
Commentationes Mathematicae Universitatis Carolinae

Stanislav Tomášek
M -barrelled spaces

Commentationes Mathematicae Universitatis Carolinae, Vol. 11 (1970), No. 2, 185--204

Persistent URL: http://dml.cz/dmlcz/105273

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1970

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/105273
http://project.dml.cz


Commentstiones Mathematicat Universitatis Carolinae 

11, 2 (1970) 

M - BARRELLED SPACES 

Stanislav TOMiflSEK, Liberec 

The aim of our task is to limit a class of topo­

logical vector spaces with similar dual properties as 

those of the second category. It turns out that such 

spaces (call them the topological vector spaces of bar­

relled type) may be defined in analogous terms as the 

barrelled (locally convex) spaces. The notion which 

lays the ground for the presented elementary theory is 

that of a multibarrel. By means of it one may attach to 

every covering T consisting of bounded subsets of a 

topological vector space E the W - M -barrelled mo­

dification of the initial topology in E . A topologi­

cal vector space is said to be W - M -barrelled if 

the *V - M -modification of the initial topology co­

incides with E 

By specification of 71 we obtain the M -bar­

relled spaces and the quasi- M -barrelled spaces. We 

start our discussion with the first ones; they set an 

exmple for the outlined exposition of the remaining 

cases. 

The investigation of spaces of barrelled type 

was originally stimulated by the endeavour to determi­

ne as far as possible a general class of topological 
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vector spaces on which the tensor inductive topology 

(cf.ilO]) coincides with the projective one (cf. [9JK 

We refer for all notions as well as for the re­

sults presented up to now to 12J,f3J,£63,[7J. 

The second part of this tract dealing with gene­

ralizations of topological metrizable spaces will be 

submitted under the title "M-bornological spaces" to 

CMUC. 

All vector spaces considered in this paper will 

be taken over the same field of scalers (i.e.,over the 

field of real or complex numbers). By M we always 

mean the set of all positive integers. 

1. MULTIBARRELLED SPACES 

In this section we shall enlarge a subcategory 

of (locally convex) barrelled spaces to a certain ca­

tegory of topological vector spaces including, espe­

cially, the class of all vector Baire spaces. 

Definition 1. Assume that E is a topological 

vector space. A subset B S L will be termed a bar­

rel in E if B is closed, absorbent and balanced 

in £ • 

Definition 2. A topological space E will be 

called multibarrelled (abbreviated M -barrelled) if 

for *ny sequence ( B ^ •, en € H ) of barrels in E 

the subset 
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is a neighborhood of the origin in £ • 

Remark 1. Suppose that £ is >p,-normable (cf. 

[63) with 0 -£ >fi,-£ A .It E is M -barrelled, B 

a barrel in E f then the closed absolutely .*jv -con­

vex envelope TT £ of 3 is a neighborhood in 

E . 

Proof. For any at, with 0 < cf, £ 4 the sub­

set oC • B is a barrel in .E * Consequently for any 

X » ( a ^ ; m. e Af) e l* , 0 <• f, & 4 with Xm> 

> 0 and H % II « £ I %^ I** < 4 the subset 

-0. ̂ B ^ ) . where B ^ ** ̂ vn,' B , is a neighborhood in£, 

But .51 31* • B £ HI B for any m. , hence 

Lemma* Suppose that £ is a topological vec­

tor space, C a convex and bounded subset in £ of 

the second category (in itself). If B is a barrel 

in E , then C is absorbed by B "*" B * 

Proof. Since B is a barrel in E , we obtain 

E - U i/n *B * rrv e H ) .Consequently 

C ~ U, (m, . B 0 C ) . 

But !rt' B 0 C is closed in C ., hence we can 

choose an rrv •"£> (\ C with non-empty interior, conse­

quently for some X 0 e C and for some neighborhood 

V in E it holds 

C n C x , 4 - V ) ^ m . . B f i C £ / n . - B . 

