_{i+\bar{T}}=(a)_{i}+* T^{*}\right)\right) .
\end{aligned}
$$

One proves the above formulas by induction inside $\mathbf{Z F}$.
Lemma_2. If $*$ is an interpretation of $2 F$ in $Z F$ and if ρ is as in Lemma 1 then for each Σ_{1}-formula $\varphi(x, \ldots)$ we have:
(*) $\quad 2 F \vdash\left(\rho\left(x, x^{*}\right) \& \ldots\right) \rightarrow\left(\varphi(x, \ldots) \rightarrow \varphi^{*}\left(x^{*}, \ldots\right)\right)$.

Proof. By [1] 3.9, it suffices to prove the present lemma for Feferman'a BPF. First one proves by (metamathematical) induction

$$
Z F \vdash\left(p\left(x, x^{*}\right) \& \ldots\right) \rightarrow\left(\psi(x, \ldots) \equiv \psi^{*}\left(x^{*}, \ldots\right)\right)
$$

for each $\psi \in E F$ using induction inside $Z F$; then one proves (*) for BPF (derive the following formulas from (1) -
(3) in $2 F$:
(4) $\left(\rho\left(x, \mu^{*}\right) \& \rho\left(y, \mu^{*}\right)\right) \rightarrow x=y$,
(5) $\left.\left(\rho\left(x, u^{*}\right) \& v^{*}<\mu^{*}\right) \rightarrow(\exists y<x) \varphi\left(y, v^{*}\right)\right)$.

Corollexy 1. If \mathscr{Y} is a PR-formula then
$\left(\rho\left(x, x^{*}\right) \& \ldots\right) \rightarrow\left(\varphi(x, \ldots) \equiv \varphi^{*}\left(x^{*}, \ldots\right)\right)$
(since both ρ and $\neg \boldsymbol{\rho}$ are Σ_{1}-formulas in $2 F$).
Corollacy 2. If φ is a Π_{1}-formula then
$\left(\rho\left(x, x^{*}\right) \& \ldots\right) \rightarrow\left(\varphi^{*}\left(x^{*}, \ldots\right) \rightarrow \varphi(x, \ldots)\right)$
Corollayy 3. If φ is a closed Π_{1}-formula and $\Phi \in J_{Z F} \quad$ then $\mathbf{Z F} \vdash \boldsymbol{\rho}$.

It is of some interest that we can give an alternative proof of the last corollary using the Orey's result (ef. [3] Lemma 2):

Let ke be auch that all the axioms of the arithmetic Q are provable in ZF $卜$ ke. Then
$Z F \vdash \neg \varphi \rightarrow P_{0} \mu_{[Q]}(\neg \bar{\varphi}) \rightarrow \mathcal{P r}_{[2 F R k]}(\neg \bar{\varphi}) \rightarrow \neg \operatorname{Con}_{[(z F N k, \varphi)]}$,
i.e. $Z F \vdash \operatorname{Con}[(Z F r=\varphi)] \rightarrow \Phi$, which together vith

Orey's result gives the corollary. (For the first implication see [1] 5.5.)

Lemma_3 (Feferman [I] 6.6 and 8.9). If \S is a PR-bi-numeration of ZF then $\left(\neg \operatorname{Con}{ }_{\xi}\right) \in J_{Z F}$.

Proof of Theorem 1. Suppose that $J_{2 F}$ is Π_{1}^{0},
i.e. the complement of $J_{Z F}$ is recursively enumerable.

Let \S be a PR-bi-numeration of ZF in ZF ; then
($\mathrm{ZF}, 7 \operatorname{Con} \mathrm{~g}_{\mathrm{g}}$) is consistent and, by [3] Lemma 1, there is a "nice" numeration of $-J_{2 F}$ in ($Z F, \neg \operatorname{Con}_{\xi}$), i.e. there is a P-formula γ such that

$$
\begin{aligned}
\varphi \notin J_{Z F} & \Longleftrightarrow(Z F, \neg \operatorname{Con}) \vdash(3 y) \gamma(\bar{\varphi}, y) \Longleftrightarrow \\
& \Longleftrightarrow(\exists k)((Z F, \neg \operatorname{Con}) \vdash \gamma(\bar{\varphi}, \bar{k})) .
\end{aligned}
$$

Note that $Z F \vdash \gamma(\bar{\varphi}, y) \equiv \alpha_{0}(\overline{f(\varphi)}, y)$ where α_{0} is a
π_{1}-formula in $Z F$ defined in [3] and f is a recursive function; hence $\gamma(\bar{\varphi}, y)$ is a Π_{1}-formula in ZF .