Take sm, such that /yn, * V f >m e N ,is absorbing the 
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bounded set C — *X0 • Then by a direct calculation 

(cf. [8]) we obtain C - XQ S sm, CC - X c ) and 

C - ^ S cm (C ~x 0 ) (\mv* V £ rrrt (m*3-X0) • 

From the last relation and from XQ €. rrt • 3 it fol­

lows that 

C £ <rrt * m, * 3 - (<m, ~ 1 ) *0 £ t m . * / r v C B + - 3 ) . 

Theorem 1. Suppose that E and F are two to­

pological vector spaces, H is a subset in the space 

££ (h j T) of all linear continuous transformations 

from £ into T . It hi is bounded in the topology of 

pointwise convergence, then H is bounded in the to­

pology of convergence on the class of all convex boun­

ded subsets of the second category in 1/ . 

Proof. Let W be a neighborhood in Ft V a clo­

sed and balanced neighborhood in F with V + V S W . 

Putting 

3 ** CS^AATUV) 

we see that £ is a barrel in f, # According to the 

precedent lemma for any convex and bounded set of the 

second category it holds C fi/n, C B + B ) ; consequent­

ly 

AA,(C) S/n(VtV)£m..W 

for all M, £ H • This means that H is bounded on C 

Theorem 2. Let E be a topological vector spa­

ce of the second category (i.e., a Baire space). Then 

E is fA -barrelled. 

Proof. If B is a barrel in E , then from 
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E * U O n B 5 m, e -N ) we conclude that /n.. - B ? 

hence B , possesses an interior point 0(o . Thus for 

a balanced neighborhood U we obtain x0 + U s B , 

- x + l l £ B , hence U s i l + U s B + B . If 

(B j rrv € N ) is now a sequence of barrels, then for 

B =* Ejj f| B 2 it holds 

Recall that a topological vector space £ is 

said to be an F -space if F is metrisable and com­

plete* It should be noticed that in view of Klee theo­

rem (cf.[53) a metrisable space .& is complete under 

the uniformity induced by the topological vector structu­

re of £ if and only if E, is complete under a metric 

defining its topology. 

Corollary* (a) Any F -space is M -barrelled. 

(b) The Cartesian product IT E ^ of a family of F -

spaces is M -barrelled. 

(c) Any locally convex /vj -barrelled space is barrel­

led in the usual sense. 

Proof. The statements (a) and (b) are clear. If 

B is closed, absorbent and absolutely convex in a 

locally convex and M -barrelled space IE, , then for 

2>.n, "* 2T • 3 7 rth € N , we obtain 
to, 
21 B^ £ B 

for any M, e N , Hence SL ( B ^ ) S B ., thus 2> 

is a neighborhood in B « 
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Theorem 3» Let E# be an M -barrelled space, 

F an arbitrary topological vector space* Then any 

family H of linear continuous mappings from E into 

F bounded in the topology of pointwise convergence 

is equicontinuous. 

Proof. Take a closed neighborhood W in F 

and a sequence (\̂  0
7 rru c H ) of closed and balanced 

neighborhoods in L such that V^ «*- V -i- .. , +- V^ 4-

+ \^ £ W for any m> e N . The subsets 

/*v e N ? form a sequence of barrels in L , Accor­

ding to the assumption the set SL ( B ^ ) in Definition 

2 is a neighborhood in E , Since for any AJU e H and 

for any m, e N it holds 

we obtain ,o,(jft} £ W for each tc e H . This pro­

ves the equicontinuity of H *• 

As a consequence of Theorem 3 it follows the Ba-

nach-Steinhaus 

Theorem 4* Suppose that E is an M -barrel­

led space, F a separated topological vector space. 

If a sequence ( AA^\ m> c N ) of g CE •, F ) (a bounded 

filter in ^ 6 C £ ^ F ) ) i s convergent to a mapping 

AMa i E — • F in the topology of pointwise conver­

gence! then AJL,0 is continuous on the space IE « 

Corollary* Let Ji be a covering of an jVl — 

barrelled space E , F is assumed to be a separated 
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topological vector space. If F is sequentially com­

plete (quasi-complete), then i£ C E 5 F ) under the to­

pology of A -convergence is sequentially complete 

(quasi-complete)• 

To prove the equivalency of the inductive and 

the projective tensor topologies (cf.HO]) we need 

Theorem 5. Let E, and F be two metrisable 

vector spaces, F is assumed to be M -barrelled. 

Then any separately equicontinuous family H of map­

pings from E x F into a separated topological vec­

tor space G is equicontinuous on E x F . 

The proof of Theorem 5 may be carried out in the 

same way as the proof of Theorem 3, §3, Chap.Ill of 

t2]. 

Remark 2. If H i s a subset in fc£(Xj F ) non-

equicontinuous on an M -barrelled space E , then 

there i s a point o<0 €, E such that 

/sup I <u,7 x0 > I -=• 4- co 
iLeH 

In other words, any non-equicontinuous family of line­

ar continuous mappings possesses a singularity in an 

M -barrelled space. 

Remark 3. The definition of a locally convex 

barrelled space may be formulated as follows: for any 

barrel 3 (in our sense) the closed absolutely convex^ 

envelope V"£> is a neighborhood of the origin in 

E . What we have modified in this definition is this: 

we replaced the uncountable process of the taking of 

the absolutely convex envelope by a countable operation 
- 191 -



(.&„» /»« N)—>UZZn . 

Note that by such a procedure we have obtained 

in [9] the usual projective tensor topology. 

2. FURTHER PROPERTIES OF M-BARRELLED SPACES 

Suppose that E is a topological vector space. 

Let for any sequence C 3 ^ •, tu e N > of barrels the 

set II CB» ) be defined as in Definition 2. Obvious­ly 

ly any such Jl CjL ) i* absorbent and balanced in 

E . if 

for Jfe as- 4) 2 , ... j then evidently 

SI C 2 £ ) + IX C 3 ^ ) S il C 3 ^ ) • 

Thus the system of all subsets £L C 3^ ) determi­

nes a vector topology T » T v C£ ) on £ . It 

will be termed the associated T . -topology with E 

(or, equivalently, the TV -modification of the ini­

tial topology in E ). 

Remark 4* Let E be a topological vector 

space. Then the associated TV -topology possesses 

the following properties: 

(a) It is finer than the initial topology on E * 

(b) If H is a subset in if C £ *, V ) bounded in the 

topology of pointwise convergence, then H is equi-

continuous on E under the topology T V C E ) -
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(c) If E is separated and complete (sequentially 

complete) then E under the T -topology is com­

plete (sequentially complete). 

(d) The space E is M -barrelled if and only if the 

associated T, -topology coincides with the initial 

topology of E . 

The proof of these statements is immediate. 

If ("#£ • <*, & A ) is the system of all vector to­

pologies on E which have as a base of neighborhoods 

CU* ; ft e B^ ) closed subsets in E f then the least 

upper bound topology T C E ) of this family, i.e., the 

topology having as a base of neighborhoods the subsets 

uj «i£n...nu£ , 
possesses the same property (it may be called the ul­

tra barrelled modification of the initial topology of 

E ; cf.t73). 

Theorem 6. For any topological space E it holds 

T V(E) - T C E ) , 

Proof. It is clear that \CB) 6 TCE ) . Con­

versely, if V^ , rrv e N , is a system of closed in 

E neighborhoods of the topology T C E ) and V0 2 

S V ^ V ^ ^ V ^ ^ + V ^ ^ - M ; . " f then 

obviously il ( V^ ) S V0 . This imp&s TCE) £ T y CE). 

Corollary. If AA* is a linear continuous mapping 

from E into V , then AA, is continuous under the 

topologies T y ( E ) and Ty CF) . 

Proof. The base of neighborhoods of the topology 
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Ty ( F ) is formed by closed subsets in F . Conse­

quently, for any such neighborhood V the inverse i-

mage <u,~ ( V ) is closed in E * The rest of the 

proof is clear. 