If φ is a formula and $\varphi \notin J_{Z F}$ then (i) ZF $1+\varphi$, (ii) for some th we have $\mathrm{ZF}, \neg \mathrm{Con}_{\xi} \vdash \gamma(\bar{\varphi}, \overline{\text { me }})$ and by (i) we have (iii) $Z F \vdash(\forall y<\bar{K}) \neg \mathcal{B r}_{f} f_{f}(\overline{9}, y)$.

By the diagonal lemma [1] 5.1, find a closed P-formula such that
$Z F \vdash \varphi \equiv(\exists y)\left(\gamma(\bar{\varphi}, y) \&(\forall z<y) \neg \mathcal{H}_{c} f(\bar{\varphi}, z)\right)$.
Suppose $\varphi \notin I_{Z F} ;$ then, by (ii) and (iii) above, we have $Z F, \neg C_{\xi} \vdash \varphi$. Since $\neg C_{o m} n_{\xi} \in J_{Z F}$ (by Lemma 3), we have $\varphi \in J_{z F}$

Suppose $\rho \in I_{2 F}$, then Con (ZF, ᄀCon,$(\forall y) \neg \gamma(\bar{\Phi}, y))$ by the properties of γ. Denote the interpretation of ($Z F, \varphi$) in ZF by * and the theory $\left(Z F, \neg C_{\rho} n_{\S},(\forall y) \neg \gamma(\bar{\varphi}, y)\right.$ by $Z F_{1}$. Then we have
(1) $\quad Z F_{1} \vdash(\exists x) \operatorname{P}_{\rho} \not f_{\xi}(\bar{\varphi}, x) \quad$ (from $\left.\neg \operatorname{Con}_{\xi}\right)$
(2) $\quad Z F_{1} \vdash \neg(\exists y) \gamma(\bar{\varphi}, y)$
(3) $2 F_{1} \vdash\left(\exists y^{*}\right)\left(\gamma^{*}\left(\bar{\varphi}^{*}, y^{*}\right) \&\left(\forall x^{*}<^{*} y^{*}\right) \neg \int_{\rho} f_{\S^{*}}^{*}\left(\bar{\varphi}^{*}, z^{*}\right)\right)$.

We proceed informally in ZF_{1}. Let ρ be as in Lemma 1. For y^{*} from (3), there is no y ach that $\rho\left(y, y^{*}\right)$ (say, y^{*} is non-atandard); otherwise we had $\gamma(\bar{\varphi}, y)$ by Corollary 2. But if x is as in (1) and if $\rho\left(x, x^{*}\right)$ then $\mathcal{P}_{\mu} f_{\xi^{*}}^{*}\left(\bar{\varphi}^{*}, x^{*}\right) \quad$ and necessarily $x^{*}<y^{*} \quad$ (cf. (5) in the proof of Lemma 2!). This contradicts (3). So we derived a contradiction in ZF. Hence we proved $\varphi \notin J_{\text {ZF }}$.

We see that the assumption $J_{Z F} \in \Pi_{1}^{0}$ leads to a contradiction; hence $J_{Z F}$ is not Π_{1}^{0}.

Lempa_4 (Vopěnka [4]). ($\mathrm{GB}, 7 \mathrm{Con}_{[G B]}$) is interpretable in $G B$, i.e. ($\left.\neg \operatorname{Con}_{[G B I}\right) \in J_{G B}$.

Proof of Theorem_2. Let Int 1 (x, y) be a PR-formula saying " y is an interpretation of ($[G B], x$) in [GB]" (ef. [2] or [3]) and find a φ such that

RF $\vdash \equiv(\forall x)\left(\operatorname{Int}_{n} \not \equiv(\bar{\varphi}, x) \rightarrow(\exists y<x) \operatorname{Int} \neq(\neg \bar{\varphi}, y)\right)$
（by the way，φ is the Rosier＇s formula with interpre－ tability instead of provability）．
（1）Let d be the least interpretation of（ $G B, \varphi$ ） in GB；denote it by $*$ ．Then $G B \vdash \varphi^{*}$ ， GBト（Int 亿（ $\bar{\varphi}, \bar{d}))^{*}$ ，ide． GB ト［（ヨy＜ $\bar{d}) \operatorname{Int} \uparrow(\overline{7 \varphi}, y)]^{*}$ ．The formula
 rollary 1，GB ト $(\exists y<\bar{d}) I_{n} t \nmid(\overline{\top \varphi}, \bar{d})$ and hence the－ re is a $\quad d_{1}<d \quad$ which is an interpretation of （ $G B, 7 \varphi$ ）in GB．Denote it by \square ．We have $G B \vdash \neg \varphi^{0}, G B \vdash\left[\operatorname{Int}\left\{\left(\overline{\square \varphi}, \overline{\alpha_{1}}\right)\right]^{0}\right.$ and hence $G B \vdash\left[\left(\exists x<\overline{d_{1}}\right) \operatorname{Int}\{(\bar{\varphi}, x)]^{D}\right.$ and $G B \vdash\left(\exists x<\bar{d}_{1}\right) I_{n} t \neq(\bar{\varphi}, x)$ ，so that there is a $d_{2}<d_{1}<d \quad$ which is an interpretation of（ $G B, \varphi$ ） in GB．This is a contradiction，so that $\varphi \notin J_{G B}$ ．
（2）If $(\neg \varphi) \in J_{G B}$ then there is the least d_{1} which is an interpretation of（ $G B, \neg \varphi$ ）in GB．By（ 1 ）， then there is a d_{2} which is an interpretation of $(G B, \varphi)$ in $G B$ ，which is a contradiction．Hence
$(\neg \varphi) \neq J_{G B}$ and φ is independent from $G B$（and from RF）．
（3）$\varphi \neq J_{Z F}$ since φ is a Π_{1}－formula in $Z F$ （cf．Corollary 3）．
(4) To prove $(\neg \varphi) \& J_{Z F}$ we need the following

Lemma 5. If $\}$ is a PR-bi-numeration of $Z F$ such that $\mathrm{ZF} \vdash \operatorname{Con}_{[G B J} \equiv \operatorname{Con}_{\xi}$ and if ρ is as above then $\left.(\mathrm{ZF}, \neg \operatorname{Con})_{\xi}\right) \forall \neg \varphi$.

Otherwise we had the following interpretations:

$$
G B, \neg \varphi \Longrightarrow G B, \neg C^{\circ} n_{\xi} \Longrightarrow G B, \neg C_{o n_{[G B]} \longrightarrow G B .} .
$$

(Double arrows are identities; for the last arrow see Lemma 4.) By compoaition of interpretations, we would have an interpretation of ($G B, \neg \varphi$) in $G B$, which is a contradiction. (Note that the "natural" bi-numeration of $2 F$ has the desired property.)

We continue the proof of $(\neg \varphi)$ \& $J_{Z F}$. Suppose the contrary. Then we have the following interpretations:

$$
\mathrm{ZF}, \neg \varphi \longrightarrow \mathrm{ZF} \longrightarrow \mathrm{ZF}, \neg \operatorname{Con}_{\S}, \Phi \quad .
$$

We consider the composed interpretation * of $(2 F, \neg \varphi)$ in ($\left.Z P, \neg C_{\rho} \sum_{\S}, \varphi\right)$ and proceed in the last theory. Since $\neg \operatorname{Con}_{\S}$ ve have $\neg \operatorname{Con}_{[G B]}$ and hence there are y, z such that $\operatorname{Int}\{(\bar{\varphi}, y)$ and
 the corresponding properties. Then, by φ, \approx is smaller than y. On the other hand, we have $\left(\neg \varphi^{\prime}\right)^{*}$, which says

If $\rho\left(x, x^{*}\right)$ then we have $\operatorname{lnt} p^{*}\left(\overline{7 \varphi^{*}}, x^{*}\right)$ and hence $u^{*}<x^{*} x^{*}$; then there is a μ such that
$\rho(\mu, \mu *), \mu<\approx$ and $\operatorname{Int}(\bar{\varphi}, \mu) \quad$ which is a contradiction. Since $\left(Z F, \neg \operatorname{Con}_{\xi}, \varphi\right)$ is consistent by Lemma 5, there is no interpretation of ($Z F, \neg, \varphi$) in RF, q.e.d.