Remark g« Let E be a fixed vector space and 

let %CEi) denote the complete lattice of all vector 

topologies on £ . For any t €> £ C h) the taking 

of the X , -topology associated with ( h ,zf ) repre­

sents mn isotonic operator on XCh ) . With respect 

to Remark 4 M -barrelled topologies on h are ex­

actly those elements of XCE*) which are invariant 

under the operator 1?, . If t£ is now a fixed vector 

topology on E } then the subset of all vector topolo­

gies finer than t0 in X(E ) is a complete eublat-

tice X(£ 1X0) in XCZ ). Consequently there exists 

(cf.[U) a topology ff in XCE7 T0 ) invariant un­

der T hence V* is an M -barrelled topology. In 

particular, if X is the maximal vector topology on 

E -, then T being invariant under T is an M -

barrellel topology. 

With respect to the subject matter of this sec­

tion the following question arises: for any t € X(D 

the operator T generates a linearly ordered sublat-

tice I in X (E) . What length has 1 ? 

We refer for the notion of the topological di­

rect sum and of the inductive limit to 111}. 
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Theorem 7. Suppose that ( £ ^ ; rtt £ .N ) is a se­

quence of topological vector spaces. Then it holds 

(a) The topological direct sum 2. E ^ is At -barrel­

led if and only if each E ^ • m, e H ,i-* en M -bar­

relled space. 

(b) If, moreover, C E ^ ̂  r?z e .N ? is a spectrum of M -

barrelled spaces, then the inductive limit itw -t̂w-i E/n^ 

is an JV1 -barrelled space. 

Proof. Assume that any 'E,^ is M -barrelled. 

We shall prove that the topological direct sum has the 

same property. Thus, let (B^*, m eJS) be a sequence of 

barrels in E » I E ^ . Define now a double-sequence 

(In- 7ieH7te>eH) by a suitable rearrangement of 

terms. Put 3M * 3i , \ ~ \ , B ^ - B 3 , B<3 * B^ ,,„ 7 

and, generally, \ ^ - \ , *her.e 2&& &+Jhfi-3<k-*> + 2.J. 

For /rn, € .N the subsets 

/H- -» 47 27 .,, 9 form a sequence of barrels in E^.Ac­

cording to the assumptions the space -E,-̂  is M -barrel­

led, consequently the set 
00 ** 

i s a neighborhood in E/rfv -

What we have to prove i s tha t for any Hs e .N 

i t holds 
to 

fftV ҺЛ->*У,&Ђ*. 
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But from 
4> at? k> 7" 

i n £ Z U 2 B' 

and from 

trieA 

*»• 

where * .» /mo*? t h^ +4, Jk>2 •¥ 2/.„,Jk/+/c] we obtain 

the requested inclusion. 

Conversely, if 51 E ^ is M -barrelled, then 

each E ^ being topologically isomorphic to a quotient 

space of 2L E ^ (cf.tll]) is M -barrelled. 

The proof of the statement (b) is analogous to 

that of the statement (a). 

Remark 6. (a) A closed subspace of an M -bar­

relled space need not be, in general, JV1 -barrelled. 

The situation is quite the same as in the theory of lo­

cally convex spaces. If, for example, £ is a comple­

te locally convex space which is not barrelled (in the 

sense of locally convex spaces), then E is isomorph­

ic to a closed subspace of the Cartesian product TTB^ 

of Banach spaces* On the one hand, TTB^ is according 

to Corollary to Theorem 2 M -barrelled, on the other 

hand, E cannot be M -barrelled, since E is lo­

cally convex and non-barrelled. 

(b) As to the Cartesian product of a sequence C&^ntefi > 

of M -barrelled spaces our conjecture is that it will 

be M -barrelled. 

(c) The quotient space of an M -barrelled space and 
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the completion of a separated M -barrelled space is 

M -barrelled. An immediate proof is clear (for an 

another proof compare with C 71)• 

Remark 7. From the statement (a) and (b)res­

pectively, it follows that an M -barrelled space can 

be of the first category (cf.tllj). 

3. SPACES OF BARRELLED TYPE 

We shall now enlarge the class of M -barrelled 

and of .M -bornological spaces (cf.[12j) by the class 

of quasi- M -barrelled spaces. Further, we envisage, 

quite shortly, other topologies under which a vector 

space possesses properties of a barrelled space. 

Definition 3. A topological vector space 3L 

will be termed quasi- M -barrelled (or quasi-multibar-

relled) if for any sequence (B^; oa € N ) , where each 

B^, is closed, balanced and absorbs any bounded set 

in It, , the set of the form 

il(B̂ )-* & £,B-

is a neighborhood of the origin in % . 

We state without proof the following elementary 

properties. 

(a) Any M -barrelled space is quasi- M -barrelled. 

(b) Any JV) -bornological space is quasi- M -barrelled. 

(c) The completion of any quasi- M -barrelled (conse­

quently of any ,M -bornological) space is quasi- Jv4 -

barrelled. 
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(d) The quotient apace of a quasi- M -barrelled apace 

is also quasi- M -barrelled* 

(e) The topological direct sua Z E ^ of a sequence 

( 1*^ J /n, & N ) is quasi- M -barrelled if and only 

if any E ^ has the same property. 

(f) The inductive limit of a spectrum fE^> foG N) of 

quasi- M -barrelled spaces is quasi- M -barrelled. 

From the definition of a quasi- M -barrelled 

space and from Remark 2 of 112J it follows 

Theorem 8. If t is a quasi- M -barrelled spa­

ce, F an arbitrary topological vector space, H a sub­

set in X (£ ; F ) bounded in the strong topology, 

then H is equicontinuous. 

We could associate analogically as in Section 2 

with any topological vector space £ the T H -modifi­

cation of the initial topology in E taking as a base 

of neighborhoods for the topology T^ C £ ) the subsets 

Si ( B ^ ) determined in Definition 3. Hence an operator 

T H is defined on the lattice of all vector topologies 

on £ . Similarly as in Section 2 we might also formula­

te for the operator T H the statements of Remark 4 re­

placing in (b) of Remark 4 the topology of pointwise 

convergence by the topology of bounded convergence in 

%t C£ j F ) * Especially, the T H -modification of any 

vector topology on £ is finer (or equal) to the ini­

tial topology on £ , In addition, the TH -modification 

of a vector topology has an absolute character. Namely, 
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take the system T*~ (t^ • ot eA ) of all vector topolo­

gies on a topological vector space £ with bases of 

neighborhoods consisting of closed subsets in £ and 

suppose that all T ^ preserve the same family of boun­

ded subsets in £ , The least upper bound T 0 of this 

system is evidently an element of T\ Hence T has the 

topology X a e the maximal topology and it obviously 

holds 

Theorem 9« For any topological vector space £ the 

T H -modification of the initial topology in E coin­

cides with T9 . 

We can observe that the M -barrelled and the qua­

si- .M -barrelled spaces may be generalized from a uni­

fying point of view aa follows. Let IP be a covering 

of the topological vector space £ consisting of boun­

ded sets in £ , The space £ is T - M -barrelled 

provided that for any sequence f-E^; nv e N ) of bar­

rels, each B ^ absorbs any S e *V, the set il (3^, ) 

in Definition 3 is a neighborhood of the origin in £ • 

Thus we obtain topologies of barrelled type depending 

on the choice of 01 • 

One might expect that in such a way we obtain a 

scale of different topologies on the category of topo­

logical vector spaces. Unfortunately the usual concepts 

afford only reduced possibilities (see Remark 8). But 

in any case the extreme topologies of the considered 

system, T variable, are the M -barrelled topologies 
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( V represents the class of all finite subsets in E ) 

and the quasi- M -barrelled topologies(*f* stands for 

the class of all bounded sets in E )• The topologies 

of the just described sort possess similar properties 

as those discussed in this and in the article [12]. 

We note two statements only. 