Discussion. (1) Let us first discuss the possibility of generalizing Theorems 1 and 2 for theories containing* arithmetic. Inspection of the proof of Theorem 1 shows that its assertion holds for any primitive recursively axiomatized theory T containing P, which is consistent, essentially reflexive (so that [3] Lemma 1 applies) and satisfies Lemmas 1 and 2. The proofs of these lemmas apply to each theory T in which, in addition to the assumptions just made, the induction schema is provable for all T-formulas and in which sequences of arbitrary objects are definable. (Note in passing that in GB sequences of arbitrary classes are easily definable, but the induction schema is not provable for all formulas.) Concerning Theorem 2, let $P \subseteq T \subseteq S$, where T is as above and S is a conservative finitely axiomatized extension of T. We need two additional assumptions $\boldsymbol{m} S$: (i) There is a PR-bi-numeration α of T in T such that $T \vdash \operatorname{Con}_{[5]} \operatorname{Con}_{\alpha}$. (This is the case e.g. if the formal statement saying " [S] is a conservative extension of \propto " is provable in T.)
(ii) ($S, 7 \operatorname{Con}_{[S I}$) is interpretable in S. This is an important assumption; it is not clear how to
modify Vopěnka's original proof of ($7 \operatorname{Con}_{[G B]}$) $\ddagger J_{G B}$
e.g. for a proof of $\neg \operatorname{Con}[G P] \notin J_{G P} \quad$ where $G P$ is the finitely axiomatized conservative extension of the Peano's arithmetic with classes (say, Gödel-Peano). Let us stress the fact that one cannot use Feferman's [1] 8.9 for S since S is finitely axiomatizable and therefore not reflexive.
(2) Suppose that we would find a ZF-formula 9 such that $\rho \in J_{G B}-J_{Z F}$. Then, by Orey's result, there is a natural number fe such that $\operatorname{Con}^{2}[Z F n k, \varphi]$ is not provable in ZF. Denote the last formula by \mathscr{S}_{0}. It is a P-formula and, moreover, a Π_{1}-formula. Since $Z F H \varphi_{0}$ we have $\mathscr{S}_{0} \not J_{Z F}$ by Corollaxy 3. On the other hand, if $*$ is an interpretation of ($G B, \varphi$) in $G B$ then $G B \vdash \varphi^{*}, G B \vdash\left(\varphi \rightarrow \varphi_{0}\right)^{*} \quad$ by essential reflexivi ty of $Z F$ and by $Z F \subseteq G B$; hence we have $G B \vdash \varphi_{0}^{*}$ and To $\in J_{G B}$. So we have proved the following Fact. If $J_{G B}-J_{Z F} \neq \varnothing$ then there is a Π_{1}-formula in $J_{G B}-J_{Z F}$.

This contrasts with Corollary 3; by this corollary, no π_{1}-formula is in $J_{Z F}-J_{G B}$ (Examples of formulas in $J_{Z F}-J_{G B}$ constructed in [2] and [3] are Π_{2}-formu1as.)
(3) It follows by Orey's result that $\varphi \in \mathcal{J}_{Z F}$ iff there is a recursive function f such that, for each \& ,
$f(k)$ is a proof of $\operatorname{con}_{[z F r k, \varphi]}$ in ZF. Define $\varphi \in J_{Z F}^{\text {Prim }}$ iff there is a primitive recursive fundlion f such that, for each he, $£(k)$ is a proof of Con [ZFNk, g] in ZF. Then $J_{Z F}^{\text {Prim }}$ is \sum_{2}^{0} (by the existence of a recursive function universal for primitive recursive functions). Inspection of the proof in [2] shows that $J_{Z F}^{\text {Prim }}-J_{G B}$ is non-empty (assuming that $Z F$ is ω consistent).

Is $J_{Z F}-J_{Z F}^{\text {Prim }} \neq \varnothing ?$ Can we weaken the assumption of ω-consistency to $\operatorname{Con}(Z F)$ in the proof of $J_{Z F}^{\text {Shim }}$ -
$-J_{G B} \neq \varnothing$ using methods of [3] or other methods?

References

[1] S. FEFERMAN: Arithmetization of metamathematics in a general setting, Fundamenta Mathematicae 49(1966), 35-92.
[2] P. HAJEK: On interpretability in set theories, Comment. Math.Univ.Carolinae 12(1971), 73-79.
[3] M. HAJKOVA, P. HAJEK: On interpretability in theories containing arithmetic, Fundament Mathematical LXXVI(1972) (to appear).
[4] P. VOPËNKA: A new proof of Gödel's result on non-provability of consistency, Bull.Acad.Polon.Sci.XIV (1966),111-115.

Matematický ústav CSAV
Zitná 25, Prana 1
Ceskoslovensko
(Oblatum 17-7.1972)

[^0]: It seems reasonable to use the following hierarchy of P-formulas (P is the Peano arithmetic): a P-formula is Π_{n} (Σ_{n}) if it has a prefix containing m alterating quantifiers, the first one being universal (existential), followed by a PR-formula (see [1] for PR-formulas). There will