Theorem 10. Let H be a subset of it C E *, F ) 

bounded in the topology of ^-convergence. If £ is 

T -M -barrelled, then H is equicontinuous on E * 

Theorem 11. Suppose that E is *V -M-barrel­

led, F separated. If a sequence (**>„,', nv e N ) is con­

vergent in £(E;T) to a mapping w0 in the topology 

of 7* -convergence, then AA*0 i3 continuous. Similar­

ly, if AA,0 is a limit of a bounded filter in cfc C E ; F ) 

under the topology of ^-convergence, then M,0 is con­

tinuous on E * 

Remark 8. Denote by ff0 the class of all sequen­

ces in E convergent to the origin in E . If 3 is a 

barrel (or, more generally, a balanced subset in E ), 

then B is absorbing any bounded set in £ if and on­

ly if it absorbs any set of T0 . Hence the class of all 

^ - M -barrelled spaces coincides with the class of 

quasi- M -barrelled spaces. 

4. p-BARRELLED SPACES 

In this section we shall outline, quite shortly, 

a straightforward generalization of locally convex bar­

relled spaces to the case of locally .n -convex spaces. 
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Therefore we state only the basic properties of this ca­

tegory of spaces; its permanence properties represent a 

formal generalization of the classical case and in view 

of this analogy they will be omitted. 

Recall that under * fi, -seminorm 0-< ft^ 4 on 

a vector space £ we understand a function .* —> S <x /I 

on £ satisfying 

0 *£ IU II < oo , Hoc* II*= IrfP8x1, IU+^ft ^ J.x II + ly, I . 

A topological vector space £ will be called locally 

ft -convex if the topological structure of £ is de­

termined by a defining system (p^ j * 6 A ) of ft -se­

minomas. Evidently any such space has a base of neigh­

borhoods consisting of absolutely -ft -convex and absor­

bent neighborhoods in £ , On the other hand, if a topo­

logical space has such a base of neighborhoods, then 

its topology may be defined by a system of -ft -seminorms. 

Definition 4. A subset B in a topological vec­

tor space & will be said a fi, -barrel Co-c sp, -£ A) in 

E if B is absolutely .ft -convex, closed and absor­

bent in E . A space is ^t -barrelled provided that a-

ny ft -barrel is a neighborhood of the origin in £ . 

Remark 9. (a) Any locally ft -convex space which 

is M -barrelled is also ft -barrelled, 

(b) Any locally convex ft -barrelled space is barrelled" 

in the usual sense. 

Remark 10. (a) Any complete metrisable locally 

ft -convex space is ft -barrelled. 
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(b) Any Day space (i.e., a complete and fi, -normable 

space) is sfi -barrelled. 

Theorem 12. Suppose that £ and F are locally 

<p, -convex spaces, H a subset in fcCCIv; F > boun­

ded in the topology of pointwise convergence. If £ is 

•fv -barrelled, then H is an equicontinuous subset of 

yt(Z 5 F ) . 

From Theorem 12 we may now conclude the modifica-

ted version of the Banach-Steinhaus theorem and its co­

rollary for fi -barrelled spaces. In anticipation of the 

further use we state only 

Theorem 13* Let E and F be two metrisable lo­

cally /p, -convex spaces, E, <{i -barrelled. If H is a 

family of bilinear separately equicontinuous mappings 

from £ x P into a separated locally <fi -convex spa­

ce Gr then H is equicontinuous on £ x F . 

j t . 

Remark 11. Let T^ ( JE, ) denote for any local­

ly s\t -convex space £# the modification of the ini­

tial topology having as a base of neighborhoods the 

system of all jfi -barrels in E# . The axiom of additi-

vity of the vector topology follows from 

3 + B fi # B y 

where B is a >p -barrel. 

The topology T y (£ ) is identical with the 

maximal locally /p, -convex topology having as a base 

of neighborhoods closed subsets in £ # 

Remark 12* The results of locally convex spa­

ces concerning the barrelled topologies are included 
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here as a special case for 41 » j 0 
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